1
|
Zhang S, Lin P, Komatsubara F, Nakata E, Morii T. A Practical Approach for Polarity and Quantity Controlled Assembly of Membrane Proteins into Nanoliposomes. Chembiochem 2025; 26:e202401041. [PMID: 39915241 PMCID: PMC11907387 DOI: 10.1002/cbic.202401041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/24/2025] [Indexed: 02/21/2025]
Abstract
Biological membranes achieve selectivity and permeability through protein transporters and channels. The design of artificial compartments with permeable membranes is essential to facilitate substrate and product transfer in enzymatic reactions. In this study, an E. coli outer membrane protein OmpF fused to a modular adaptor was integrated onto a DNA origami skeleton to control the number and polarity of the OmpF trimer. DNA origami skeleton-guided nanoliposomes reconstituted with functional OmpF exhibit pH-responsiveness and size-selective permeability. This approach highlights the potential to construct artificial compartments that incorporate membrane proteins of defined number and polarity, allowing tunable substrate fluxes.
Collapse
Affiliation(s)
- Shiwei Zhang
- Institute of Advanced EnergyKyoto UniversityUjiKyoto6110011Japan
| | - Peng Lin
- Institute of Advanced EnergyKyoto UniversityUjiKyoto6110011Japan
- Department of Fundamental Energy Science, Graduate School of Energy ScienceKyoto UniversityYoshida, Sakyo-kuKyoto6068501Japan
| | - Futa Komatsubara
- Department of Fundamental Energy Science, Graduate School of Energy ScienceKyoto UniversityYoshida, Sakyo-kuKyoto6068501Japan
| | - Eiji Nakata
- Institute of Advanced EnergyKyoto UniversityUjiKyoto6110011Japan
- Department of Fundamental Energy Science, Graduate School of Energy ScienceKyoto UniversityYoshida, Sakyo-kuKyoto6068501Japan
| | - Takashi Morii
- Institute of Advanced EnergyKyoto UniversityUjiKyoto6110011Japan
- Department of Health and NutritionKyoto Koka Women's UniversityUkyo-kuKyoto615-0882Japan
| |
Collapse
|
2
|
Palivan CG, Heuberger L, Gaitzsch J, Voit B, Appelhans D, Borges Fernandes B, Battaglia G, Du J, Abdelmohsen L, van Hest JCM, Hu J, Liu S, Zhong Z, Sun H, Mutschler A, Lecommandoux S. Advancing Artificial Cells with Functional Compartmentalized Polymeric Systems - In Honor of Wolfgang Meier. Biomacromolecules 2024; 25:5454-5467. [PMID: 39196319 DOI: 10.1021/acs.biomac.4c00769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
The fundamental building block of living organisms is the cell, which is the universal biological base of all living entities. This micrometric mass of cytoplasm and the membrane border have fascinated scientists due to the highly complex and multicompartmentalized structure. This specific organization enables numerous metabolic reactions to occur simultaneously and in segregated spaces, without disturbing each other, but with a promotion of inter- and intracellular communication of biomolecules. At present, artificial nano- and microcompartments, whether as single components or self-organized in multicompartment architectures, hold significant value in the study of life development and advanced functional materials and in the fabrication of molecular devices for medical applications. These artificial compartments also possess the properties to encapsulate, protect, and control the release of bio(macro)molecules through selective transport processes, and they are capable of embedding or being connected with other types of compartments. The self-assembly mechanism of specific synthetic compartments and thus the fabrication of a simulated organelle membrane are some of the major aspects to gain insight. Considerable efforts have now been devoted to design various nano- and microcompartments and understand their functionality for precise control over properties. Of particular interest is the use of polymeric vesicles for communication in synthetic cells and colloidal systems to reinitiate chemical and biological communication and thus close the gap toward biological functions. Multicompartment systems can now be effectively created with a high level of hierarchical control. In this way, these structures can not only be explored to deepen our understanding of the functional organization of living cells, but also pave the way for many more exciting developments in the biomedical field.
Collapse
Affiliation(s)
- Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 22, 4002 Basel, Switzerland
| | - Jens Gaitzsch
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, Dresden 01069, Germany
| | - Barbara Borges Fernandes
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Department of Condensed Matter Physics, University of Barcelona, 08028 Barcelona, Spain
| | - Giuseppe Battaglia
- Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
- Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Spain
| | - Jianzhong Du
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Loai Abdelmohsen
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry and Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine and Laboratory of Precision and Intelligent Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui Province 230026, China
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
- College of Pharmaceutical Sciences, and International College of Pharmaceutical Innovation, Soochow University, Suzhou 215123, P. R. China
| | - Huanli Sun
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, P. R. China
| | - Angela Mutschler
- Univ. Bordeaux, CNRS, Bordeaux INP, LCPO, UMR 5629, F-33600 Pessac, France
| | | |
Collapse
|
3
|
Maffeis V, Heuberger L, Nikoletić A, Schoenenberger C, Palivan CG. Synthetic Cells Revisited: Artificial Cells Construction Using Polymeric Building Blocks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305837. [PMID: 37984885 PMCID: PMC10885666 DOI: 10.1002/advs.202305837] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/06/2023] [Indexed: 11/22/2023]
Abstract
The exponential growth of research on artificial cells and organelles underscores their potential as tools to advance the understanding of fundamental biological processes. The bottom-up construction from a variety of building blocks at the micro- and nanoscale, in combination with biomolecules is key to developing artificial cells. In this review, artificial cells are focused upon based on compartments where polymers are the main constituent of the assembly. Polymers are of particular interest due to their incredible chemical variety and the advantage of tuning the properties and functionality of their assemblies. First, the architectures of micro- and nanoscale polymer assemblies are introduced and then their usage as building blocks is elaborated upon. Different membrane-bound and membrane-less compartments and supramolecular structures and how they combine into advanced synthetic cells are presented. Then, the functional aspects are explored, addressing how artificial organelles in giant compartments mimic cellular processes. Finally, how artificial cells communicate with their surrounding and each other such as to adapt to an ever-changing environment and achieve collective behavior as a steppingstone toward artificial tissues, is taken a look at. Engineering artificial cells with highly controllable and programmable features open new avenues for the development of sophisticated multifunctional systems.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
| | - Lukas Heuberger
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
| | - Anamarija Nikoletić
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| | | | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 22BaselCH‐4002Switzerland
- NCCR‐Molecular Systems EngineeringBPR 1095, Mattenstrasse 24aBaselCH‐4058Switzerland
- Swiss Nanoscience InstituteUniversity of BaselKlingelbergstrasse 82BaselCH‐4056Switzerland
| |
Collapse
|
4
|
Zhang D, Liu D, Wang C, Su Y, Zhang X. Nanoreactor-based catalytic systems for therapeutic applications: Principles, strategies, and challenges. Adv Colloid Interface Sci 2023; 322:103037. [PMID: 37931381 DOI: 10.1016/j.cis.2023.103037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/25/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
Inspired by natural catalytic compartments, various synthetic compartments that seclude catalytic reactions have been developed to understand complex multistep biosynthetic pathways, bestow therapeutic effects, or extend biosynthetic pathways in living cells. These emerging nanoreactors possessed many advantages over conventional biomedicine, such as good catalytic activity, specificity, and sustainability. In the past decade, a great number of efficient catalytic systems based on diverse nanoreactors (polymer vesicles, liposome, polymer micelles, inorganic-organic hybrid materials, MOFs, etc.) have been designed and employed to initiate in situ catalyzed chemical reactions for therapy. This review aims to present the recent progress in the development of catalytic systems based on nanoreactors for therapeutic applications, with a special emphasis on the principles and design strategies. Besides, the key components of nanoreactor-based catalytic systems, including nanocarriers, triggers or energy inputs, and products, are respectively introduced and discussed in detail. Challenges and prospects in the fabrication of therapeutic catalytic nanoreactors are also discussed as a conclusion to this review. We believe that catalytic nanoreactors will play an increasingly important role in modern biomedicine, with improved therapeutic performance and minimal side effects.
