1
|
Leshchenko ED, Dubrovskii VG. An Overview of Modeling Approaches for Compositional Control in III-V Ternary Nanowires. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101659. [PMID: 37242075 DOI: 10.3390/nano13101659] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023]
Abstract
Modeling of the growth process is required for the synthesis of III-V ternary nanowires with controllable composition. Consequently, new theoretical approaches for the description of epitaxial growth and the related chemical composition of III-V ternary nanowires based on group III or group V intermix were recently developed. In this review, we present and discuss existing modeling strategies for the stationary compositions of III-V ternary nanowires and try to systematize and link them in a general perspective. In particular, we divide the existing approaches into models that focus on the liquid-solid incorporation mechanisms in vapor-liquid-solid nanowires (equilibrium, nucleation-limited, and kinetic models treating the growth of solid from liquid) and models that provide the vapor-solid distributions (empirical, transport-limited, reaction-limited, and kinetic models treating the growth of solid from vapor). We describe the basic ideas underlying the existing models and analyze the similarities and differences between them, as well as the limitations and key factors influencing the stationary compositions of III-V nanowires versus the growth method. Overall, this review provides a basis for choosing a modeling approach that is most appropriate for a particular material system and epitaxy technique and that underlines the achieved level of the compositional modeling of III-V ternary nanowires and the remaining gaps that require further studies.
Collapse
Affiliation(s)
- Egor D Leshchenko
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| | - Vladimir G Dubrovskii
- Faculty of Physics, St. Petersburg State University, Universitetskaya Emb. 13B, 199034 St. Petersburg, Russia
| |
Collapse
|
2
|
Jeong HW, Ajay A, Yu H, Döblinger M, Mukhundhan N, Finley JJ, Koblmüller G. Sb-Mediated Tuning of Growth- and Exciton Dynamics in Entirely Catalyst-Free GaAsSb Nanowires. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207531. [PMID: 36670090 DOI: 10.1002/smll.202207531] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Vapor-liquid-solid (VLS) growth is the mainstream method in realizing advanced semiconductor nanowires (NWs), as widely applied to many III-V compounds. It is exclusively explored also for antimony (Sb) compounds, such as the relevant GaAsSb-based NW materials, although morphological inhomogeneities, phase segregation, and limitations in the supersaturation due to Sb strongly inhibit their growth dynamics. Fundamental advances are now reported here via entirely catalyst-free GaAsSb NWs, where particularly the Sb-mediated effects on the NW growth dynamics and physical properties are investigated in this novel growth regime. Remarkably, depending on GaAsSb composition and nature of the growth surface, both surfactant and anti-surfactant action is found, as seen by transitions between growth acceleration and deceleration characteristics. For threshold Sb-contents up to 3-4%, adatom diffusion lengths are increased ≈sevenfold compared to Sb-free GaAs NWs, evidencing the significant surfactant effect. Furthermore, microstructural analysis reveals unique Sb-mediated transitions in compositional structure, as well as substantial reduction in twin defect density, ≈tenfold over only small compositional range (1.5-6% Sb), exhibiting much larger dynamics as found in VLS-type GaAsSb NWs. The effect of such extended twin-free domains is corroborated by ≈threefold increases in exciton lifetime (≈4.5 ns) due to enlarged electron-hole pair separation in these phase-pure NWs.
Collapse
Affiliation(s)
- Hyowon W Jeong
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching bei München, Germany
| | - Akhil Ajay
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching bei München, Germany
| | - Haiting Yu
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching bei München, Germany
| | - Markus Döblinger
- Department of Chemistry, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Nitin Mukhundhan
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching bei München, Germany
| | - Jonathan J Finley
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching bei München, Germany
| | - Gregor Koblmüller
- Walter Schottky Institute, TUM School of Natural Sciences, Technical University of Munich, 85748, Garching bei München, Germany
| |
Collapse
|
3
|
Al Hassan A, Salehi WA, Lewis RB, Anjum T, Sternemann C, Geelhaar L, Pietsch U. Transition from elastic to plastic strain release in core-shell nanowires revealed by in-plane x-ray diffraction. NANOTECHNOLOGY 2021; 32:205705. [PMID: 33578397 DOI: 10.1088/1361-6528/abe5db] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We investigate the strain evolution and relaxation process as function of increasing lattice mismatch between the GaAs core and surrounding In x Ga1-x As shell in core-shell nanowire heterostructures grown on Si(111) substrates. The dimensions of the core and shell are kept constant whereas the indium concentration inside the shell is varied. Measuring the [Formula: see text] and [Formula: see text] in-plane Bragg reflections normal to the nanowire side edges and side facets, we observe a transition from elastic to plastic strain release for a shell indium content x > 0.5. Above the onset of plastic strain relaxation, indium rich mounds and an indium poor coherent shell grow simultaneously around the GaAs core. Mound formation was observed for indium contents x = 0.5 and 0.6 by scanning electron microscopy. Considering both the measured radial reflections and the axial 111 Bragg reflection, the 3D strain variation was extracted separately for the core and the In x Ga1-x As shell.
