1
|
Ling YC, Yoo SJB. Review: tunable nanophotonic metastructures. NANOPHOTONICS 2023; 12:3851-3870. [PMID: 38013926 PMCID: PMC10566255 DOI: 10.1515/nanoph-2023-0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 08/08/2023] [Indexed: 11/29/2023]
Abstract
Tunable nanophotonic metastructures offer new capabilities in computing, networking, and imaging by providing reconfigurability in computer interconnect topologies, new optical information processing capabilities, optical network switching, and image processing. Depending on the materials and the nanostructures employed in the nanophotonic metastructure devices, various tuning mechanisms can be employed. They include thermo-optical, electro-optical (e.g. Pockels and Kerr effects), magneto-optical, ionic-optical, piezo-optical, mechano-optical (deformation in MEMS or NEMS), and phase-change mechanisms. Such mechanisms can alter the real and/or imaginary parts of the optical susceptibility tensors, leading to tuning of the optical characteristics. In particular, tunable nanophotonic metastructures with relatively large tuning strengths (e.g. large changes in the refractive index) can lead to particularly useful device applications. This paper reviews various tunable nanophotonic metastructures' tuning mechanisms, tuning characteristics, tuning speeds, and non-volatility. Among the reviewed tunable nanophotonic metastructures, some of the phase-change-mechanisms offer relatively large index change magnitude while offering non-volatility. In particular, Ge-Sb-Se-Te (GSST) and vanadium dioxide (VO2) materials are popular for this reason. Mechanically tunable nanophotonic metastructures offer relatively small changes in the optical losses while offering large index changes. Electro-optically tunable nanophotonic metastructures offer relatively fast tuning speeds while achieving relatively small index changes. Thermo-optically tunable nanophotonic metastructures offer nearly zero changes in optical losses while realizing modest changes in optical index at the expense of relatively large power consumption. Magneto-optically tunable nanophotonic metastructures offer non-reciprocal optical index changes that can be induced by changing the magnetic field strengths or directions. Tunable nanophotonic metastructures can find a very wide range of applications including imaging, computing, communications, and sensing. Practical commercial deployments of these technologies will require scalable, repeatable, and high-yield manufacturing. Most of these technology demonstrations required specialized nanofabrication tools such as e-beam lithography on relatively small fractional areas of semiconductor wafers, however, with advanced CMOS fabrication and heterogeneous integration techniques deployed for photonics, scalable and practical wafer-scale fabrication of tunable nanophotonic metastructures should be on the horizon, driven by strong interests from multiple application areas.
Collapse
Affiliation(s)
- Yi-Chun Ling
- Department of Electrical and Computer Engineering, University of California, Davis, CA95616, USA
| | - Sung Joo Ben Yoo
- Department of Electrical and Computer Engineering, University of California, Davis, CA95616, USA
| |
Collapse
|
2
|
Bo R, Xu S, Yang Y, Zhang Y. Mechanically-Guided 3D Assembly for Architected Flexible Electronics. Chem Rev 2023; 123:11137-11189. [PMID: 37676059 PMCID: PMC10540141 DOI: 10.1021/acs.chemrev.3c00335] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 09/08/2023]
Abstract
Architected flexible electronic devices with rationally designed 3D geometries have found essential applications in biology, medicine, therapeutics, sensing/imaging, energy, robotics, and daily healthcare. Mechanically-guided 3D assembly methods, exploiting mechanics principles of materials and structures to transform planar electronic devices fabricated using mature semiconductor techniques into 3D architected ones, are promising routes to such architected flexible electronic devices. Here, we comprehensively review mechanically-guided 3D assembly methods for architected flexible electronics. Mainstream methods of mechanically-guided 3D assembly are classified and discussed on the basis of their fundamental deformation modes (i.e., rolling, folding, curving, and buckling). Diverse 3D interconnects and device forms are then summarized, which correspond to the two key components of an architected flexible electronic device. Afterward, structure-induced functionalities are highlighted to provide guidelines for function-driven structural designs of flexible electronics, followed by a collective summary of their resulting applications. Finally, conclusions and outlooks are given, covering routes to achieve extreme deformations and dimensions, inverse design methods, and encapsulation strategies of architected 3D flexible electronics, as well as perspectives on future applications.