Collapse
Affiliation(s)
- Dan Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Dongcheng Liu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Chunfei Wang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Yanhong Su
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau SAR 999078, China; MOE Frontiers Science Centre for Precision Oncology, University of Macau, Macau SAR 999078, China.
| |
Collapse
|
5
|
Sun Q, Shi J, Sun H, Zhu Y, Du J. Membrane and Lumen-Compartmentalized Polymersomes for Biocatalysis and Cell Mimics. Biomacromolecules 2023; 24:4587-4604. [PMID: 37842883 DOI: 10.1021/acs.biomac.3c00726] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Compartmentalization is a crucial feature of a natural cell, manifested in cell membrane and inner lumen. Inspired by the cellular structure, multicompartment polymersomes (MCPs), including membrane-compartmentalized polymersomes and lumen-compartmentalized polymersomes (polymersomes-in-polymersomes), have aroused great expectations for biological applications such as biocatalysis and cell mimics in the past decades. Compared with traditional polymersomes, MCPs have advantages in encapsulating multiple enzymes separately for multistep enzymatic cascade reactions. In this review, first, the design principles and preparation methods of membrane-compartmentalized and lumen-compartmentalized polymersomes are summarized. Next, recent advances of MCPs as nanoreactors and cell mimics to mimic subcellular organelles or artificial cells are discussed. Finally, the future research directions of MCPs are prospected.
Collapse
Affiliation(s)
- Qingmei Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Junqiu Shi
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Hui Sun
- State Key Laboratory of High-Efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan 750021, China
| | - Yunqing Zhu
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
6
|
Zhang H, Pan Y, Li Y, Tang C, Xu Z, Li C, Xu F, Mai Y. Hybrid Polymer Vesicles: Controllable Preparation and Potential Applications. Biomacromolecules 2023; 24:3929-3953. [PMID: 37579246 DOI: 10.1021/acs.biomac.3c00499] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Hybrid polymer vesicles contain functional nanoparticles (NPs) in their walls, interfaces, coronae, or cavities. NPs render the hybrid vesicles with specific physical properties, while polymers endow them with structural stability and may significantly reduce the high toxicity of NPs. Therefore, hybrid vesicles integrate fascinating multifunctions from both NPs and polymeric vesicles, which have gained tremendous attention because of their diverse promising applications. Various types of delicate hybrid polymeric vesicles with size control and tunable localization of NPs in different parts of vesicles have been constructed via in situ and ex situ strategies, respectively. Their potential applications have been widely explored, as well. This review presents the progress of block copolymer (BCP) vesicle systems containing different types of NPs including metal NPs, magnetic NPs, and semiconducting quantum dots (QDs), etc. The strategies for controlling the location of NPs within hybrid vesicles are discussed. Typical potential applications of the elegant hybrid vesicles are also highlighted.
Collapse
Affiliation(s)
- Han Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yi Pan
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yinghua Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Tang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhi Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
7
|
Wang Y, Zhao Q, Haag R, Wu C. Biocatalytic Synthesis Using Self-Assembled Polymeric Nano- and Microreactors. Angew Chem Int Ed Engl 2022; 61:e202213974. [PMID: 36260531 PMCID: PMC10100074 DOI: 10.1002/anie.202213974] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Biocatalysis is increasingly being explored for the sustainable development of green industry. Though enzymes show great industrial potential with their high efficiency, specificity, and selectivity, they suffer from poor usability and stability under abiological conditions. To solve these problems, researchers have fabricated nano- and micro-sized biocatalytic reactors based on the self-assembly of various polymers, leading to highly stable, functional, and reusable biocatalytic systems. This Review highlights recent progress in self-assembled polymeric nano- and microreactors for biocatalytic synthesis, including polymersomes, reverse micelles, polymer emulsions, Pickering emulsions, and static emulsions. We categorize these reactors into monophasic and biphasic systems and discuss their structural characteristics and latest successes with representative examples. We also consider the challenges and potential solutions associated with the future development of this field.
Collapse
Affiliation(s)
- Yangxin Wang
- College of Materials Science and Engineering, Nanjing Tech University, Puzhu Road(S) 30, 211816, Nanjing, P.R. China
| | - Qingcai Zhao
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 3, 14195, Berlin, Germany
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark.,Danish Institute for Advanced Study, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| |
Collapse
|
8
|
Wang X, Hu J, Liu S. Overcoming the Dilemma of Permeability and Stability of Polymersomes through Traceless Cross-Linking. Acc Chem Res 2022; 55:3404-3416. [PMID: 36351034 DOI: 10.1021/acs.accounts.2c00442] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In nature, cells are highly compartmentalized into many organelles that are well separated from the rest of the cellular space by unique membrane structures, which are of crucial importance to allow cells to perform various physiological functions in such a small and crowded space. Learning from the ubiquitous membrane structures of cells and organelles has continuously inspired the development of artificial self-assembled nanostructures, with lipid vesicles (liposomes) and polymer vesicles (polymersomes) being the most representative examples. Similar to the membrane-bound structures of cells and organelles, both liposomes and polymersomes contain an aqueous interior enclosed by a bilayer membrane. Therefore, liposomes and polymersomes have been extensively investigated to mimic the fundamental structures and functions of living cells. For example, liposomes and polymersomes have been successfully engineered as nanocarriers, smart nanoreactors, artificial organelles, and so on. Notably, living cells can exchange both energy and materials with surrounding environments, benefiting from the selective permeability of lipid membranes. The permselectivity of cell membranes is thus an essential attribute of living organisms. Compared to liposomes, polymersomes have increased structural stability but low membrane permeability. Indeed, polymersomes are almost impermeable to small molecules, ions, and even water molecules. To improve the permeability of polymersomes, much effort has been devoted to the incorporation of channel proteins, the coassembly of oppositely charged block copolymers (BCPs), the development of stimuli-responsive BCPs, and so on. Despite great achievements, these approaches generally lead to decreased stability of polymersomes and, sometimes, polymersome disintegration. In this Account, we discuss our recent efforts to reconcile the stability and permeability of polymersomes via a traceless cross-linking approach. Although cross-linking reactions within bilayer membranes generally lead to decreased permeability, the traceless cross-linking approach can concurrently improve the stability and permeability of polymersomes. Specifically, stimuli-responsive polymersomes undergo either covalent cross-linking or noncovalent cross-linking reactions under specific stimuli to increase bilayer stability, while the cross-linking processes can concurrently permeabilize polymersome bilayers through cross-linking-driven hydrophobic-to-hydrophilic transitions. Notably, unlike conventional cross-linking processes requiring additional cross-linkers, the traceless cross-linking process does not involve extra cross-linking agents but takes full advantage of the in situ generated active moieties. By taking advantage of the simultaneous modulation of the stability and permeability of polymersomes via traceless cross-linking, these polymersomes can be further engineered as smart nanocarriers and nanoreactors. The robustness and generality of this approach have been validated by both extracellular and intracellular stimuli such as light irradiation, glutathione, and hydrogen peroxide. Moreover, many functional groups such as fluorescent dyes and contrast agents can be integrated into this versatile platform as well, enabling the construction of theranostic nanovectors capable of responding to pathological microenvironments. This Account provides a new approach to regulating the permeability of polymersomes while maintaining their structural stability.
