1
|
Shin YJ, Safina D, Zheng Y, Levenberg S. Microvascularization in 3D Human Engineered Tissue and Organoids. Annu Rev Biomed Eng 2025; 27:473-498. [PMID: 40310885 DOI: 10.1146/annurev-bioeng-103023-115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
The microvasculature, a complex network of small blood vessels, connects systemic circulation with local tissues, facilitating the nutrient and oxygen exchange that is critical for homeostasis and organ function. Engineering these structures is paramount for advancing tissue regeneration, disease modeling, and drug testing. However, replicating the intricate architecture of native vascular systems-characterized by diverse vessel diameters, cellular constituents, and dynamic perfusion capabilities-presents significant challenges. This complexity is compounded by the need to precisely integrate biomechanical, biochemical, and cellular cues. Recent breakthroughs in microfabrication, organoids, bioprinting, organ-on-a-chip platforms, and in vivo vascularization techniques have propelled the field toward faithfully replicating vascular complexity. These innovations not only enhance our understanding of vascular biology but also enable the generation of functional, perfusable tissue constructs. Here, we explore state-of-the-art technologies and strategies in microvascular engineering, emphasizing key advancements and addressing the remaining challenges to developing fully functional vascularized tissues.
Collapse
Affiliation(s)
- Yu Jung Shin
- Department of Bioengineering, University of Washington, Seattle, Washington, USA;
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Dina Safina
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, Washington, USA;
- Institute of Stem Cell and Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, Israel;
| |
Collapse
|
2
|
Kooi R, Schoutens EJD, Stassen OMJA, de Boer J, den Toonder JMJ. Dynamic mechanical cell actuation techniques: a comprehensive comparison. PROGRESS IN BIOMEDICAL ENGINEERING (BRISTOL, ENGLAND) 2025; 7:022007. [PMID: 40043363 DOI: 10.1088/2516-1091/adbcec] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/05/2025] [Indexed: 03/21/2025]
Abstract
Mechanical forces of various kinds and magnitudes are crucial to cell and tissue development. At the cell level, mechanotransduction refers to the processes that turn mechanical triggers into a biochemical response. Just like most biological processes, many of these mechanical forces are not static but change dynamically over time. Therefore, to further our fundamental understanding of dynamic mechanotransduction, it is paramount that we have a good toolbox available to specifically trigger and analyze every step of the way from force to phenotype. While many individual studies have described such tools, to our knowledge, a comprehensive overview providing guidance on which tool to use to address specific questions is still lacking. Thus, with this review, we aim to provide an overview and comparison of available dynamic cell stimulation techniques. To this end, we describe the existing experimental techniques, highlighting and comparing their strengths and weaknesses. Furthermore, we provide a one-glance overview of the niches of mechanical stimulation occupied by the different approaches. We finish our review with an outlook on some techniques that could potentially be added to the toolbox in the future. This review can be relevant and interesting for a broad audience, from engineers developing the tools, to biologists and medical researchers utilizing the tools to answer their questions, or to raise new ones.