Collapse
Affiliation(s)
- Renheng Bo
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Shiwei Xu
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Youzhou Yang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| | - Yihui Zhang
- Applied
Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, 100084 Beijing, People’s Republic of China
- Laboratory
of Flexible Electronics Technology, Tsinghua
University, 100084 Beijing, People’s Republic
of China
| |
Collapse
|
3
|
Wang L, Man Z, Liu Y, Yu Y, Dong C, Bian J, Lu YQ, Lu Z, Zhang W. Smart Magnetic Optical Antenna for Automatic Nanoalignment and Photon Beaming from Prepatterned Single Quantum Dot Nanospot. NANO LETTERS 2023; 23:1539-1545. [PMID: 36749037 DOI: 10.1021/acs.nanolett.2c04981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
We present a unidirectional dielectric optical antenna, which can be chemically synthesized and controlled by magnetic fields. By applying magnetic fields, we successfully aligned an optical antenna on a prepatterned quantum dot nanospot with accuracy better than 40 nm. It confined the fluorescence emission into a 16-degree wide beam and enhanced the signal by 11.8 times. Moreover, the position of the antenna, and consequently the beam direction, can be controlled by simply adjusting the direction of the magnetic fields. Theoretical analyses show that this magnetic alignment technique is stable and accurate, providing a new strategy for building high-performance tunable nanophotonic devices.
Collapse
Affiliation(s)
- Luping Wang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Zaiqin Man
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Yang Liu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Ying Yu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Chenyu Dong
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Jie Bian
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Yan-Qing Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
| | - Zhenda Lu
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, PR China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, MOE Key laboratory of Intelligent Optical Sensing and Manipulation, Nanjing University, Nanjing 210023, PR China
- State Key Laboratory of Analytical Chemistry for Life Science, Nanjing 210023, PR China
| |
Collapse
|
4
|
Huang J, Huang G, Zhao Z, Wang C, Cui J, Song E, Mei Y. Nanomembrane-assembled nanophotonics and optoelectronics: from materials to applications. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 35:093001. [PMID: 36560918 DOI: 10.1088/1361-648x/acabf3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
Nanophotonics and optoelectronics are the keys to the information transmission technology field. The performance of the devices crucially depends on the light-matter interaction, and it is found that three-dimensional (3D) structures may be associated with strong light field regulation for advantageous application. Recently, 3D assembly of flexible nanomembranes has attracted increasing attention in optical field, and novel optoelectronic device applications have been demonstrated with fantastic 3D design. In this review, we first introduce the fabrication of various materials in the form of nanomembranes. On the basis of the deformability of nanomembranes, 3D structures can be built by patterning and release steps. Specifically, assembly methods to build 3D nanomembrane are summarized as rolling, folding, buckling and pick-place methods. Incorporating functional materials and constructing fine structures are two important development directions in 3D nanophotonics and optoelectronics, and we settle previous researches on these two aspects. The extraordinary performance and applicability of 3D devices show the potential of nanomembrane assembly for future optoelectronic applications in multiple areas.
Collapse
Affiliation(s)
- Jiayuan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Gaoshan Huang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhe Zhao
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Chao Wang
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Jizhai Cui
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, People's Republic of China
| | - Yongfeng Mei
- Department of Materials Science, International Institute of Intelligent Nanorobots and Nanosystems, Institute of Optoelectronics, Yiwu Research Institute, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
5
|
Zhou S, Bian J, Chen P, Xie M, Chao J, Hu W, Lu Y, Zhang W. Polarization-dispersive imaging spectrometer for scattering circular dichroism spectroscopy of single chiral nanostructures. LIGHT, SCIENCE & APPLICATIONS 2022; 11:64. [PMID: 35304873 PMCID: PMC8933428 DOI: 10.1038/s41377-022-00755-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/21/2022] [Accepted: 02/27/2022] [Indexed: 05/29/2023]
Abstract
Circular dichroism spectroscopy is one of the most important tools in nanoscopic chiroptics. However, there is lack of simple, fast and reliable method for measuring the circular dichroism responses of single nanostructures. To tackle this issue, we report a polarization-dispersive imaging spectrometer which is capable of measuring the scattering circular dichroism response of a single chiral nanostructure with a single shot. Using this technique, we studied the scattering circular dichroism spectra of a model system, the vertically coupled plasmonic nanorod pair. Both experimental and theoretical results indicate that the polarization-dispersive spectrometer measures the imaginary part of nonlocal susceptibility of the structure. We further applied the technique to 3-dimensional Au nanorod structures assembled on DNA origami templates together with correlated scanning electron microscopic measurements. Rich chiroptical phenomena were unveiled at the single nanostructure level.