Collapse
Affiliation(s)
- Xiaorui Wang
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China.,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Jinming Hu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shiyong Liu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, and CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
9
|
Huang L, Liang M, Fang Y, Kim J, Yang Y, Huang Z. Protonic recognition and assembly for the creation of porous Brønsted acid catalysts with enhanced catalytic efficiency. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
10
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|
11
|
Zhang S, Zhang R, Yan X, Fan K. Nanozyme-Based Artificial Organelles: An Emerging Direction for Artificial Organelles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202294. [PMID: 35869033 DOI: 10.1002/smll.202202294] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Artificial organelles are compartmentalized nanoreactors, in which enzymes or enzyme-mimic catalysts exhibit cascade catalytic activities to mimic the functions of natural organelles. Importantly, research on artificial organelles paves the way for the bottom-up design of synthetic cells. Due to the separation effect of microcompartments, the catalytic reactions of enzymes are performed without the influence of the surrounding medium. The current techniques for synthesizing artificial organelles rely on the strategies of encapsulating enzymes into vesicle-structured materials or reconstituting enzymes onto the microcompartment materials. However, there are still some problems including limited functions, unregulated activities, and difficulty in targeting delivery that hamper the applications of artificial organelles. The emergence of nanozymes (nanomaterials with enzyme-like activities) provides novel ideas for the fabrication of artificial organelles. Compared with natural enzymes, nanozymes are featured with multiple enzymatic activities, higher stability, easier to synthesize, lower cost, and excellent recyclability. Herein, the most recent advances in nanozyme-based artificial organelles are summarized. Moreover, the benefits of compartmental structures for the applications of nanozymes, as well as the functional requirements of microcompartment materials are also introduced. Finally, the potential applications of nanozyme-based artificial organelles in biomedicine and the related challenges are discussed.
Collapse
Affiliation(s)
- Shuai Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiyun Yan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
12
|
Groeer S, Garni M, Samanta A, Walther A. Insertion of 3D DNA Origami Nanopores into Block Copolymer Vesicles. CHEMSYSTEMSCHEM 2022. [DOI: 10.1002/syst.202200009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saskia Groeer
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Institute for Macromolecular Chemistry University of Freiburg Stefan-Meier-Straße 31 79104 Freiburg Germany
- Freiburg Materials Research Center (FMF) University of Freiburg Stefan-Meier-Str. 21 79104 Freiburg Germany
- Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT) University of Freiburg Georges-Köhler-Allee 105 79110 Freiburg Germany
| | - Martina Garni
- Chemistry Department University of Basel BPR 1096, Postfach 3350 Mattenstrasse 24a 4002 Basel Switzerland
| | - Avik Samanta
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Department of Chemistry University of Mainz 55128 Mainz Germany
| | - Andreas Walther
- Cluster of Excellence livMatS @ FIT 79110 Freiburg Germany
- A3BMS Lab – Active, Adaptive and Autonomous Bioinspired Materials Department of Chemistry University of Mainz 55128 Mainz Germany
| |
Collapse
|
13
|
Heuberger L, Korpidou M, Eggenberger OM, Kyropoulou M, Palivan CG. Current Perspectives on Synthetic Compartments for Biomedical Applications. Int J Mol Sci 2022; 23:5718. [PMID: 35628527 PMCID: PMC9145047 DOI: 10.3390/ijms23105718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 12/04/2022] Open
Abstract
Nano- and micrometer-sized compartments composed of synthetic polymers are designed to mimic spatial and temporal divisions found in nature. Self-assembly of polymers into compartments such as polymersomes, giant unilamellar vesicles (GUVs), layer-by-layer (LbL) capsules, capsosomes, or polyion complex vesicles (PICsomes) allows for the separation of defined environments from the exterior. These compartments can be further engineered through the incorporation of (bio)molecules within the lumen or into the membrane, while the membrane can be decorated with functional moieties to produce catalytic compartments with defined structures and functions. Nanometer-sized compartments are used for imaging, theranostic, and therapeutic applications as a more mechanically stable alternative to liposomes, and through the encapsulation of catalytic molecules, i.e., enzymes, catalytic compartments can localize and act in vivo. On the micrometer scale, such biohybrid systems are used to encapsulate model proteins and form multicompartmentalized structures through the combination of multiple compartments, reaching closer to the creation of artificial organelles and cells. Significant progress in therapeutic applications and modeling strategies has been achieved through both the creation of polymers with tailored properties and functionalizations and novel techniques for their assembly.
Collapse
Affiliation(s)
- Lukas Heuberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Maria Korpidou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Olivia M. Eggenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
| | - Myrto Kyropoulou
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland; (L.H.); (M.K.); (O.M.E.); (M.K.)
- NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, 4058 Basel, Switzerland
| |
Collapse
|
14
|
Smith JM, Chowdhry R, Booth MJ. Controlling Synthetic Cell-Cell Communication. Front Mol Biosci 2022; 8:809945. [PMID: 35071327 PMCID: PMC8766733 DOI: 10.3389/fmolb.2021.809945] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/13/2021] [Indexed: 11/28/2022] Open
Abstract
Synthetic cells, which mimic cellular function within a minimal compartment, are finding wide application, for instance in studying cellular communication and as delivery devices to living cells. However, to fully realise the potential of synthetic cells, control of their function is vital. An array of tools has already been developed to control the communication of synthetic cells to neighbouring synthetic cells or living cells. These tools use either chemical inputs, such as small molecules, or physical inputs, such as light. Here, we examine these current methods of controlling synthetic cell communication and consider alternative mechanisms for future use.
Collapse
Affiliation(s)
| | | | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
15
|
Biocatalytic self-assembled synthetic vesicles and coacervates: From single compartment to artificial cells. Adv Colloid Interface Sci 2022; 299:102566. [PMID: 34864354 DOI: 10.1016/j.cis.2021.102566] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/15/2021] [Accepted: 11/19/2021] [Indexed: 12/18/2022]
Abstract
Compartmentalization is an intrinsic feature of living cells that allows spatiotemporal control over the biochemical pathways expressed in them. Over the years, a library of compartmentalized systems has been generated, which includes nano to micrometer sized biomimetic vesicles derived from lipids, amphiphilic block copolymers, peptides, and nanoparticles. Biocatalytic vesicles have been developed using a simple bag containing enzyme design of liposomes to multienzymes immobilized multi-vesicular compartments for artificial cell generation. Additionally, enzymes were also entrapped in membrane-less coacervate droplets to mimic the cytoplasmic macromolecular crowding mechanisms. Here, we have discussed different types of single and multicompartment systems, emphasizing their recent developments as biocatalytic self-assembled structures using recent examples. Importantly, we have summarized the strategies in the development of the self-assembled structure to improvise their adaptivity and flexibility for enzyme immobilization. Finally, we have presented the use of biocatalytic assemblies in mimicking different aspects of living cells, which further carves the path for the engineering of a minimal cell.
Collapse
|
16
|
Zartner L, Maffeis V, Schoenenberger CA, Dinu IA, Palivan CG. Membrane protein channels equipped with a cleavable linker for inducing catalysis inside nanocompartments. J Mater Chem B 2021; 9:9012-9022. [PMID: 34623367 PMCID: PMC8580015 DOI: 10.1039/d1tb01463c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
Precisely timed initiation of reactions and stability of the catalysts are fundamental in catalysis. We introduce here an efficient closing-opening method for nanocompartments that contain sensitive catalysts and so achieve a controlled and extended catalytic activity. We developed a chemistry-oriented approach for modifying a pore-forming membrane protein which allows for a stimuli-responsive pore opening within the membrane of polymeric nanocompartments. We synthesized a diol-containing linker that selectively binds to the pores, blocking them completely. In the presence of an external stimulus (periodate), the linker is cleaved allowing the diffusion of substrate through the pores to the nanocompartment interior where it sets off the in situ enzymatic reaction. Besides the precise initiation of catalytic activity by opening of the pores, oxidation by periodate guarantees the cleavage of the linker under mild conditions. Accordingly, this kind of responsive nanocompartment lends itself to harboring a large variety of sensitive catalysts such as proteins and enzymes.
Collapse
Affiliation(s)
- Luisa Zartner
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, BPR1096, Mattenstrasse 24a, 4058 Basel, Switzerland.
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
17
|
Schwieters MS, Mathieu-Gaedke M, Westphal M, Dalpke R, Dirksen M, Qi D, Grull M, Bick T, Taßler S, Sauer DF, Bonn M, Wendler P, Hellweg T, Beyer A, Gölzhäuser A, Schwaneberg U, Glebe U, Böker A. Protein Nanopore Membranes Prepared by a Simple Langmuir-Schaefer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102975. [PMID: 34643032 DOI: 10.1002/smll.202102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 μm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM) demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.
