1
|
Islam M, Basu S. Conductance properties of α- T3Corbino disks. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:205302. [PMID: 40239691 DOI: 10.1088/1361-648x/adcdb3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/16/2025] [Indexed: 04/18/2025]
Abstract
In this work, we investigate anα-T3lattice in the form of a Corbino disk, characterized by inner and outer radiiR1andR2, threaded by a tunable magnetic flux. Through exact (analytic) solution of the stationary Dirac-Weyl equation, we compute the transmission probability of the carriers and hence obtain the conductance features for0<α⩽1(αdenotes the strength of the hopping between the central atom and one of the other two) which allows ascertaining the role of the flat band, alongwith scrutinizing the transport features from graphene to a dice lattice. Our results reveal periodic Aharonov-Bohm (AB) oscillations in the conductance, reminiscent of the utility of the Corbino disk as an electron pump. Further, these results are strongly influenced by parameters, such as, doping level, ratio of the inner and outer radii, magnetic flux, andα. Additionally, complex quantum interference effect resulting in the possible emergence of higher harmonic modes and split-peak structures in the conductance, become prominent for smallerαvalues and larger ratios of the radii. We also find that, away from the charge-neutrality point (zero doping), the conductance oscillations are more pronounced and sensitive to the various parameters, with the corresponding behavior largely governed via the evanescent wave transport. Further, the Fano factor reveals distinct transport regimes, transitioning from Poissonian to pseudo-diffusive forα < 1, and from ballistic to pseudo-diffusive at the dice limit (α = 1). Thus, this setup serves as a fertile ground for studying the generation of quantum Hall current and AB oscillations in a flat band system, alongwith demonstrating intricate appearance of higher harmonics in the electron transport. Finally, to put things in perspective, we have compared our results with those for graphene disks that highlight the difference between the two with regard to device applications.
Collapse
Affiliation(s)
- Mijanur Islam
- Department of Physics, Indian Institute of Technology-Guwahati, Guwahati 781039, India
| | - Saurabh Basu
- Department of Physics, Indian Institute of Technology-Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Andrade E, Carrillo-Bastos R, Naumis GG. Topical review: electronic and optical properties of Kekulé and other short wavelength spatial modulated textures of graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:193003. [PMID: 40153943 DOI: 10.1088/1361-648x/adc6e1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 03/28/2025] [Indexed: 04/01/2025]
Abstract
A review of the electronic and optical properties of Kekulé and other short wavelength modulations textures on graphene is presented. Starting from the experimental realization of such textures, the review discusses the electronic and optical properties in terms of several theoretical models like the tight-binding Hamiltonian and effective low energy models based on the Dirac equation. Other surveyed subjects are, strain effects, valley engineering, Kekulé bilayers, zitterbewegung, Kekulé interfaces, valley birefringence and the skew valley scattering. Specific signatures in the optical and electronic conductivities of Kekule textures are next discussed using several approaches like linear response theory, the random phase approximation, and Floquet theory. Plasmons are also presented by considering the dielectric function. Finally, a discussion is presented on how Kekulé textures are related with highly correlated phases, including its importance in magic angle twisted bilayer graphene superconductivity and related quantum phases.
Collapse
Affiliation(s)
- Elias Andrade
- Posgrado de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico
| | - R Carrillo-Bastos
- Facultad de Ciencias, Universidad Autónoma de Baja California, Apartado Postal 1880, Ensenada, Baja California 22800, Mexico
| | - Gerardo G Naumis
- Depto. de Sistemas Complejos, Instituto de Física, Universidad Nacional Autónoma de México (UNAM), Apdo. Postal 20-364, CDMX 01000, Mexico
| |
Collapse
|
3
|
Uemoto M, Nishiura M, Ono T. Valley filters using graphene blister defects from first principles. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2023; 36:095301. [PMID: 37972399 DOI: 10.1088/1361-648x/ad0d26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/15/2023] [Indexed: 11/19/2023]
Abstract
Valleytronics, which makes use of the two valleys in graphenes, attracts considerable attention and a valley filter is expected to be the central component in valleytronics. We propose the application of the graphene valley filter using blister defects to the investigation of the valley-dependent transport properties of the Stone-Wales and blister defects of graphenes by density functional theory calculations. It is found that the intervalley transition from theKvalley to theK'valleys is completely suppressed in some defects. Using a large bipartite honeycomb cell (BHC) including several carbon atoms in a cell and replacing atomic orbitals with molecular orbitals in the tight-binding model, we demonstrate analytically and numerically that the symmetry between the A and B sites of the BHC contributes to the suppression of the intervalley transition. In addition, the universal rule for the atomic structures of the blisters suppressing the intervalley transition is derived. Furthermore, by introducing additional carbon atoms to graphenes to form blister defects, we can split the energies of the states at which resonant scattering occurs on theKandK'channel electrons. Because of this split, the fully valley-polarized current will be achieved by the local application of a gate voltage.