Collapse
Affiliation(s)
- Ali Al Hassan
- Naturwissenschaftlich-Technische Fakultät der Universität Siegen, D-57068 Siegen, Germany
- Institute for Photon Science and Synchrotron Radiation, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Waheed A Salehi
- Naturwissenschaftlich-Technische Fakultät der Universität Siegen, D-57068 Siegen, Germany
| | - Ryan B Lewis
- Department of Engineering Physics, McMaster University, Hamilton, Ontario L8S 4L7, Canada
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, D-10117 Berlin, Germany
| | - Taseer Anjum
- Naturwissenschaftlich-Technische Fakultät der Universität Siegen, D-57068 Siegen, Germany
| | - Christian Sternemann
- Fakultät Physik/DELTA, Technische Universität Dortmund, D-44221 Dortmund, Germany
| | - Lutz Geelhaar
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, D-10117 Berlin, Germany
| | - Ullrich Pietsch
- Naturwissenschaftlich-Technische Fakultät der Universität Siegen, D-57068 Siegen, Germany
| |
Collapse
|
4
|
Ruhstorfer D, Lang A, Matich S, Döblinger M, Riedl H, Finley JJ, Koblmüller G. Growth dynamics and compositional structure in periodic InAsSb nanowire arrays on Si (111) grown by selective area molecular beam epitaxy. NANOTECHNOLOGY 2021; 32:135604. [PMID: 33238260 DOI: 10.1088/1361-6528/abcdca] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report a comprehensive study of the growth dynamics in highly periodic, composition tunable InAsSb nanowire (NW) arrays using catalyst-free selective area molecular beam epitaxy. Employing periodically patterned SiO2-masks on Si (111) with various mask opening sizes (20-150 nm) and pitches (0.25-2 μm), high NW yield of >90% (irrespective of the InAsSb alloy composition) is realized by the creation of an As-terminated 1 × 1-Si(111) surface prior to NW nucleation. While the NW aspect ratio decreases continually with increasing Sb content (x Sb from 0% to 30%), we find a remarkable dependence of the aspect ratio on the mask opening size yielding up to ∼8-fold increase for openings decreasing from 150 to 20 nm. The effects of the interwire separation (pitch) on the NW aspect ratio are strongest for pure InAs NWs and gradually vanish for increasing Sb content, suggesting that growth of InAsSb NW arrays is governed by an In surface diffusion limited regime even for the smallest investigated pitches. Compositional analysis using high-resolution x-ray diffraction reveals a substantial impact of the pitch on the alloy composition in homogeneous InAsSb NW arrays, leading to much larger x Sb as the pitch increases due to decreasing competition for Sb adatoms. Scanning transmission electron microscopy and associated energy-dispersive x-ray spectroscopy performed on the cross-sections of individual NWs reveal an interesting growth-axis dependent core-shell like structure with a discontinuous few-nm thick Sb-deficient coaxial boundary layer and six Sb-deficient corner bands. Further analysis evidences the presence of a nanoscale facet at the truncation of the (111)B growth front and {1-10} sidewall surfaces that is found responsible for the formation of the characteristic core-shell structure.
Collapse
Affiliation(s)
- Daniel Ruhstorfer
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | - Armin Lang
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | - Sonja Matich
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | - Markus Döblinger
- Department of Chemistry, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Hubert Riedl
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | - Jonathan J Finley
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| | - Gregor Koblmüller
- Walter Schottky Institute and Physics Department, Technical University of Munich, Garching, Germany
| |
Collapse
|
5
|
Ghasemi M, Leshchenko ED, Johansson J. Assembling your nanowire: an overview of composition tuning in ternary III-V nanowires. NANOTECHNOLOGY 2021; 32:072001. [PMID: 33091889 DOI: 10.1088/1361-6528/abc3e2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The ability to grow defect-free nanowires in lattice-mismatched material systems and to design their properties has made them ideal candidates for applications in fields as diverse as nanophotonics, nanoelectronics and medicine. After studying nanostructures consisting of elemental and binary compound semiconductors, scientists turned their attention to more complex systems-ternary nanowires. Composition control is key in these nanostructures since it enables bandgap engineering. The use of different combinations of compounds and different growth methods has resulted in numerous investigations. The aim of this review is to present a survey of the material systems studied to date, and to give a brief overview of the issues tackled and the progress achieved in nanowire composition tuning. We focus on ternary III x III1-x V nanowires (AlGaAs, AlGaP, AlInP, InGaAs, GaInP and InGaSb) and IIIV x V1-x nanowires (InAsP, InAsSb, InPSb, GaAsP, GaAsSb and GaSbP).