Collapse
Affiliation(s)
- Magnus S Schwieters
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Maria Mathieu-Gaedke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Raphael Dalpke
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Maxim Dirksen
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marco Grull
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Thomas Bick
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Stephanie Taßler
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Gif-Sur-Yvette, Saint-Aubin, 91192, France
| | - Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Petra Wendler
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
18
|
Maffeis V, Belluati A, Craciun I, Wu D, Novak S, Schoenenberger CA, Palivan CG. Clustering of catalytic nanocompartments for enhancing an extracellular non-native cascade reaction. Chem Sci 2021; 12:12274-12285. [PMID: 34603657 PMCID: PMC8480338 DOI: 10.1039/d1sc04267j] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023] Open
Abstract
Compartmentalization is fundamental in nature, where the spatial segregation of biochemical reactions within and between cells ensures optimal conditions for the regulation of cascade reactions. While the distance between compartments or their interaction are essential parameters supporting the efficiency of bio-reactions, so far they have not been exploited to regulate cascade reactions between bioinspired catalytic nanocompartments. Here, we generate individual catalytic nanocompartments (CNCs) by encapsulating within polymersomes or attaching to their surface enzymes involved in a cascade reaction and then, tether the polymersomes together into clusters. By conjugating complementary DNA strands to the polymersomes' surface, DNA hybridization drove the clusterization process of enzyme-loaded polymersomes and controlled the distance between the respective catalytic nanocompartments. Owing to the close proximity of CNCs within clusters and the overall stability of the cluster architecture, the cascade reaction between spatially segregated enzymes was significantly more efficient than when the catalytic nanocompartments were not linked together by DNA duplexes. Additionally, residual DNA single strands that were not engaged in clustering, allowed for an interaction of the clusters with the cell surface as evidenced by A549 cells, where clusters decorating the surface endowed the cells with a non-native enzymatic cascade. The self-organization into clusters of catalytic nanocompartments confining different enzymes of a cascade reaction allows for a distance control of the reaction spaces which opens new avenues for highly efficient applications in domains such as catalysis or nanomedicine.
Collapse
Affiliation(s)
- Viviana Maffeis
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Samantha Novak
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland .,NCCR-Molecular Systems Engineering BPR 1095, Mattenstrasse 24a CH-4058 Basel Switzerland
| |
Collapse
|
19
|
He Y, Guo S, Zhang Y, Liu Y, Ju H. Near-Infrared Photo-controlled Permeability of a Biomimetic Polymersome with Sustained Drug Release and Efficient Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14951-14963. [PMID: 33764734 DOI: 10.1021/acsami.1c00842] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Synthetic polymersomes have structure similarity to bio-vesicles and could disassemble in response to stimuli for "on-demand" release of encapsulated cargos. Though widely applied as a drug delivery carrier, the burst release mode with structure complete destruction is usually taken for most responsive polymersomes, which would shorten the effective drug reaction time and impair the therapeutic effect. Inspired by the cell organelles' communication mode via regulating membrane permeability for transportation control, we highlight here a biomimetic polymersome with sustained drug release over a specific period of time via near-infrared (NIR) pre-activation. The polymersome is prepared by the self-assembling amphiphilic diblock copolymer P(OEGMA-co-EoS)-b-PNBOC and encapsulates the hypoxia-activated prodrug AQ4N and upconversion nanoparticle (PEG-UCNP) in its hydrophilic centric cavity. Thirty minutes of NIR pre-activation triggers cross-linking of NBOC and converts the permeability of the polymersome with sustained AQ4N release until 24 h after the NIR pre-activation. The photosensitizer EoS is activated and aggravates environmental hypoxic conditions during a sustained drug release period to boost the AQ4N therapeutic effect. The combination of sustained drug release with concurrent hypoxia intensification results in a highly efficient tumor therapeutic effect both intracellularly and in vivo. This biomimetic polymersome will provide an effective and universal tumor therapeutic approach.
Collapse
Affiliation(s)
- Yuling He
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuwen Guo
- State Key Laboratory of Quality Research in Chinese Medic, Institute of Chinese Medical Sciences, University of Macau, Macao 999078, China
| | - Yue Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
20
|
Li X, Zhao X, Lv R, Hao L, Huo F, Yao X. Polymeric Nanoreactors as Emerging Nanoplatforms for Cancer Precise Nanomedicine. Macromol Biosci 2021; 21:e2000424. [PMID: 33811465 DOI: 10.1002/mabi.202000424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Indexed: 12/20/2022]
Abstract
How to precisely detect and effectively cure cancer which is defined as precise nanomedicine has drawn great attention worldwide. Polymeric nanoreactors which can in situ catalyze inert species into activated ones, can greatly increase imaging quality and enhance therapeutic effects along with decreased background interference and reduced serious side effects. After a brief introduction, the design and preparation of polymeric nanoreactors are discussed from the following aspects, that is, solvent-switch, pH-tuning, film rehydration, hard template, electrostatic interaction, and polymerization-induced self-assembly (PISA). Subsequently, the biomedical applications of these nanoreactors in the fields of cancer imaging, cancer therapy, and cancer theranostics are highlighted. The last but not least, conclusions and future perspectives about polymeric nanoreactors are given. It is believed that polymeric nanoreactors can bring a great opportunity for future fabrication and clinical translation of precise nanomedicine.
Collapse
Affiliation(s)
- Xin Li
- School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xiaopeng Zhao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Runkai Lv
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Linhui Hao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Fengwei Huo
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Xikuang Yao
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
21
|
Meyer CE, Craciun I, Schoenenberger CA, Wehr R, Palivan CG. Catalytic polymersomes to produce strong and long-lasting bioluminescence. NANOSCALE 2021; 13:66-70. [PMID: 33350424 DOI: 10.1039/d0nr07178a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Here, we introduce an artificial bioluminescent nanocompartment based on the encapsulation of light-producing enzymes, luciferases, inside polymersomes. We exploit nanocompartmentalization to enhance luciferase stability in a cellular environment but also to positively modulate enzyme kinetics to achieve a long-lasting glow type signal. These features pave the way for expanding bioluminescence to nanotechnology-based applications.
Collapse
Affiliation(s)
- Claire Elsa Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel-4002, Switzerland.
| | | | | | | | | |
Collapse
|
22
|
Dos Santos EC, Belluati A, Necula D, Scherrer D, Meyer CE, Wehr RP, Lörtscher E, Palivan CG, Meier W. Combinatorial Strategy for Studying Biochemical Pathways in Double Emulsion Templated Cell-Sized Compartments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004804. [PMID: 33107187 DOI: 10.1002/adma.202004804] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/08/2020] [Indexed: 05/16/2023]
Abstract
Cells rely upon producing enzymes at precise rates and stoichiometry for maximizing functionalities. The reasons for this optimal control are unknown, primarily because of the interconnectivity of the enzymatic cascade effects within multi-step pathways. Here, an elegant strategy for studying such behavior, by controlling segregation/combination of enzymes/metabolites in synthetic cell-sized compartments, while preserving vital cellular elements is presented. Therefore, compartments shaped into polymer GUVs are developed, producing via high-precision double-emulsion microfluidics that enable: i) tight control over the absolute and relative enzymatic contents inside the GUVs, reaching nearly 100% encapsulation and co-encapsulation efficiencies, and ii) functional reconstitution of biopores and membrane proteins in the GUVs polymeric membrane, thus supporting in situ reactions. GUVs equipped with biopores/membrane proteins and loaded with one or more enzymes are arranged in a variety of combinations that allow the study of a three-step cascade in multiple topologies. Due to the spatiotemporal control provided, optimum conditions for decreasing the accumulation of inhibitors are unveiled, and benefited from reactive intermediates to maximize the overall cascade efficiency in compartments. The non-system-specific feature of the novel strategy makes this system an ideal candidate for the development of new synthetic routes as well as for screening natural and more complex pathways.