Collapse
Affiliation(s)
- Shuang Zhou
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Jie Bian
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| | - Peng Chen
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Mo Xie
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Wei Hu
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Yanqing Lu
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, MOE Key Laboratory of Intelligent Optical Sensing and Manipulation, Nanjing university, Nanjing, 210023, China.
- State Key Laboratory of Analytical Chemistry for Life Science, and Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China.
| |
Collapse
|
6
|
Yang J, Gurung S, Bej S, Ni P, Howard Lee HW. Active optical metasurfaces: comprehensive review on physics, mechanisms, and prospective applications. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2022; 85:036101. [PMID: 35244609 DOI: 10.1088/1361-6633/ac2aaf] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
Optical metasurfaces with subwavelength thickness hold considerable promise for future advances in fundamental optics and novel optical applications due to their unprecedented ability to control the phase, amplitude, and polarization of transmitted, reflected, and diffracted light. Introducing active functionalities to optical metasurfaces is an essential step to the development of next-generation flat optical components and devices. During the last few years, many attempts have been made to develop tunable optical metasurfaces with dynamic control of optical properties (e.g., amplitude, phase, polarization, spatial/spectral/temporal responses) and early-stage device functions (e.g., beam steering, tunable focusing, tunable color filters/absorber, dynamic hologram, etc) based on a variety of novel active materials and tunable mechanisms. These recently-developed active metasurfaces show significant promise for practical applications, but significant challenges still remain. In this review, a comprehensive overview of recently-reported tunable metasurfaces is provided which focuses on the ten major tunable metasurface mechanisms. For each type of mechanism, the performance metrics on the reported tunable metasurface are outlined, and the capabilities/limitations of each mechanism and its potential for various photonic applications are compared and summarized. This review concludes with discussion of several prospective applications, emerging technologies, and research directions based on the use of tunable optical metasurfaces. We anticipate significant new advances when the tunable mechanisms are further developed in the coming years.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Sudip Gurung
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Subhajit Bej
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Peinan Ni
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| | - Ho Wai Howard Lee
- Department of Physics & Astronomy, University of California, Irvine, CA 92697, United States of America
- Department of Physics, Baylor University, Waco, TX 76798, United States of America
| |
Collapse
|
7
|
Truong TA, Nguyen TK, Zhao H, Nguyen NK, Dinh T, Park Y, Nguyen T, Yamauchi Y, Nguyen NT, Phan HP. Engineering Stress in Thin Films: An Innovative Pathway Toward 3D Micro and Nanosystems. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105748. [PMID: 34874620 DOI: 10.1002/smll.202105748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/23/2021] [Indexed: 06/13/2023]
Abstract
Transformation of conventional 2D platforms into unusual 3D configurations provides exciting opportunities for sensors, electronics, optical devices, and biological systems. Engineering material properties or controlling and modulating stresses in thin films to pop-up 3D structures out of standard planar surfaces has been a highly active research topic over the last decade. Implementation of 3D micro and nanoarchitectures enables unprecedented functionalities including multiplexed, monolithic mechanical sensors, vertical integration of electronics components, and recording of neuron activities in 3D organoids. This paper provides an overview on stress engineering approaches to developing 3D functional microsystems. The paper systematically presents the origin of stresses generated in thin films and methods to transform a 2D design into an out-of-plane configuration. Different types of 3D micro and nanostructures, along with their applications in several areas are discussed. The paper concludes with current technical challenges and potential approaches and applications of this fast-growing research direction.