Collapse
Affiliation(s)
| | - Egor D Leshchenko
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| | - Jonas Johansson
- Solid State Physics and NanoLund, Lund University, P O Box 118, SE-221 00 Lund, Sweden
| |
Collapse
|
6
|
Yao X, Zhang X, Kang T, Song Z, Sun Q, Wei D, Zou J, Chen P. Photoelectronic Properties of End-bonded InAsSb Nanowire Array Detector under Weak Light. NANOSCALE RESEARCH LETTERS 2021; 16:13. [PMID: 33475892 PMCID: PMC7818373 DOI: 10.1186/s11671-021-03476-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
A simple fabrication of end-bonded contacts InAsSb NW (nanowire) array detector to weak light is demonstrated in this study. The detector is fabricated using InAsSb NW array grown by molecular beam epitaxy on GaAs substrate. The metal-induced gap states are induced by the end-bonded contact which suppresses the dark current at various temperatures. The existence of the interface dipole due to the interfacial gap states enhances the light excitation around the local field and thus upgrades the photoresponsivity and photodetectivity to the weak light. The light intensity of the infrared light source in this report is 14 nW/cm2 which is about 3 to 4 orders of magnitude less than the laser source. The responsivity of the detector has reached 28.57 A/W at room temperature with the light (945 nm) radiation, while the detectivity is 4.81 × 1011 cm·Hz1/2 W-1. Anomalous temperature-dependent performance emerges at the variable temperature experiments, and we discussed the detailed mechanism behind the nonlinear relationship between the photoresponse of the device and temperatures. Besides, the optoelectronic characteristics of the detector clarified that the light-trapping effect and photogating effect of the NWs can enhance the photoresponse to the weak light across ultraviolet to near-infrared. These results highlight the feasibility of the InAsSb NW array detector to the infrared weak light without a cooling system.
Collapse
Affiliation(s)
- Xiaomei Yao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Shanghai, 200083, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China
- Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xutao Zhang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Shanghai, 200083, China.
- School of Physical Science and Technology Northwestern, Polytechnical University, Xi'an, 710129, China.
| | - Tingting Kang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Shanghai, 200083, China
| | - Zhiyong Song
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Shanghai, 200083, China
| | - Qiang Sun
- Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Dongdong Wei
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Shanghai, 200083, China
| | - Jin Zou
- Materials Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Pingping Chen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics Chinese Academy of Sciences, Shanghai, 200083, China.
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
7
|
Chen M, Yuan Y, Zhang X, Wang X, Xu D, Liu Y, Cao D, Xing G, Tang Z. Boosting the performance of ZnO microrod metal-semiconductor-metal photodetectors via surface capping of thin amorphous Al 2O 3 shell layer. NANOTECHNOLOGY 2020; 31:485207. [PMID: 32931471 DOI: 10.1088/1361-6528/abb15f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
1D ZnO nanostructures have been widely explored due to their potential applications in ultraviolet (UV) region photodetectors because of their unique structural and optoelectronic properties. However, a large number of surface defect states leading to a noticeable dark current hinders their practical applications in UV photodetection. In this work, we have shown improved ZnO/Al2O3 core-shell microrod photodetectors, whose performance is significantly enhanced by defect passivation and the introduction of trap states by atomic layer deposition grown thin amorphous Al2O3 shell layer, as evidenced by steady-state and transient photoluminescence investigations. The photodetectors demonstrated suppressed dark current and increased photocurrent after capping the Al2O3 layer. Specifically, the ZnO/Al2O3 core-shell microrod photodetector exhibited a photoresponsivity as high as 0.019 A/(W cm-2) with the dark current as low as ∼1 × 10-11 A, and a high I light/I dark ratio of ∼104 under relatively weak light illumination (∼10 μW cm-2). The results presented in this work provide valuable pathways to boost the performance of 1D ZnO microrod-based photodetectors for future practical applications.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Physics, Jiangsu University, Zhenjiang, Jiangsu 212013, People's Republic of China. Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau 999078, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Ren D, Ahtapodov L, van Helvoort ATJ, Weman H, Fimland BO. Epitaxially grown III-arsenide-antimonide nanowires for optoelectronic applications. NANOTECHNOLOGY 2019; 30:294001. [PMID: 30917343 DOI: 10.1088/1361-6528/ab13ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Epitaxially grown ternary III-arsenide-antimonide (III-As-Sb) nanowires (NWs) are increasingly attracting attention due to their feasibility as a platform for the integration of largely lattice-mismatched antimonide-based heterostructures while preserving the high crystal quality. This and the inherent bandgap tuning flexibility of III-As-Sb in the near- and mid-infrared wavelength regions are important and auspicious premises for a variety of optoelectronic applications. In this review, we summarize the current understanding of the nucleation, morphology-change and crystal phase evolution of GaAsSb and InAsSb NWs and their characterization, especially in relation to Sb incorporation during growth. By linking these findings to the optical properties in such ternary NWs and their heterostructures, a brief account of the ongoing development of III-As-Sb NW-based photodetectors and light emitters is also given.