Collapse
Affiliation(s)
- Elena C Dos Santos
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Dominik Scherrer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Riccardo P Wehr
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Emanuel Lörtscher
- IBM Research Europe, Saeumerstrasse 4, 8803, Rueschlikon, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4002, Basel, Switzerland
| |
Collapse
|
23
|
Wang TY, Tsao HK, Sheng YJ. Perforated Vesicles of ABA Triblock Copolymers with ON/OFF-Switchable Nanopores. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01550] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ting-Ya Wang
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Taoyuan 32001, Taiwan, ROC
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| |
Collapse
|
24
|
Liu D, Sun H, Xiao Y, Chen S, Cornel EJ, Zhu Y, Du J. Design principles, synthesis and biomedical applications of polymer vesicles with inhomogeneous membranes. J Control Release 2020; 326:365-386. [DOI: 10.1016/j.jconrel.2020.07.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/08/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022]
|
25
|
Membrane-cross-linked polymersomes with tumor pH-tunable selective permeability as intelligent nanoreactors and drug delivery vehicles. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
26
|
Meyer CE, Liu J, Craciun I, Wu D, Wang H, Xie M, Fussenegger M, Palivan CG. Segregated Nanocompartments Containing Therapeutic Enzymes and Imaging Compounds within DNA-Zipped Polymersome Clusters for Advanced Nanotheranostic Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1906492. [PMID: 32130785 DOI: 10.1002/smll.201906492] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 12/22/2019] [Indexed: 06/10/2023]
Abstract
Nanotheranostics is an emerging field that brings together nanoscale-engineered materials with biological systems providing a combination of therapeutic and diagnostic strategies. However, current theranostic nanoplatforms have serious limitations, mainly due to a mismatch between the physical properties of the selected nanomaterials and their functionalization ease, loading ability, or overall compatibility with bioactive molecules. Herein, a nanotheranostic system is proposed based on nanocompartment clusters composed of two different polymersomes linked together by DNA. Careful design and procedure optimization result in clusters segregating the therapeutic enzyme human Dopa decarboxylase (DDC) and fluorescent probes for the detection unit in distinct but colocalized nanocompartments. The diagnostic compartment provides a twofold function: trackability via dye loading as the imaging component and the ability to attach the cluster construct to the surface of cells. The therapeutic compartment, loaded with active DDC, triggers the cellular expression of a secreted reporter enzyme via production of dopamine and activation of dopaminergic receptors implicated in atherosclerosis. This two-compartment nanotheranostic platform is expected to provide the basis of a new treatment strategy for atherosclerosis, to expand versatility and diversify the types of utilizable active molecules, and thus by extension expand the breadth of attainable applications.
Collapse
Affiliation(s)
- Claire E Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Juan Liu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Dalin Wu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| | - Hui Wang
- Department of Biosystems Science Engineering, ETHZ, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Mingqi Xie
- Department of Biosystems Science Engineering, ETHZ, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science Engineering, ETHZ, Mattenstrasse 26, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, Basel, 4002, Switzerland
| |
Collapse
|
27
|
The chemistry of cross-linked polymeric vesicles and their functionalization towards biocatalytic nanoreactors. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04681-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
AbstractSelf-assembly of amphiphilic block copolymers into polymersomes continues to be a hot topic in modern research on biomimetics. Their well-known and valued mechanical strength can be increased even further if they are cross-linked. These additional bonds prevent a collapse or disassembly of the polymersomes and open the way towards smart nanoreactors. A variety of chemistries have been applied to obtain the desired cross-linked polymersomes, and therefore, the chemical approaches performed over time will be highlighted in this mini-review. Due to the large number of studies, a selected set of photo-cross-linked and pH-sensitive polymersomes will be specifically highlighted. This system has proven to be a very potent candidate for the formation of nanoreactors and drug delivery systems, and even for the formation of functional multicompartment cell mimics.
Collapse
|
28
|
Zartner L, Muthwill MS, Dinu IA, Schoenenberger CA, Palivan CG. The rise of bio-inspired polymer compartments responding to pathology-related signals. J Mater Chem B 2020; 8:6252-6270. [PMID: 32452509 DOI: 10.1039/d0tb00475h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Self-organized nano- and microscale polymer compartments such as polymersomes, giant unilamellar vesicles (GUVs), polyion complex vesicles (PICsomes) and layer-by-layer (LbL) capsules have increasing potential in many sensing applications. Besides modifying the physicochemical properties of the corresponding polymer building blocks, the versatility of these compartments can be markedly expanded by biomolecules that endow the nanomaterials with specific molecular and cellular functions. In this review, we focus on polymer-based compartments that preserve their structure, and highlight the key role they play in the field of medical diagnostics: first, the self-assembling abilities that result in preferred architectures are presented for a broad range of polymers. In the following, we describe different strategies for sensing disease-related signals (pH-change, reductive conditions, and presence of ions or biomolecules) by polymer compartments that exhibit stimuli-responsiveness. In particular, we distinguish between the stimulus-sensitivity contributed by the polymer itself or by additional compounds embedded in the compartments in different sensing systems. We then address necessary properties of sensing polymeric compartments, such as the enhancement of their stability and biocompatibility, or the targeting ability, that open up new perspectives for diagnostic applications.
Collapse
Affiliation(s)
- Luisa Zartner
- Chemistry Department, University of Basel, Mattenstr. 24a, BPR1096, Basel, Switzerland.
| | | | | | | | | |
Collapse
|
29
|
Saccardo A, Soloviev M, Ferrari E. A thermo-responsive, self-assembling biointerface for on demand release of surface-immobilised proteins. Biomater Sci 2020; 8:2673-2681. [PMID: 32254844 DOI: 10.1039/c9bm01957j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dedicated chemistries for on-demand capture and release of biomolecules at the solid-liquid interface are required for applications in drug delivery, for the synthesis of switchable surfaces used in analytical devices and for the assembly of next-generation biomaterials with complex architectures and functions. Here we report the engineering of a binary self-assembling polypeptide system for reversible protein capture, immobilisation and controlled thermo-responsive release from a solid surface. The first element of the binary system is a universal protein substrate immobilised on a solid surface. This protein is bio-inspired by the neuronal SNAP25, which is the protein involved in the docking and fusion of synaptic vesicles to the synaptic membrane. The second element is an artificial chimeric protein engineered to include distinct domains from three different proteins: Syntaxin, VAMP and SNAP25. These native proteins constitute the machinery dedicated to vesicle trafficking in eukaryotes. We removed approximately 70% of native protein sequence from these proteins and constructed a protein chimera capable of high affinity interaction and self-assembly with immobilised substrate. The interaction of the two parts of the engineered protein complex is strong but fully-reversible and therefore the chimera can be recombinantly fused as a tag to a protein of interest, to allow spontaneous assembly and stimuli-sensitive release from the surface upon heating at a predetermined temperature. Two thermo-responsive tags are reported: the first presents remarkable thermal stability with melting temperature of the order of 80 °C; the second disassembles at a substantially lower temperature of about 45 °C. The latter is a promising candidate for remote-controlled localised delivery of therapeutic proteins, as physiologically tolerable local increase of temperatures in the 40-45 °C range can be achieved using magnetic fields, infra-red light or focused ultrasound. Importantly, these two novel polypeptides provide a broader blueprint for the engineering of future functional proteins with predictable folding and response to external stimuli.
Collapse
Affiliation(s)
- Angela Saccardo
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
30
|
Tsai HC, Yang YL, Sheng YJ, Tsao HK. Formation of Asymmetric and Symmetric Hybrid Membranes of Lipids and Triblock Copolymers. Polymers (Basel) 2020; 12:polym12030639. [PMID: 32168935 PMCID: PMC7183320 DOI: 10.3390/polym12030639] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 12/28/2022] Open
Abstract
Hybrid membranes formed by co-assembly of AxByAx (hydrophilic-hydrophobic-hydrophilic) triblock copolymers into lipid bilayers are investigated by dissipative particle dynamics. Homogeneous hybrid membranes are developed as lipids and polymers are fully compatible. The polymer conformations can be simply classified into bridge- and loop-structures in the membranes. It is interesting to find that the long-time fraction of loop-conformation (fL) of copolymers in the membrane depends significantly on the hydrophilic block length (x). As x is small, an equilibrium fL* always results irrespective of the initial conformation distribution and its value depends on the hydrophobic block length (y). For large x, fL tends to be time-invariant because polymers are kinetically trapped in their initial structures. Our findings reveal that only symmetric hybrid membranes are formed for small x, while membranes with stable asymmetric leaflets can be constructed with large x. The effects of block lengths on the polymer conformations, such as transverse and lateral spans (d⊥ and d‖) of bridge- and loop-conformations, are discussed as well.