Collapse
Affiliation(s)
- Thanh-An Truong
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hangbo Zhao
- Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Nhat-Khuong Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Toan Dinh
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Thanh Nguyen
- Centre for Future Materials, University of Southern Queensland, Ipswich, Queensland, 4305, Australia
| | - Yusuke Yamauchi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Nathan, Queensland, 4111, Australia
| |
Collapse
|
8
|
Lei Y, Clevy C, Rauch JY, Lutz P. Large-Workspace Polyarticulated Micro-Structures Based-On Folded Silica for Tethered Nanorobotics. IEEE Robot Autom Lett 2022. [DOI: 10.1109/lra.2021.3118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
9
|
Benouhiba A, Wurtz L, Rauch JY, Agnus J, Rabenorosoa K, Clévy C. NanoRobotic Structures with Embedded Actuation via Ion Induced Folding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103371. [PMID: 34554607 DOI: 10.1002/adma.202103371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
4D structures are tridimensional structures with time-varying abilities that provide high versatility, sophisticated designs, and a broad spectrum of actuation and sensing possibilities. The downsizing of these structures below 100 μm opens up exceptional opportunities for many disciplines, including photonics, acoustics, medicine, and nanorobotics. However, it requires a paradigm shift in manufacturing methods, especially for dynamic structures. A novel fabrication method based on ion-induced folding of planar multilayer structures embedding their actuation is proposed-the planar structures are fabricated in bulk through batch microfabrication techniques. Programmable and accurate bidirectional foldings (-70° - +90°) of Silica/Chromium/Aluminium (SiO2 /Cr/Al) multilayer structures are modeled, experimentally demonstrated then applied to embedded electrothermal actuation of controllable and dynamic 4D nanorobotic structures. The method is used to produce high-performances case-study grippers for nanorobotic applications in confined environments. Once folded, a gripping task at the nano-scale is demonstrated. The proposed fabrication method is suitable for creating small-scale 4D systems for nanorobotics, medical devices, and tunable metamaterials, where rapid folding and enhanced dynamic control are required.
Collapse
Affiliation(s)
- Amine Benouhiba
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Léo Wurtz
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Jean-Yves Rauch
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Joël Agnus
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Kanty Rabenorosoa
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| | - Cédric Clévy
- FEMTO-ST Institute, CNRS AS2M department, Univ. Bourgogne Franche-Comté, 24 rue Alain Savary, Besançon, 25000, France
| |
Collapse
|
10
|
Abstract
Kirigami, with facile and automated fashion of three-dimensional (3D) transformations, offers an unconventional approach for realizing cutting-edge optical nano-electromechanical systems. Here, we demonstrate an on-chip and electromechanically reconfigurable nano-kirigami with optical functionalities. The nano-electromechanical system is built on an Au/SiO2/Si substrate and operated via attractive electrostatic forces between the top gold nanostructure and bottom silicon substrate. Large-range nano-kirigami like 3D deformations are clearly observed and reversibly engineered, with scalable pitch size down to 0.975 μm. Broadband nonresonant and narrowband resonant optical reconfigurations are achieved at visible and near-infrared wavelengths, respectively, with a high modulation contrast up to 494%. On-chip modulation of optical helicity is further demonstrated in submicron nano-kirigami at near-infrared wavelengths. Such small-size and high-contrast reconfigurable optical nano-kirigami provides advanced methodologies and platforms for versatile on-chip manipulation of light at nanoscale.
Collapse
|
11
|
Lu C, Lu Q, Gao M, Lin Y. Dynamic Manipulation of THz Waves Enabled by Phase-Transition VO 2 Thin Film. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E114. [PMID: 33419046 PMCID: PMC7825355 DOI: 10.3390/nano11010114] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/27/2020] [Accepted: 12/31/2020] [Indexed: 11/26/2022]
Abstract
The reversible and multi-stimuli responsive insulator-metal transition of VO2, which enables dynamic modulation over the terahertz (THz) regime, has attracted plenty of attention for its potential applications in versatile active THz devices. Moreover, the investigation into the growth mechanism of VO2 films has led to improved film processing, more capable modulation and enhanced device compatibility into diverse THz applications. THz devices with VO2 as the key components exhibit remarkable response to external stimuli, which is not only applicable in THz modulators but also in rewritable optical memories by virtue of the intrinsic hysteresis behaviour of VO2. Depending on the predesigned device structure, the insulator-metal transition (IMT) of VO2 component can be controlled through thermal, electrical or optical methods. Recent research has paid special attention to the ultrafast modulation phenomenon observed in the photoinduced IMT, enabled by an intense femtosecond laser (fs laser) which supports "quasi-simultaneous" IMT within 1 ps. This progress report reviews the current state of the field, focusing on the material nature that gives rise to the modulation-allowed IMT for THz applications. An overview is presented of numerous IMT stimuli approaches with special emphasis on the underlying physical mechanisms. Subsequently, active manipulation of THz waves through pure VO2 film and VO2 hybrid metamaterials is surveyed, highlighting that VO2 can provide active modulation for a wide variety of applications. Finally, the common characteristics and future development directions of VO2-based tuneable THz devices are discussed.