Collapse
Affiliation(s)
- Dingding Ren
- Department of Electronic Systems, Norwegian University of Science and Technology (NTNU), NO-7491 Trondheim, Norway
| | | | | | | | | |
Collapse
|
9
|
Gao H, Sun W, Sun Q, Tan HH, Jagadish C, Zou J. Compositional Varied Core-Shell InGaP Nanowires Grown by Metal-Organic Chemical Vapor Deposition. NANO LETTERS 2019; 19:3782-3788. [PMID: 31117755 DOI: 10.1021/acs.nanolett.9b00915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we report the growth of core-shell InGaP nanowires with compositional varied cores/shells using metal-organic chemical vapor deposition. These core-shell InGaP nanowires exhibit Ga-enriched cores attributed to the strong affinity between Au and In, and In-enriched shells due to In-rich vapor ambient. Detailed electron microscopy investigations indicate that the In and Ga concentrations in the nanowire cores and shells varied along the growth direction of InGaP nanowires. It is found that the strain relaxation through Ga diffusion outward and In diffusion inward leads to the decrease of compositional difference between the nanowire core and shell from top to bottom. This study offers a possibility to grow structural complex ternary nanowires that can be used for future applications.
Collapse
Affiliation(s)
- Han Gao
- Materials Engineering , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Wen Sun
- Materials Engineering , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Qiang Sun
- Materials Engineering , The University of Queensland , St. Lucia , QLD 4072 , Australia
| | - Hark Hoe Tan
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Chennupati Jagadish
- Department of Electronic Materials Engineering, Research School of Physics and Engineering , The Australian National University , Canberra , ACT 2601 , Australia
| | - Jin Zou
- Materials Engineering , The University of Queensland , St. Lucia , QLD 4072 , Australia
- Centre for Microscopy and Microanalysis , The University of Queensland , St. Lucia , QLD 4072 , Australia
| |
Collapse
|
10
|
Gao Z, Sun J, Han M, Yin Y, Gu Y, Yang ZX, Zeng H. Recent advances in Sb-based III-V nanowires. NANOTECHNOLOGY 2019; 30:212002. [PMID: 30708362 DOI: 10.1088/1361-6528/ab03ee] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Owing to the high mobility, narrow bandgap, strong spin-orbit coupling and large g-factor, Sb-based III-V nanowires (NWs) attracted significant interests in high speed electronics, long-wavelength photodetectors and quantum superconductivity in the past decade. In this review, we aim to give an integrated summarization about the recent advances in binary as well as ternary Sb-based III-V NWs, starting from the fundamental properties, NWs growth mechanism, typical synthetic methods to their applications in transistors, photodetectors, and Majorana fermions detection. Up to now, famous NWs growth techniques of solid-source chemical vapor deposition (CVD), molecular beam epitaxy, metal organic vapor phase epitaxy and metal organic CVD etc have been adopted and developed for the controllable growth of Sb-based III-V NWs. Several parameters including heating temperature, III/V ratio of source materials, growth temperature, catalyst size and kinds, and growth substrate play important roles on the morphology, position, diameter distribution, growth orientation and crystal phase of Sb-based III-V NWs. Furthermore, we discuss the photoelectrical applications of Sb-based III-V NWs such as field-effect-transistors, tunnel diode, low-power inverter, and infrared detectors etc. Importantly, due to the strongest spin-orbit interaction and giant g-factor among all III-V semiconductors, InSb with the geometry of one-dimension NW is considered as the most promising candidate for the detection of Majorana fermions. In the end, we also summarize the main challenges remaining in the field and put forward some suggestions for the future development of Sb-based III-V NWs.