Collapse
Affiliation(s)
- Roel Kooi
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Emmie J D Schoutens
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Oscar M J A Stassen
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Jan de Boer
- Deparment of Biomedical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| | - Jaap M J den Toonder
- Department of Mechanical Engineering, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
3
|
Bui TM, Yalom LK, Ning E, Urbanczyk JM, Ren X, Herrnreiter CJ, Disario JA, Wray B, Schipma MJ, Velichko YS, Sullivan DP, Abe K, Lauberth SM, Yang GY, Dulai PS, Hanauer SB, Sumagin R. Tissue-specific reprogramming leads to angiogenic neutrophil specialization and tumor vascularization in colorectal cancer. J Clin Invest 2024; 134:e174545. [PMID: 38329810 PMCID: PMC10977994 DOI: 10.1172/jci174545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024] Open
Abstract
Neutrophil (PMN) tissue accumulation is an established feature of ulcerative colitis (UC) lesions and colorectal cancer (CRC). To assess the PMN phenotypic and functional diversification during the transition from inflammatory ulceration to CRC we analyzed the transcriptomic landscape of blood and tissue PMNs. Transcriptional programs effectively separated PMNs based on their proximity to peripheral blood, inflamed colon, and tumors. In silico pathway overrepresentation analysis, protein-network mapping, gene signature identification, and gene-ontology scoring revealed unique enrichment of angiogenic and vasculature development pathways in tumor-associated neutrophils (TANs). Functional studies utilizing ex vivo cultures, colitis-induced murine CRC, and patient-derived xenograft models demonstrated a critical role for TANs in promoting tumor vascularization. Spp1 (OPN) and Mmp14 (MT1-MMP) were identified by unbiased -omics and mechanistic studies to be highly induced in TANs, acting to critically regulate endothelial cell chemotaxis and branching. TCGA data set and clinical specimens confirmed enrichment of SPP1 and MMP14 in high-grade CRC but not in patients with UC. Pharmacological inhibition of TAN trafficking or MMP14 activity effectively reduced tumor vascular density, leading to CRC regression. Our findings demonstrate a niche-directed PMN functional specialization and identify TAN contributions to tumor vascularization, delineating what we believe to be a new therapeutic framework for CRC treatment focused on TAN angiogenic properties.
Collapse
Affiliation(s)
- Triet M. Bui
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lenore K. Yalom
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Edward Ning
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jessica M. Urbanczyk
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Xingsheng Ren
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caroline J. Herrnreiter
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jackson A. Disario
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Brian Wray
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Matthew J. Schipma
- Quantitative Data Science Core, Lurie Cancer Center, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Yuri S. Velichko
- Department of Radiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - David P. Sullivan
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kouki Abe
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Shannon M. Lauberth
- Simpson Querrey Institute for Epigenetics and Department of Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Guang-Yu Yang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Parambir S. Dulai
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Stephen B. Hanauer
- Department of Medicine, Gastroenterology and Hepatology, Northwestern Memorial Hospital, Chicago, Illinois, USA
| | - Ronen Sumagin
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
4
|
Cao R, Tian H, Tian Y, Fu X. A Hierarchical Mechanotransduction System: From Macro to Micro. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2302327. [PMID: 38145330 PMCID: PMC10953595 DOI: 10.1002/advs.202302327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/27/2023] [Indexed: 12/26/2023]
Abstract
Mechanotransduction is a strictly regulated process whereby mechanical stimuli, including mechanical forces and properties, are sensed and translated into biochemical signals. Increasing data demonstrate that mechanotransduction is crucial for regulating macroscopic and microscopic dynamics and functionalities. However, the actions and mechanisms of mechanotransduction across multiple hierarchies, from molecules, subcellular structures, cells, tissues/organs, to the whole-body level, have not been yet comprehensively documented. Herein, the biological roles and operational mechanisms of mechanotransduction from macro to micro are revisited, with a focus on the orchestrations across diverse hierarchies. The implications, applications, and challenges of mechanotransduction in human diseases are also summarized and discussed. Together, this knowledge from a hierarchical perspective has the potential to refresh insights into mechanotransduction regulation and disease pathogenesis and therapy, and ultimately revolutionize the prevention, diagnosis, and treatment of human diseases.