Collapse
Affiliation(s)
- Chang Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qingjian Lu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Min Gao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yuan Lin
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China; (C.L.); (Q.L.)
- State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China
- Medico-Engineering Cooperation on Applied Medicine Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China
| |
Collapse
|
12
|
Dai C, Li L, Wratkowski D, Cho JH. Electron Irradiation Driven Nanohands for Sequential Origami. NANO LETTERS 2020; 20:4975-4984. [PMID: 32502353 DOI: 10.1021/acs.nanolett.0c01075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sequence plays an important role in self-assembly of 3D complex structures, particularly for those with overlap, intersection, and asymmetry. However, it remains challenging to program the sequence of self-assembly, resulting in geometric and topological constrains. In this work, a nanoscale, programmable, self-assembly technique is reported, which uses electron irradiation as "hands" to manipulate the motion of nanostructures with the desired order. By assigning each single assembly step in a particular order, localized motion can be selectively triggered with perfect timing, making a component accurately integrate into the complex 3D structure without disturbing other parts of the assembly process. The features of localized motion, real-time monitoring, and surface patterning open the possibility for the further innovation of nanomachines, nanoscale test platforms, and advanced optical devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Lianbi Li
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
- School of Science, Xi'an Polytechnic University, Xi'an 710000, People's Republic of China
| | - Daniel Wratkowski
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
13
|
Chen S, Chen J, Zhang X, Li ZY, Li J. Kirigami/origami: unfolding the new regime of advanced 3D microfabrication/nanofabrication with "folding". LIGHT, SCIENCE & APPLICATIONS 2020; 9:75. [PMID: 32377337 PMCID: PMC7193558 DOI: 10.1038/s41377-020-0309-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/27/2020] [Accepted: 04/02/2020] [Indexed: 05/19/2023]
Abstract
Advanced kirigami/origami provides an automated technique for modulating the mechanical, electrical, magnetic and optical properties of existing materials, with remarkable flexibility, diversity, functionality, generality, and reconfigurability. In this paper, we review the latest progress in kirigami/origami on the microscale/nanoscale as a new platform for advanced 3D microfabrication/nanofabrication. Various stimuli of kirigami/origami, including capillary forces, residual stress, mechanical stress, responsive forces, and focussed-ion-beam irradiation-induced stress, are introduced in the microscale/nanoscale region. These stimuli enable direct 2D-to-3D transformations through folding, bending, and twisting of microstructures/nanostructures, with which the occupied spatial volume can vary by several orders of magnitude compared to the 2D precursors. As an instant and direct method, ion-beam irradiation-based tree-type and close-loop nano-kirigami is highlighted in particular. The progress in microscale/nanoscale kirigami/origami for reshaping the emerging 2D materials, as well as the potential for biological, optical and reconfigurable applications, is briefly discussed. With the unprecedented physical characteristics and applicable functionalities generated by kirigami/origami, a wide range of applications in the fields of optics, physics, biology, chemistry and engineering can be envisioned.