Collapse
Affiliation(s)
- Hsiang-Chi Tsai
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yan-Ling Yang
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Jane Sheng
- Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan
- Correspondence: (Y.-J.S.); (H.-K.T.)
| | - Heng-Kwong Tsao
- Department of Chemical and Materials Engineering, National Central University, Jhongli 320, Taiwan
- Correspondence: (Y.-J.S.); (H.-K.T.)
| |
Collapse
|
31
|
Einfalt T, Garni M, Witzigmann D, Sieber S, Baltisberger N, Huwyler J, Meier W, Palivan CG. Bioinspired Molecular Factories with Architecture and In Vivo Functionalities as Cell Mimics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1901923. [PMID: 32099756 PMCID: PMC7029636 DOI: 10.1002/advs.201901923] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 12/02/2019] [Indexed: 05/28/2023]
Abstract
Despite huge need in the medical domain and significant development efforts, artificial cells to date have limited composition and functionality. Although some artificial cells have proven successful for producing therapeutics or performing in vitro specific reactions, they have not been investigated in vivo to determine whether they preserve their architecture and functionality while avoiding toxicity. Here, these limitations are overcome and customizable cell mimic is achieved-molecular factories (MFs)-by supplementing giant plasma membrane vesicles derived from donor cells with nanometer-sized artificial organelles (AOs). MFs inherit the donor cell's natural cytoplasm and membrane, while the AOs house reactive components and provide cell-like architecture and functionality. It is demonstrated that reactions inside AOs take place in a close-to-nature environment due to the unprecedented level of complexity in the composition of the MFs. It is further demonstrated that in a zebrafish vertebrate animal model, these cell mimics show no apparent toxicity and retain their integrity and function. The unique advantages of highly varied composition, multicompartmentalized architecture, and preserved functionality in vivo open new biological avenues ranging from the study of biorelevant processes in robust cell-like environments to the production of specific bioactive compounds.
Collapse
Affiliation(s)
- Tomaž Einfalt
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Martina Garni
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Dominik Witzigmann
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Sandro Sieber
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Niklaus Baltisberger
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Jörg Huwyler
- Department of Pharmaceutical SciencesDivision of Pharmaceutical TechnologyUniversity of BaselKlingelbergstrasse 50CH‐4056BaselSwitzerland
| | - Wolfgang Meier
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| | - Cornelia G. Palivan
- Department of ChemistryUniversity of BaselMattenstrasse 24a, BPR 1096, P.O. Box 3350CH‐4002BaselSwitzerland
| |
Collapse
|
32
|
Meyer CE, Abram SL, Craciun I, Palivan CG. Biomolecule–polymer hybrid compartments: combining the best of both worlds. Phys Chem Chem Phys 2020; 22:11197-11218. [DOI: 10.1039/d0cp00693a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in bio/polymer hybrid compartments in the quest to obtain artificial cells, biosensors and catalytic compartments.
Collapse
Affiliation(s)
| | | | - Ioana Craciun
- Department of Chemistry
- University of Basel
- Basel
- Switzerland
| | | |
Collapse
|
33
|
Lee H, Kim D, Oh H, Jung OS. Molecular balloon, Pd6L8 cages: recognition of alkyl sulfate surfactants. Chem Commun (Camb) 2020; 56:2841-2844. [DOI: 10.1039/c9cc09742b] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Significant structural contraction and expansion of flexible Pd6L8 cages by encapsulation of alkyl sulfate were demonstrated. The contact angles on the fine-ground microcrystal layers shift according to the chain length of the alkyl sulfate.
Collapse
Affiliation(s)
- Haeri Lee
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Dongwon Kim
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyejin Oh
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Ok-Sang Jung
- Department of Chemistry
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|
34
|
Wang Z, Sun S, Lyu Q, Cheng M, Wang H, Li C, Sha H, Faller R, Hu S. Harnessed Dopant Block Copolymers Assist Decorating Membrane Pores: A Dissipative Particle Dynamics Study. Macromol Rapid Commun 2019; 41:e1900561. [PMID: 31859398 DOI: 10.1002/marc.201900561] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Indexed: 12/20/2022]
Abstract
Self-assembly of asymmetric block copolymers (BCPs) around active pore edges has emerged as an important strategy to produce smart membranes with tunable pathways for solute transport. However, thus far, it is still challenging to manipulate pore shape and functionality for directional transformation under external stimuli. Here, a versatile strategy by mesoscale simulations to design stimuli-responsive pores with various edge decorations in hybrid membranes is reported. Dopant BCPs are used as decorators to stabilize pore edges and extend their function in reconfiguring pores in response to repeated membrane stretching/shrinking caused by external stimuli. The decoration morphologies are predictable since the assemblies of dopant BCPs around pore edges are closely related to their self-assemblies in solution. The coassembly between different BCPs in the hybrid membrane for the control of pore morphology is featured, and the parameter settings, including block incompatibility and molecular architecture for the construction of a specific pore, are determined. Results show that harnessed dopant BCPs in the hybrid membrane can enhance pore formation and induce directional pore shape and functionality transformation. Diversified pore decorations exhibit potential that can be further explored in selective solute transport and the design of stimuli-responsive smart nanodevices.
Collapse
Affiliation(s)
- Zhikun Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Shuangqing Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.,Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiang Lyu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Meng Cheng
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Hongbing Wang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Chunling Li
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.,Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, China
| | - Haoyan Sha
- Department of Chemical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Roland Faller
- Department of Chemical Engineering, University of California Davis, Davis, CA, 95616, USA
| | - Songqing Hu
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, China.,Institute of Advanced Materials, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
35
|
Belluati A, Craciun I, Meyer CE, Rigo S, Palivan CG. Enzymatic reactions in polymeric compartments: nanotechnology meets nature. Curr Opin Biotechnol 2019; 60:53-62. [DOI: 10.1016/j.copbio.2018.12.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 12/14/2018] [Accepted: 12/19/2018] [Indexed: 01/28/2023]
|
36
|
Chimisso V, Maffeis V, Hürlimann D, Palivan CG, Meier W. Self-Assembled Polymeric Membranes and Nanoassemblies on Surfaces: Preparation, Characterization, and Current Applications. Macromol Biosci 2019; 20:e1900257. [PMID: 31549783 DOI: 10.1002/mabi.201900257] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Indexed: 01/11/2023]
Abstract
Biomembranes play a crucial role in a multitude of biological processes, where high selectivity and efficiency are key points in the reaction course. The outstanding performance of biological membranes is based on the coupling between the membrane and biomolecules, such as membrane proteins. Polymer-based membranes and assemblies represent a great alternative to lipid ones, as their presence not only dramatically increases the mechanical stability of such systems, but also opens the scope to a broad range of chemical functionalities, which can be fine-tuned to selectively combine with a specific biomolecule. Tethering the membranes or nanoassemblies on a solid support opens the way to a class of functional surfaces finding application as sensors, biocomputing systems, molecular recognition, and filtration membranes. Herein, the design, physical assembly, and biomolecule attachment/insertion on/within solid-supported polymeric membranes and nanoassemblies are presented in detail with relevant examples. Furthermore, the models and applications for these materials are highlighted with the recent advances in each field.