Collapse
Affiliation(s)
- Rong Cao
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Huimin Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Yan Tian
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| | - Xianghui Fu
- Department of Endocrinology and MetabolismCenter for Diabetes Metabolism ResearchState Key Laboratory of Biotherapy and Cancer CenterWest China Medical SchoolWest China HospitalSichuan University and Collaborative Innovation CenterChengduSichuan610041China
| |
Collapse
|
5
|
Wang D, Brady T, Santhanam L, Gerecht S. The extracellular matrix mechanics in the vasculature. NATURE CARDIOVASCULAR RESEARCH 2023; 2:718-732. [PMID: 39195965 DOI: 10.1038/s44161-023-00311-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 06/20/2023] [Indexed: 08/29/2024]
Abstract
Mechanical stimuli from the extracellular matrix (ECM) modulate vascular differentiation, morphogenesis and dysfunction of the vasculature. With innovation in measurements, we can better characterize vascular microenvironment mechanics in health and disease. Recent advances in material sciences and stem cell biology enable us to accurately recapitulate the complex and dynamic ECM mechanical microenvironment for in vitro studies. These biomimetic approaches help us understand the signaling pathways in disease pathologies, identify therapeutic targets, build tissue replacement and activate tissue regeneration. This Review analyzes how ECM mechanics regulate vascular homeostasis and dysfunction. We highlight approaches to examine ECM mechanics at tissue and cellular levels, focusing on how mechanical interactions between cells and the ECM regulate vascular phenotype, especially under certain pathological conditions. Finally, we explore the development of biomaterials to emulate, measure and alter the physical microenvironment of pathological ECM to understand cell-ECM mechanical interactions toward the development of therapeutics.
Collapse
Affiliation(s)
- Dafu Wang
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Travis Brady
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Lakshmi Santhanam
- Department of Anesthesiology and Critical Care Medicine and Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sharon Gerecht
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
6
|
Kolel A, Ergaz B, Goren S, Tchaicheeyan O, Lesman A. Strain Gradient Programming in 3D Fibrous Hydrogels to Direct Graded Cell Alignment. SMALL METHODS 2023; 7:e2201070. [PMID: 36408763 DOI: 10.1002/smtd.202201070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 06/16/2023]
Abstract
Biological tissues experience various stretch gradients which act as mechanical signaling from the extracellular environment to cells. These mechanical stimuli are sensed by cells, triggering essential signaling cascades regulating cell migration, differentiation, and tissue remodeling. In most previous studies, a simple, uniform stretch to 2D elastic substrates has been applied to analyze the response of living cells. However, induction of nonuniform strains in controlled gradients, particularly in biomimetic 3D hydrogels, has proven challenging. In this study, 3D fibrin hydrogels of manipulated geometry are stretched by a silicone carrier to impose programmable strain gradients along different chosen axes. The resulting strain gradients are analyzed and compared to finite element simulations. Experimentally, the programmed strain gradients result in similar gradient patterns in fiber alignment within the gels. Additionally, temporal changes in the orientation of fibroblast cells embedded in the stretched fibrin gels correlate to the strain and fiber alignment gradients. The experimental and simulation data demonstrate the ability to custom-design mechanical gradients in 3D biological hydrogels and to control cell alignment patterns. It provides a new technology for mechanobiology and tissue engineering studies.
Collapse
Affiliation(s)
- Avraham Kolel
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Bar Ergaz
- Department of Biomedical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Shahar Goren
- School of Chemistry, Raymond & Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Oren Tchaicheeyan
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
| | - Ayelet Lesman
- School of Mechanical Engineering, Faculty of Engineering, Tel-Aviv University, Tel-Aviv, 69978, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel-Aviv, 69978, Israel
| |
Collapse
|
7
|
Moriel A, Livne A, Bouchbinder E. Cellular orientational fluctuations, rotational diffusion and nematic order under periodic driving. SOFT MATTER 2022; 18:7091-7102. [PMID: 36043855 DOI: 10.1039/d2sm00611a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The ability of living cells to sense the physical properties of their microenvironment and to respond to dynamic forces acting on them plays a central role in regulating their structure, function and fate. Of particular importance is the cellular sensitivity and response to periodic driving forces in noisy environments, encountered in vital physiological conditions such as heart beating, blood vessel pulsation and breathing. Here, we first test and validate two predictions of a mean-field theory of cellular reorientation under periodic driving, which combines the minimization of cellular anisotropic elastic energy with active remodeling forces. We then extend the mean-field theory to include uncorrelated, additive nonequilibrium fluctuations, and show that the theory quantitatively agrees with the experimentally observed stationary probability distributions of the cell body orientation, under a range of biaxial periodic driving forces. The fluctuations theory allows the extraction of the dimensionless active noise amplitude of various cell types, and consequently their rotational diffusion coefficient. We then focus on intra-cellular nematic order, i.e. on orientational fluctuations of actin stress fibers around the cell body orientation, and show experimentally that intra-cellular nematic order increases with both the magnitude of the driving forces and the biaxiality strain ratio. These results are semi-quantitatively explained by applying the same cell body fluctuations theory to orientationally correlated actin stress fiber domains. Finally, an estimate of the energy scale of cellular orientational fluctuations for one cell type is shown to be about six order of magnitude larger than the thermal energy at room temperature. The implications of our findings, which make the quantitative analysis of cell mechanosensitivity more accessible, are discussed.