Collapse
Affiliation(s)
- Shanshan Chen
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Jianfeng Chen
- 2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Xiangdong Zhang
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| | - Zhi-Yuan Li
- 2College of Physics and Optoelectronics, South China University of Technology, 510640 Guangzhou, China
| | - Jiafang Li
- 1Key Lab of Advanced Optoelectronic Quantum Architecture and Measurement (Ministry of Education), Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, and School of Physics, Beijing Institute of Technology, 100081 Beijing, China
| |
Collapse
|
14
|
A Programmable Nanofabrication Method for Complex 3D Meta-Atom Array Based on Focused-Ion-Beam Stress-Induced Deformation Effect. MICROMACHINES 2020; 11:mi11010095. [PMID: 31963142 PMCID: PMC7019797 DOI: 10.3390/mi11010095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 11/17/2022]
Abstract
Due to their unique electromagnetic properties, meta-atom arrays have always been a hotspot to realize all kinds of particular functions, and the research on meta-atom structure has extended from two-dimensions (2D) to three-dimensions (3D) in recent years. With the continuous pursuit of complex 3D meta-atom arrays, the increasing demand for more efficient and more precise nanofabrication methods has encountered challenges. To explore better fabrication methods, we presented a programmable nanofabrication method for a complex 3D meta-atom array based on focused-ion-beam stress-induced deformation (FIB-SID) effect and designed a distinctive nanostructure array composed of periodic 3D meta-atoms to demonstrate the presented method. After successful fabrication of the designed 3D meta-atom arrays, measurements were conducted to investigate the electric/magnetic field properties and infrared spectral characteristics using scanning cathodoluminescence (CL) microscopic imaging and Fourier transform infrared (FTIR) spectroscopy, which revealed a certain excitation mode induced by polarized incident IR light near 8 μm. Besides the programmability for complex 3D meta-atoms and wide applicability of materials, a more significant advantage of the method is that a large-scale array composed of complex 3D meta-atoms can be processed in a quasi-parallel way, which improves the processing efficiency and the consistency of unit cells dramatically.
Collapse
|
15
|
Cheng X, Zhang Y. Micro/Nanoscale 3D Assembly by Rolling, Folding, Curving, and Buckling Approaches. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1901895. [PMID: 31265197 DOI: 10.1002/adma.201901895] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 05/03/2019] [Indexed: 06/09/2023]
Abstract
The miniaturization of electronics has been an important topic of study for several decades. The established roadmaps following Moore's Law have encountered bottlenecks in recent years, as planar processing techniques are already close to their physical limits. To bypass some of the intrinsic challenges of planar technologies, more and more efforts have been devoted to the development of 3D electronics, through either direct 3D fabrication or indirect 3D assembly. Recent research efforts into direct 3D fabrication have focused on the development of 3D transistor technologies and 3D heterogeneous integration schemes, but these technologies are typically constrained by the accessible range of sophisticated 3D geometries and the complexity of the fabrication processes. As an alternative route, 3D assembly methods make full use of mature planar technologies to form predefined 2D precursor structures in the desired materials and sizes, which are then transformed into targeted 3D mesostructures by mechanical deformation. The latest progress in the area of micro/nanoscale 3D assembly, covering the various classes of methods through rolling, folding, curving, and buckling assembly, is discussed, focusing on the design concepts, principles, and applications of different methods, followed by an outlook on the remaining challenges and open opportunities.
Collapse
Affiliation(s)
- Xu Cheng
- AML, Department of Engineering Mechanics, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| | - Yihui Zhang
- AML, Department of Engineering Mechanics, Beijing, 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
He S, Yang H, Jiang Y, Deng W, Zhu W. Recent Advances in MEMS Metasurfaces and Their Applications on Tunable Lens. MICROMACHINES 2019; 10:mi10080505. [PMID: 31370137 PMCID: PMC6723974 DOI: 10.3390/mi10080505] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 11/16/2022]
Abstract
The electromagnetic (EM) properties of metasurfaces depend on both structural design and material properties. microelectromechanical systems (MEMS) technology offers an approach for tuning metasurface EM properties by structural reconfiguration. In the past 10 years, vast applications have been demonstrated based on MEMS metasurfaces, which proved to have merits including, large tunability, fast speed, small size, light weight, capability of dense integration, and compatibility of cost-effective fabrication process. Here, recent advances in MEMS metasurface applications are reviewed and categorized based on the tuning mechanisms, operation band and tuning speed. As an example, the pros and cons of MEMS metasurfaces for tunable lens applications are discussed and compared with traditional tunable lens technologies followed by the summary and outlook.