Collapse
Affiliation(s)
- Zhaofeng Gao
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, People's Republic of China. School of Microelectronics, Shandong University, Jinan, 250100, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
11
|
Yip S, Shen L, Ho JC. Recent advances in III-Sb nanowires: from synthesis to applications. NANOTECHNOLOGY 2019; 30:202003. [PMID: 30625448 DOI: 10.1088/1361-6528/aafcce] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The excellent properties of III-V semiconductors make them intriguing candidates for next-generation electronics and optoelectronics. Their nanowire (NW) counterparts further provide interesting geometry and a quantum confinement effect which benefits various applications. Among the many members of all the III-V semiconductors, III-antimonide NWs have attracted significant research interest due to their narrow, direct bandgap and high carrier mobility. However, due to the difficulty of NW fabrication, the development of III-antimonide NWs and their corresponding applications are always a step behind the other III-V semiconductors. Until recent years, because of advances in understanding and fabrication techniques, electronic and optoelectronic devices based on III-antimonide NWs with novel performance have been fabricated. In this review, we will focus on the development of the synthesis of III-antimonide NWs using different techniques and strategies for fine-tuning the crystal structure and composition as well as fabricating their corresponding heterostructures. With such development, the recent progress in the applications of III-antimonide NWs in electronics and optoelectronics is also surveyed. All these discussions provide valuable guidelines for the design of III-antimonide NWs for next-generation device utilization.
Collapse
Affiliation(s)
- SenPo Yip
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong Special Administrative Region of China, People's Republic of China. Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, People's Republic of China
| | | | | |
Collapse
|
12
|
Baboli MA, Slocum MA, Kum H, Wilhelm TS, Polly SJ, Hubbard SM, Mohseni PK. Improving pseudo-van der Waals epitaxy of self-assembled InAs nanowires on graphene via MOCVD parameter space mapping. CrystEngComm 2019. [DOI: 10.1039/c8ce01666f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Self-assembly of InAs nanowire arrays with highest reported aspect ratios and number density by van der Waals epitaxy on graphene is presented.
Collapse
Affiliation(s)
- Mohadeseh A. Baboli
- Microsystems Engineering
- Rochester Institute of Technology
- Rochester
- USA
- NanoPower Research Laboratories
| | - Michael A. Slocum
- NanoPower Research Laboratories
- Rochester Institute of Technology
- Rochester
- USA
| | - Hyun Kum
- NanoPower Research Laboratories
- Rochester Institute of Technology
- Rochester
- USA
| | - Thomas S. Wilhelm
- Microsystems Engineering
- Rochester Institute of Technology
- Rochester
- USA
- NanoPower Research Laboratories
| | - Stephen J. Polly
- NanoPower Research Laboratories
- Rochester Institute of Technology
- Rochester
- USA
| | - Seth M. Hubbard
- Microsystems Engineering
- Rochester Institute of Technology
- Rochester
- USA
- NanoPower Research Laboratories
| | - Parsian K. Mohseni
- Microsystems Engineering
- Rochester Institute of Technology
- Rochester
- USA
- NanoPower Research Laboratories
| |
Collapse
|
13
|
Ji X, Chen X, Yang X, Zhang X, Shao J, Yang T. Self-Seeded MOCVD Growth and Dramatically Enhanced Photoluminescence of InGaAs/InP Core-Shell Nanowires. NANOSCALE RESEARCH LETTERS 2018; 13:269. [PMID: 30187239 PMCID: PMC6125257 DOI: 10.1186/s11671-018-2690-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 08/28/2018] [Indexed: 06/08/2023]
Abstract
We report on the growth and characterization of InGaAs/InP core-shell nanowires on Si-(111) substrates by metal-organic chemical vapor deposition (MOCVD). The strain at the core-shell interface induced by the large lattice mismatch between the InGaAs core and InP shell materials has strong influence on the growth behavior of the InP shell, leading to the asymmetric growth of InP shell around the InGaAs core and even to the bending of the nanowires. Transmission electron microscopy (TEM) measurements reveal that the InP shell is coherent with the InGaAs core without any misfit dislocations. Furthermore, photoluminescence (PL) measurements at 77 K show that the PL peak intensity from the InGaAs/InP core-shell nanowires displays a ∼ 100 times enhancement compared to the only InGaAs core sample without InP shell due to the passivation of surface states and effective carrier confinement resulting from InP shell layer. The results obtained here further our understanding of the growth behavior of strained core-shell heterostructure nanowires and may open new possibilities for applications in InGaAs/InP heterostructure nanowire-based optoelectronic devices on Si platform.