Collapse
Affiliation(s)
- Mitsuharu Uemoto
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe 657-8501 Japan
| | - Masaki Nishiura
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe 657-8501 Japan
| | - Tomoya Ono
- Department of Electrical and Electronic Engineering, Graduate School of Engineering, Kobe University, Nada, Kobe 657-8501 Japan
| |
Collapse
|
4
|
Goel N, Kushwaha A, Kumar M. Two-dimensional MXenes: recent emerging applications. RSC Adv 2022; 12:25172-25193. [PMID: 36199310 PMCID: PMC9443681 DOI: 10.1039/d2ra04354h] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/25/2022] [Indexed: 11/25/2022] Open
Abstract
MXenes, are a rapidly growing family of two-dimensional materials exhibiting outstanding electronic, optical, mechanical, and thermal properties with versatile transition metal and surface chemistries. A wide range of transition metals and surface termination groups facilitate the properties of MXenes to be easily tuneable. Due to the physically strong and environmentally stable nature of MXenes, they have already had a strong presence in different fields, for instance energy storage, electrocatalysis, water purification, and chemical sensing. Some of the newly discovered applications of MXenes showed very promising results, however, they have not been covered in any review article. Therefore, in this review we comprehensively review the recent advancements of MXenes in various potential fields including energy conversion and storage, wearable flexible electronic devices, chemical detection, and biomedical engineering. We have also presented some of the most exciting prospects by combining MXenes with other materials and forming mixed dimensional high performance heterostructures based novel electronic devices.
Collapse
Affiliation(s)
- Neeraj Goel
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology Dwarka 110078 New Delhi India
| | - Aditya Kushwaha
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology Dwarka 110078 New Delhi India
| | - Mahesh Kumar
- Department of Electrical Engineering, Indian Institute of Technology Jodhpur Jodhpur 342011 India
| |
Collapse
|
5
|
Lu JD, Chen XS. Effect of the Electrostatic Barrier on the Valley Polarization in a Graphene. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05778-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
7
|
Banerjee R, Nguyen VH, Granzier-Nakajima T, Pabbi L, Lherbier A, Binion AR, Charlier JC, Terrones M, Hudson EW. Strain Modulated Superlattices in Graphene. NANO LETTERS 2020; 20:3113-3121. [PMID: 32134680 DOI: 10.1021/acs.nanolett.9b05108] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Numerous theoretically proposed devices and novel phenomena have sought to take advantage of the intense pseudogauge fields that can arise in strained graphene. Many of these proposals, however, require fields to oscillate with a spatial frequency smaller than the magnetic length, while to date only the generation and effects of fields varying at a much larger length scale have been reported. Here, we describe the creation of short wavelength, periodic pseudogauge-fields using rippled graphene under extreme (>10%) strain and study of its effects on Dirac electrons. Combining scanning tunneling microscopy and atomistic calculations, we find that spatially oscillating strain generates a new quantization different from the familiar Landau quantization. Graphene ripples also cause large variations in carbon-carbon bond length, creating an effective electronic superlattice within a single graphene sheet. Our results thus also establish a novel approach of synthesizing effective 2D lateral heterostructures by periodically modulating lattice strain.