Collapse
Affiliation(s)
- Shaowei He
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Huimin Yang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Yunhui Jiang
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Wenjun Deng
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Weiming Zhu
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China.
| |
Collapse
|
17
|
Huang Y, Zhu J, Fan J, Chen Z, Chen X, Jin S, Wu W. Plasmonic color generation and refractive index sensing with three-dimensional air-gap nanocavities. OPTICS EXPRESS 2019; 27:6283-6299. [PMID: 30876216 DOI: 10.1364/oe.27.006283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/07/2019] [Indexed: 05/19/2023]
Abstract
Three-dimensional (3D) air-gap metal-coated nanocavities with tunable geometries, changeable heights, and improved smoothness are fabricated by combining electron beam lithography (EBL), ultra dilute hydrofluoric acid solution wet etching (UDHFE), and metal magnetron sputtering technologies. With different shapes, heights, and separations of the nanocavities, the strong electromagnetic resonances inside the nanocavities are changed in different extent, resulting in broad gamut and sophisticated plasmonic color generation. The nanocavities-based metasurface is also used to construct a real-time and label-free refractive index sensor with 372 nm/RIU sensitivity, which shows distinct colorimetric change between different mediums. This nanocavities may find extensive potential applications in high-fidelity color printing, high-density information storage, and on-chip colorimetric label-free biomedical sensing.
Collapse
|
18
|
Liu Z, Cui A, Li J, Gu C. Folding 2D Structures into 3D Configurations at the Micro/Nanoscale: Principles, Techniques, and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1802211. [PMID: 30276867 DOI: 10.1002/adma.201802211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Compared to their 2D counterparts, 3D micro/nanostructures show larger degrees of freedom and richer functionalities; thus, they have attracted increasing attention in the past decades. Moreover, extensive applications of 3D micro/nanostructures are demonstrated in the fields of mechanics, biomedicine, optics, etc., with great advantages. However, the mainstream micro/nanofabrication technologies are planar ones; therefore, they cannot be used directly for the construction of 3D micro/nanostructures, making 3D fabrication at the micro/nanoscale a great challenge. A promising strategy to overcome this is to combine the state-of-the-art planar fabrication techniques with the folding method to produce 3D structures. In this strategy, 2D components can be easily produced by traditional planar techniques, and then, 3D structures are constructed by folding each 2D component to specific orientations. In this way, not only will the advantages of existing planar techniques, such as high precision, programmable patterning, and mass production, be preserved, but the fabrication capability will also be greatly expanded without complex and expensive equipment modification/development. The goal here is to highlight the recent progress of the folding method from the perspective of principles, techniques, and applications, as well as to discuss the existing challenges and future prospectives.
Collapse
Affiliation(s)
- Zhe Liu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ajuan Cui
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Junjie Li
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Changzhi Gu
- Beijing National Laboratory for Condensed Matter Physics, Collaborative Innovation Center of Quantum Matter, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
19
|
Zhao X, Duan G, Li A, Chen C, Zhang X. Integrating microsystems with metamaterials towards metadevices. MICROSYSTEMS & NANOENGINEERING 2019; 5:5. [PMID: 31057932 PMCID: PMC6348284 DOI: 10.1038/s41378-018-0042-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/05/2018] [Accepted: 11/22/2018] [Indexed: 05/14/2023]
Abstract
Electromagnetic metamaterials, which are a major type of artificially engineered materials, have boosted the development of optical and photonic devices due to their unprecedented and controllable effective properties, including electric permittivity and magnetic permeability. Metamaterials consist of arrays of subwavelength unit cells, which are also known as meta-atoms. Importantly, the effective properties of metamaterials are mainly determined by the geometry of the constituting subwavelength unit cells rather than their chemical composition, enabling versatile designs of their electromagnetic properties. Recent research has mainly focused on reconfigurable, tunable, and nonlinear metamaterials towards the development of metamaterial devices, namely, metadevices, via integrating actuation mechanisms and quantum materials with meta-atoms. Microelectromechanical systems (MEMS), or microsystems, provide powerful platforms for the manipulation of the effective properties of metamaterials and the integration of abundant functions with metamaterials. In this review, we will introduce the fundamentals of metamaterials, approaches to integrate MEMS with metamaterials, functional metadevices from the synergy, and outlooks for metamaterial-enabled photonic devices.