Collapse
Affiliation(s)
- Xianghai Ji
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xiren Chen
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083 People’s Republic of China
| | - Xiaoguang Yang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Xingwang Zhang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jun Shao
- National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083 People’s Republic of China
| | - Tao Yang
- Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083 People’s Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| |
Collapse
|
14
|
Mandl B, Keplinger M, Messing ME, Kriegner D, Wallenberg R, Samuelson L, Bauer G, Stangl J, Holý V, Deppert K. Self-Seeded Axio-Radial InAs-InAs 1-xP x Nanowire Heterostructures beyond "Common" VLS Growth. NANO LETTERS 2018; 18:144-151. [PMID: 29257691 DOI: 10.1021/acs.nanolett.7b03668] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Semiconductors are essential for modern electronic and optoelectronic devices. To further advance the functionality of such devices, the ability to fabricate increasingly complex semiconductor nanostructures is of utmost importance. Nanowires offer excellent opportunities for new device concepts; heterostructures have been grown in either the radial or axial direction of the core nanowire but never along both directions at the same time. This is a consequence of the common use of a foreign metal seed particle with fixed size for nanowire heterostructure growth. In this work, we present for the first time a growth method to control heterostructure growth in both the axial and the radial directions simultaneously while maintaining an untapered self-seeded growth. This is demonstrated for the InAs/InAs1-xPx material system. We show how the dimensions and composition of such axio-radial nanowire heterostructures can be designed including the formation of a "pseudo-superlattice" consisting of five separate InAs1-xPx segments with varying length. The growth of axio-radial nanowire heterostructures offers an exciting platform for novel nanowire structures applicable for fundamental studies as well as nanowire devices. The growth concept for axio-radial nanowire heterostructures is expected to be fully compatible with Si substrates.
Collapse
Affiliation(s)
- Bernhard Mandl
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | - Mario Keplinger
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | | | - Dominik Kriegner
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | | | | | - Günther Bauer
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | - Julian Stangl
- Semiconductor and Solid State Physics, Johannes Kepler University Linz , A-4040 Linz, Austria
| | - Václav Holý
- Department of Condensed Matter Physics, Charles University , Ke Karlovu 5, 121 16 Prague, Czech Republic
| | | |
Collapse
|
15
|
Ji X, Yang X, Yang T. Self-Catalyzed Growth of Vertical GaSb Nanowires on InAs Stems by Metal-Organic Chemical Vapor Deposition. NANOSCALE RESEARCH LETTERS 2017; 12:428. [PMID: 28655220 PMCID: PMC5484658 DOI: 10.1186/s11671-017-2207-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 06/01/2023]
Abstract
We report the first self-catalyzed growth of high-quality GaSb nanowires on InAs stems using metal-organic chemical vapor deposition (MOCVD) on Si (111) substrates. To achieve the growth of vertical InAs/GaSb heterostructure nanowires, the two-step flow rates of the trimethylgallium (TMGa) and trimethylantimony (TMSb) are used. We first use relatively low TMGa and TMSb flow rates to preserve the Ga droplets on the thin InAs stems. Then, the flow rates of TMGa and TMSb are increased to enhance the axial growth rate. Because of the slower radial growth rate of GaSb at higher growth temperature, GaSb nanowires grown at 500 °C exhibit larger diameters than those grown at 520 °C. However, with respect to the axial growth, due to the Gibbs-Thomson effect and the reduction in the droplet supersaturation with increasing growth temperature, GaSb nanowires grown at 500 °C are longer than those grown at 520 °C. Detailed transmission electron microscopy (TEM) analyses reveal that the GaSb nanowires have a perfect zinc-blende (ZB) crystal structure. The growth method presented here may be suitable for other antimonide nanowire growth, and the axial InAs/GaSb heterostructure nanowires may have strong potential for use in the fabrication of novel nanowire-based devices and in the study of fundamental quantum physics.
Collapse
Affiliation(s)
- Xianghai Ji
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xiaoguang Yang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tao Yang
- Key Laboratory of Semiconductor Materials Science, Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|