Collapse
Affiliation(s)
- Riju Banerjee
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Viet-Hung Nguyen
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Tomotaroh Granzier-Nakajima
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Lavish Pabbi
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Aurelien Lherbier
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Anna Ruth Binion
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jean-Christophe Charlier
- Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Chemin des étoiles 8, B-1348 Louvain-la-Neuve, Belgium
| | - Mauricio Terrones
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Eric William Hudson
- Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
8
|
Wang L, Tian Z, Zhang B, Xu B, Wang T, Wang Y, Li S, Di Z, Mei Y. On-Chip Rolling Design for Controllable Strain Engineering and Enhanced Photon-Phonon Interaction in Graphene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1805477. [PMID: 31026126 DOI: 10.1002/smll.201805477] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 04/13/2019] [Indexed: 05/06/2023]
Abstract
On-chip strain engineering is highly demanded in 2D materials as an effective route for tuning their extraordinary properties and integrating consistent functionalities toward various applications. Herein, rolling technique is proposed for strain engineering in monolayer graphene grown on a germanium substrate, where compressive or tensile strain could be acquired, depending on the designed layer stressors. Unusual compressive strains up to 0.30% are achieved in the rolled-up graphene tubular structures. The subsequent phonon hardening under compressive loading is observed through strain-induced Raman G band splitting, while distinct blueshifts of characteristic peaks (G+ , G- , or 2D) can be well regulated on an asymmetric tubular structure with a strain variation. In addition, due to the strong confinement of the local electromagnetic field under 3D tubular geometry, the photon-phonon interaction is highly strengthened, and thus, the Raman scattering of graphene in rolled-up tubes is enhanced. Such an on-chip rolling approach leads to a superior strain tuning method in 2D materials and could improve their light-matter interaction in a tubular configuration, which may hold great capability in 2D materials integration for on-chip applications such as in mechanics, electronics, and photonics.
Collapse
Affiliation(s)
- Lu Wang
- Department of Materials Science and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200433, P. R. China
| | - Ziao Tian
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Biran Zhang
- Department of Materials Science and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200433, P. R. China
| | - Borui Xu
- Department of Materials Science and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200433, P. R. China
| | - Tianbo Wang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - Yang Wang
- Department of Materials Science and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200433, P. R. China
| | - Shilong Li
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, P. R. China
| | - Zengfeng Di
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
| | - YongFeng Mei
- Department of Materials Science and State Key Laboratory of ASIC and System, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
9
|
Pang J, Mendes RG, Bachmatiuk A, Zhao L, Ta HQ, Gemming T, Liu H, Liu Z, Rummeli MH. Applications of 2D MXenes in energy conversion and storage systems. Chem Soc Rev 2019; 48:72-133. [DOI: 10.1039/c8cs00324f] [Citation(s) in RCA: 978] [Impact Index Per Article: 163.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This article provides a comprehensive review of MXene materials and their energy-related applications.
Collapse
Affiliation(s)
- Jinbo Pang
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
| | - Rafael G. Mendes
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Alicja Bachmatiuk
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| | - Liang Zhao
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Huy Q. Ta
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Thomas Gemming
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR)
- University of Jinan
- Jinan 250022
- China
- State Key Laboratory of Crystal Materials
| | - Zhongfan Liu
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
- School of Energy
- Soochow University
- Suzhou
| | - Mark H. Rummeli
- The Leibniz Institute for Solid State and Materials Research Dresden (IFW Dresden)
- Dresden
- Germany
- Soochow Institute for Energy and Materials InnovationS (SIEMIS)
- Optoelectronics and Energy & Collaborative Innovation Center of Suzhou Nano Science and Technology, and Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province
| |
Collapse
|
10
|
Oliva-Leyva M, Barrios-Vargas JE, Wang C. Fingerprints of a position-dependent Fermi velocity on scanning tunnelling spectra of strained graphene. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2018; 30:085702. [PMID: 29334358 DOI: 10.1088/1361-648x/aaa7b3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Nonuniform strain in graphene induces a position dependence of the Fermi velocity, as recently demonstrated by scanning tunnelling spectroscopy experiments. In this work, we study the effects of a position-dependent Fermi velocity on the local density of states (LDOS) of strained graphene, with and without the presence of a uniform magnetic field. The variation of LDOS obtained from tight-binding calculations is successfully explained by analytical expressions derived within the Dirac approach. These expressions also rectify a rough Fermi velocity substitution used in the literature that neglects the strain-induced anisotropy. The reported analytical results could be useful for understanding the nonuniform strain effects on scanning tunnelling spectra of graphene, as well as when it is exposed to an external magnetic field.
Collapse
Affiliation(s)
- M Oliva-Leyva
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Apartado Postal 70-360, 04510 Mexico City, Mexico
| | | | | |
Collapse
|