Collapse
Affiliation(s)
- Vittoria Chimisso
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Viviana Maffeis
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Dimitri Hürlimann
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4056, Basel, Switzerland
| |
Collapse
|
37
|
Nastasa V, Stavarache C, Hanganu A, Coroaba A, Nicolescu A, Deleanu C, Sadet A, Vasos PR. Hyperpolarised NMR to follow water proton transport through membrane channels via exchange with biomolecules. Faraday Discuss 2019; 209:67-82. [PMID: 29989626 DOI: 10.1039/c8fd00021b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Water uptake in vesicles and the subsequent exchange between water protons and amide -NH protons in amino acids can be followed by a new, highly sensitive, type of magnetic resonance spectroscopy: dynamic nuclear polarisation (DNP)-enhanced NMR in the liquid state. Water hydrogen atoms are detected prior to and after their transfer to molecular sites in peptides and proteins featuring highly-accessible proton-exchangeable groups, as is the case for the -NH groups of intrinsically disordered proteins. The detected rates for amide proton-water proton exchange can be modulated by membrane-crossing rates, when a membrane channel is interposed. We hyperpolarised water proton spins via dynamic nuclear polarisation followed by sample dissolution (d-DNP) and transferred the created polarisation to -NH groups with high solvent accessibility in an intrinsically disordered protein domain. This domain is the membrane anchor of c-Src kinase, whose activity controls cell proliferation. The hindrance of effective water proton transfer rate constants observed in free solvent when a membrane-crossing step is involved is discussed. This study aims to assess the feasibility of recently-introduced hyperpolarised (DNP-enhanced) NMR to assess water membrane crossing dynamics.
Collapse
Affiliation(s)
- Viorel Nastasa
- Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Horia Hulubei Institute for Nuclear Physics (IFIN-HH), Reactorului Str., 30, Magurele Campus, Bucharest, Romania.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Jiang G, Xu B, Zhu J, Zhang Y, Liu T, Song G. Polymer microneedles integrated with glucose-responsive mesoporous bioactive glass nanoparticles for transdermal delivery of insulin. Biomed Phys Eng Express 2019. [DOI: 10.1088/2057-1976/ab3202] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Yang YL, Sheng YJ, Tsao HK. Hybridization of lipids to monolayer and bilayer membranes of triblock copolymers. J Colloid Interface Sci 2019; 544:53-60. [DOI: 10.1016/j.jcis.2019.02.071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/29/2019] [Accepted: 02/21/2019] [Indexed: 01/03/2023]
|
40
|
Gaitzsch J, Hirschi S, Freimann S, Fotiadis D, Meier W. Directed Insertion of Light-Activated Proteorhodopsin into Asymmetric Polymersomes from an ABC Block Copolymer. NANO LETTERS 2019; 19:2503-2508. [PMID: 30875467 DOI: 10.1021/acs.nanolett.9b00161] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoscopic artificial vesicles containing functional protein transporters are fundamental for synthetic biology. Energy-providing modules, such as proton pumps, are a basis for simple nanoreactors. We report on the first insertion of a functional transmembrane protein into asymmetric polymersomes from an ABC triblock copolymer. The polymer with the composition poly(ethylene glycol)-poly(diisopropylaminoethyl methacrylate)-poly(styrenesulfonate) (PEG-PDPA-PSS) was synthesized by sequential controlled radical polymerization. PEG and PSS are two distinctively different hydrophilic blocks, allowing for a specific orientation of our protein, the light-activated proton pump proteorhodopsin (PR), into the final proteopolymersome. A very interesting aspect of the PEG-PDPA-PSS triblock copolymers is that it allowed for simultaneous vesicle formation and oriented insertion of PR simply by adjusting the pH. The intrinsic positive charge of PR's intracellular surface was enhanced by a His-tag, which aligns readily with the negative charges of the PSS on the outside of the polymersomes. The directed insertion of PR was confirmed by a light-dependent pH change of the proteopolymersome solution, indicating the intended orientation. We have hereby demonstrated the first successful oriented insertion of a proton pump into an artificial asymmetric membrane.
Collapse
Affiliation(s)
- Jens Gaitzsch
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| | - Stephan Hirschi
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
| | - Sven Freimann
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| | - Dimitrios Fotiadis
- Institute of Biochemistry and Molecular Medicine , University of Bern , Bühlstrasse 28 , 3012 Bern , Switzerland
| | - Wolfgang Meier
- Department of Chemistry , University of Basel , Klingelbergstrasse 80 , 4058 Basel , Switzerland
| |
Collapse
|
41
|
Gumz H, Boye S, Iyisan B, Krönert V, Formanek P, Voit B, Lederer A, Appelhans D. Toward Functional Synthetic Cells: In-Depth Study of Nanoparticle and Enzyme Diffusion through a Cross-Linked Polymersome Membrane. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801299. [PMID: 30989019 PMCID: PMC6446602 DOI: 10.1002/advs.201801299] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 12/04/2018] [Indexed: 05/19/2023]
Abstract
Understanding the diffusion of nanoparticles through permeable membranes in cell mimics paves the way for the construction of more sophisticated synthetic protocells with control over the exchange of nanoparticles or biomacromolecules between different compartments. Nanoparticles postloading by swollen pH switchable polymersomes is investigated and nanoparticles locations at or within polymersome membrane and polymersome lumen are precisely determined. Validation of transmembrane diffusion properties is performed based on nanoparticles of different origin-gold, glycopolymer protein mimics, and the enzymes myoglobin and esterase-with dimensions between 5 and 15 nm. This process is compared with the in situ loading of nanoparticles during polymersome formation and analyzed by advanced multiple-detector asymmetrical flow field-flow fractionation (AF4). These experiments are supported by complementary i) release studies of protein mimics from polymersomes, ii) stability and cyclic pH switches test for in polymersome encapsulated myoglobin, and iii) cryogenic transmission electron microscopy studies on nanoparticles loaded polymersomes. Different locations (e.g., membrane and/or lumen) are identified for the uptake of each protein. The protein locations are extracted from the increasing scaling parameters and the decreasing apparent density of enzyme-containing polymersomes as determined by AF4. Postloading demonstrates to be a valuable tool for the implementation of cell-like functions in polymersomes.
Collapse
Affiliation(s)
- Hannes Gumz
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Susanne Boye
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Banu Iyisan
- Max‐Planck‐Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Vera Krönert
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Petr Formanek
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
- Cluster of Excellence “Center for Advancing Electronics Dresden”Technische Universität Dresden01062DresdenGermany
| | - Albena Lederer
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
- School of ScienceFaculty of Chemistry and Food ChemistryTechnische Universität Dresden01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 601069DresdenGermany
| |
Collapse
|
42
|
Yorulmaz Avsar S, Kyropoulou M, Di Leone S, Schoenenberger CA, Meier WP, Palivan CG. Biomolecules Turn Self-Assembling Amphiphilic Block Co-polymer Platforms Into Biomimetic Interfaces. Front Chem 2019; 6:645. [PMID: 30671429 PMCID: PMC6331732 DOI: 10.3389/fchem.2018.00645] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 12/11/2018] [Indexed: 12/29/2022] Open
Abstract
Biological membranes constitute an interface between cells and their surroundings and form distinct compartments within the cell. They also host a variety of biomolecules that carry out vital functions including selective transport, signal transduction and cell-cell communication. Due to the vast complexity and versatility of the different membranes, there is a critical need for simplified and specific model membrane platforms to explore the behaviors of individual biomolecules while preserving their intrinsic function. Information obtained from model membrane platforms should make invaluable contributions to current and emerging technologies in biotechnology, nanotechnology and medicine. Amphiphilic block co-polymers are ideal building blocks to create model membrane platforms with enhanced stability and robustness. They form various supramolecular assemblies, ranging from three-dimensional structures (e.g., micelles, nanoparticles, or vesicles) in aqueous solution to planar polymer membranes on solid supports (e.g., polymer cushioned/tethered membranes,) and membrane-like polymer brushes. Furthermore, polymer micelles and polymersomes can also be immobilized on solid supports to take advantage of a wide range of surface sensitive analytical tools. In this review article, we focus on self-assembled amphiphilic block copolymer platforms that are hosting biomolecules. We present different strategies for harnessing polymer platforms with biomolecules either by integrating proteins or peptides into assemblies or by attaching proteins or DNA to their surface. We will discuss how to obtain synthetic structures on solid supports and their characterization using different surface sensitive analytical tools. Finally, we highlight present and future perspectives of polymer micelles and polymersomes for biomedical applications and those of solid-supported polymer membranes for biosensing.