Collapse
Affiliation(s)
- Xiaoguang Zhao
- Department of Mechanical Engineering, Boston University, Boston, MA USA
| | - Guangwu Duan
- Department of Mechanical Engineering, Boston University, Boston, MA USA
| | - Aobo Li
- Department of Mechanical Engineering, Boston University, Boston, MA USA
| | - Chunxu Chen
- Department of Mechanical Engineering, Boston University, Boston, MA USA
| | - Xin Zhang
- Department of Mechanical Engineering, Boston University, Boston, MA USA
| |
Collapse
|
20
|
Dai C, Agarwal K, Cho JH. Ion-Induced Localized Nanoscale Polymer Reflow for Three-Dimensional Self-Assembly. ACS NANO 2018; 12:10251-10261. [PMID: 30207695 DOI: 10.1021/acsnano.8b05283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Thermal reflow of polymers is a well-established phenomenon that has been used in various microfabrication processes. However, present techniques have critical limitations in controlling the various attributes of polymer reflow, such as the position and extent of reflow, especially at the nanoscale. These challenges primarily result from the reflow heat source supplying heat energy to the entire substrate rather than a specific area. In this work, a focused ion beam (FIB) microscope is used to achieve controllable localized heat generation, leading to precise control over the nanoscale polymer reflow. Through the use of the patterning capability of FIB microscopy, dramatically different reflow performances within nanoscale distances of each other are demonstrated in both discrete periodic and continuous polymer structures. Further, we utilize a self-assembly process induced by nanoscale polymer reflow to realize 3D optical devices, specifically, vertically aligned nanoresonators and graphene-based nanocubes. HFSS and Comsol simulations have been carried out to analyze the advantages of the polymer-based 3D metamaterials as opposed to those fabricated with a metallic hinge. The simulation results clearly demonstrate that the polymer hinges have a dual advantage; first, the removal of any interference from the transmission spectrum leading to strong and distinct resonance peaks and, second, the elimination of parasitic leeching of the enhanced field by the metallic hinge resulting in stronger volumetric enhancement. Thus, the 2-fold advantages existing in 3D polymer-hinge optical metamaterials can open pathways for applications in 3D optoelectronic devices and sensors, vibrational molecular spectroscopy, and other nanoscale 3D plasmonic devices.
Collapse
Affiliation(s)
- Chunhui Dai
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Kriti Agarwal
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Jeong-Hyun Cho
- Department of Electrical and Computer Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| |
Collapse
|
21
|
Mao Y, Zheng Y, Li C, Guo L, Pan Y, Zhu R, Xu J, Zhang W, Wu W. Programmable Bidirectional Folding of Metallic Thin Films for 3D Chiral Optical Antennas. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606482. [PMID: 28294438 DOI: 10.1002/adma.201606482] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 02/05/2017] [Indexed: 06/06/2023]
Abstract
3D structures with characteristic lengths ranging from nanometer to micrometer scale often exhibit extraordinary optical properties, and have been becoming an extensively explored field for building new generation nanophotonic devices. Albeit a few methods have been developed for fabricating 3D optical structures, constructing 3D structures with nanometer accuracy, diversified materials, and perfect morphology is an extremely challenging task. This study presents a general 3D nanofabrication technique, the focused ion beam stress induced deformation process, which allows a programmable and accurate bidirectional folding (-70°-+90°) of various metal and dielectric thin films. Using this method, 3D helical optical antennas with different handedness, improved surface smoothness, and tunable geometries are fabricated, and the strong optical rotation effects of single helical antennas are demonstrated.
Collapse
Affiliation(s)
- Yifei Mao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
| | - Yun Zheng
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Can Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
| | - Lin Guo
- Key Laboratory of Broadband Wireless Communication and Sensor Network Technology of Ministry of Education, College of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu, 210096, P. R. China
| | - Yini Pan
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
| | - Rui Zhu
- Electron Microscopy Laboratory, Peking University, Beijing, 100871, P. R. China
| | - Jun Xu
- Electron Microscopy Laboratory, Peking University, Beijing, 100871, P. R. China
| | - Weihua Zhang
- College of Engineering and Applied Sciences, National Laboratory of Solid State Microstructures, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu, 210093, P. R. China
| | - Wengang Wu
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Institute of Microelectronics, Peking University, Beijing, 100871, P. R. China
- Innovation Center for MicroNanoelectronics and Integrated System, Beijing, 100871, P. R. China
| |
Collapse
|