Collapse
|
43
|
Gotfryd K, Mósca AF, Missel JW, Truelsen SF, Wang K, Spulber M, Krabbe S, Hélix-Nielsen C, Laforenza U, Soveral G, Pedersen PA, Gourdon P. Human adipose glycerol flux is regulated by a pH gate in AQP10. Nat Commun 2018; 9:4749. [PMID: 30420639 PMCID: PMC6232157 DOI: 10.1038/s41467-018-07176-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Obesity is a major threat to global health and metabolically associated with glycerol homeostasis. Here we demonstrate that in human adipocytes, the decreased pH observed during lipolysis (fat burning) correlates with increased glycerol release and stimulation of aquaglyceroporin AQP10. The crystal structure of human AQP10 determined at 2.3 Å resolution unveils the molecular basis for pH modulation-an exceptionally wide selectivity (ar/R) filter and a unique cytoplasmic gate. Structural and functional (in vitro and in vivo) analyses disclose a glycerol-specific pH-dependence and pinpoint pore-lining His80 as the pH-sensor. Molecular dynamics simulations indicate how gate opening is achieved. These findings unravel a unique type of aquaporin regulation important for controlling body fat mass. Thus, targeting the cytoplasmic gate to induce constitutive glycerol secretion may offer an attractive option for treating obesity and related complications.
Collapse
Affiliation(s)
- Kamil Gotfryd
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Andreia Filipa Mósca
- Universidade de Lisboa, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Julie Winkel Missel
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | - Sigurd Friis Truelsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs, Lyngby, Denmark
| | - Kaituo Wang
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark
| | | | - Simon Krabbe
- University of Copenhagen, Department of Biology, Universitetsparken 13, DK-2100, Copenhagen OE, Denmark
| | - Claus Hélix-Nielsen
- Technical University of Denmark, Department of Environmental Engineering, Bygningstorvet Building 115, DK-2800 Kgs, Lyngby, Denmark.,Aquaporin A/S, Nymøllevej 78, DK-2800, Lyngby, Denmark
| | - Umberto Laforenza
- University of Pavia, Department of Molecular Medicine, Human Physiology Unit, Via Forlanini 6, I-27100, Pavia, Italy
| | - Graça Soveral
- Universidade de Lisboa, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Av. Prof. Gama Pinto, 1649-003, Lisbon, Portugal
| | - Per Amstrup Pedersen
- University of Copenhagen, Department of Biology, Universitetsparken 13, DK-2100, Copenhagen OE, Denmark.
| | - Pontus Gourdon
- University of Copenhagen, Department of Biomedical Sciences, Nørre Allé 14, DK-2200, Copenhagen N, Denmark. .,Lund University, Department of Experimental Medical Science, Sölvegatan 19, SE-221 84, Lund, Sweden.
| |
Collapse
|
44
|
Liu X, Appelhans D, Voit B. Hollow Capsules with Multiresponsive Valves for Controlled Enzymatic Reactions. J Am Chem Soc 2018; 140:16106-16114. [DOI: 10.1021/jacs.8b07980] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Xiaoling Liu
- College of Polymer Science and Engineering, Sichuan University, 610065 Chengdu, PR China
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Straße 6, D-01069 Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062 Dresden, Germany
| |
Collapse
|
45
|
Garni M, Einfalt T, Goers R, Palivan CG, Meier W. Live Follow-Up of Enzymatic Reactions Inside the Cavities of Synthetic Giant Unilamellar Vesicles Equipped with Membrane Proteins Mimicking Cell Architecture. ACS Synth Biol 2018; 7:2116-2125. [PMID: 30145889 DOI: 10.1021/acssynbio.8b00104] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Compartmentalization of functional biological units, cells, and organelles serves as an inspiration for the development of biomimetic materials with unprecedented properties and applications in biosensing and medicine. Because of the complexity of cells, the design of ideal functional materials remains a challenge. An elegant strategy to obtain cell-like compartments as novel materials with biofunctionality is the combination of synthetic micrometer-sized giant unilamellar vesicles (GUVs) with biomolecules because it enables studying the behavior of biomolecules and processes within confined cavities. Here we introduce a functional cell-mimetic compartment formed by insertion of the model biopore bacterial membrane protein OmpF in thick synthetic membranes of an artificial GUV compartment that encloses-as a model-the oxidative enzyme horseradish peroxidase. In this manner, a simple and robust cell mimic is designed: the biopore serves as a gate that allows substrates to enter cavities of the GUVs, where they are converted into products by the encapsulated enzyme and then released in the environments of GUVs. Our bioequipped GUVs facilitate the control of specific catalytic reactions in confined microscale spaces mimicking cell size and architecture and thus provide a straightforward approach serving to obtain deeper insights into biological processes inside cells in real time.
Collapse
Affiliation(s)
- Martina Garni
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Tomaz Einfalt
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Roland Goers
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
- Department of Biosystems Science and Engineering, ETH Zürich, Mattenstrasse 26, CH-4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4002 Basel, Switzerland
| |
Collapse
|
46
|
Belluati A, Craciun I, Liu J, Palivan CG. Nanoscale Enzymatic Compartments in Tandem Support Cascade Reactions in Vitro. Biomacromolecules 2018; 19:4023-4033. [DOI: 10.1021/acs.biomac.8b01019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Andrea Belluati
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Ioana Craciun
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Juan Liu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, CH-4058 Basel, Switzerland
| |
Collapse
|
47
|
Idrissi ME, Meyer CE, Zartner L, Meier W. Nanosensors based on polymer vesicles and planar membranes: a short review. J Nanobiotechnology 2018; 16:63. [PMID: 30165853 PMCID: PMC6116380 DOI: 10.1186/s12951-018-0393-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/25/2018] [Indexed: 12/05/2022] Open
Abstract
This review aims to summarize the advance in the field of nanosensors based on two particular materials: polymer vesicles (polymersomes) and polymer planar membranes. These two types of polymer-based structural arrangements have been shown to be efficient in the production of sensors as their features allow to adapt to different environment but also to increase the sensitivity and the selectivity of the sensing device. Polymersomes and planar polymer membranes offer a platform of choice for a wide range of chemical functionalization and characteristic structural organization which allows a convenient usage in numerous sensing applications. These materials appear as great candidates for such nanosensors considering the broad variety of polymers. They also enable the confection of robust nanosized architectures providing interesting properties for numerous applications in many domains ranging from pollution to drug monitoring. This report gives an overview of these different sensing strategies whether the nanosensors aim to detect chemicals, biological or physical signals.
Collapse
Affiliation(s)
- Mohamed El Idrissi
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Claire Elsa Meyer
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Luisa Zartner
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4002 Basel, Switzerland
| |
Collapse
|
48
|
Varlas S, Blackman LD, Findlay HE, Reading E, Booth PJ, Gibson MI, O’Reilly RK. Photoinitiated Polymerization-Induced Self-Assembly in the Presence of Surfactants Enables Membrane Protein Incorporation into Vesicles. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00994] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Spyridon Varlas
- School of Chemistry, University of Birmingham, B15 2TT Birmingham, U.K
| | | | - Heather E. Findlay
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, U.K
| | - Eamonn Reading
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, U.K
| | - Paula J. Booth
- Department of Chemistry, King’s College London, Britannia House, 7 Trinity Street, SE1 1DB London, U.K
| | | | | |
Collapse
|
49
|
Bioinspired, nanoscale approaches in contemporary bioanalytics (Review). Biointerphases 2018; 13:040801. [DOI: 10.1116/1.5037582] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
50
|
Mukerabigwi JF, Ge Z, Kataoka K. Therapeutic Nanoreactors as In Vivo Nanoplatforms for Cancer Therapy. Chemistry 2018; 24:15706-15724. [DOI: 10.1002/chem.201801159] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 12/18/2022]
Affiliation(s)
- Jean Felix Mukerabigwi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine Institute of Industrial Promotion-Kawasaki 3-25-14 Tonomachi Kawasaki-ku Kawasaki 210-0821 Japan
- Policy Alternatives Research Institute The University of Tokyo Tokyo 113-0033 Japan
| |
Collapse
|