Collapse
Affiliation(s)
- Avraham Moriel
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | - Ariel Livne
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot 7610001, Israel
- Diptera.ai, PO Box 39047, Jerusalem 9139002, Israel
| | - Eran Bouchbinder
- Chemical and Biological Physics Department, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
8
|
O’Connor C, Brady E, Zheng Y, Moore E, Stevens KR. Engineering the multiscale complexity of vascular networks. NATURE REVIEWS. MATERIALS 2022; 7:702-716. [PMID: 35669037 PMCID: PMC9154041 DOI: 10.1038/s41578-022-00447-8] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/22/2022] [Indexed: 05/14/2023]
Abstract
The survival of vertebrate organisms depends on highly regulated delivery of oxygen and nutrients through vascular networks that pervade nearly all tissues in the body. Dysregulation of these vascular networks is implicated in many common human diseases such as hypertension, coronary artery disease, diabetes and cancer. Therefore, engineers have sought to create vascular networks within engineered tissues for applications such as regenerative therapies, human disease modelling and pharmacological testing. Yet engineering vascular networks has historically remained difficult, owing to both incomplete understanding of vascular structure and technical limitations for vascular fabrication. This Review highlights the materials advances that have enabled transformative progress in vascular engineering by ushering in new tools for both visualizing and building vasculature. New methods such as bioprinting, organoids and microfluidic systems are discussed, which have enabled the fabrication of 3D vascular topologies at a cellular scale with lumen perfusion. These approaches to vascular engineering are categorized into technology-driven and nature-driven approaches. Finally, the remaining knowledge gaps, emerging frontiers and opportunities for this field are highlighted, including the steps required to replicate the multiscale complexity of vascular networks found in nature.
Collapse
Affiliation(s)
- Colleen O’Connor
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA USA
| | - Eileen Brady
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA USA
- Department of Molecular and Cellular Biology, University of Washington, Seattle, WA USA
| | - Ying Zheng
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
| | - Erika Moore
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL USA
| | - Kelly R. Stevens
- Department of Bioengineering, University of Washington, Seattle, WA USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA USA
- Center for Cardiovascular Biology, University of Washington, Seattle, WA USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA USA
- Brotman Baty Institute, Seattle, WA USA
| |
Collapse
|
9
|
Investigating lymphangiogenesis in vitro and in vivo using engineered human lymphatic vessel networks. Proc Natl Acad Sci U S A 2021; 118:2101931118. [PMID: 34326257 PMCID: PMC8346860 DOI: 10.1073/pnas.2101931118] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Lymphatic vessel networks are important for various biological processes; thus, incorporating them into engineered constructs can have both research and clinical implications. Engineered lymphatic vessels can improve biomimicry and functionality of in vitro tissue assays and serve as a treatment for various diseases associated with impaired lymphatic function. In this work, we created functional engineered lymphatic vessels that anastomosed to the host lymphatic system postimplantation. We investigated the effect of supporting cells, cell-secreted extracellular matrix, and mechanical forces on lymphatic vessel formation within engineered constructs. Interestingly, lymphatic vasculature responded differently to cyclic stretch compared to blood vasculature. This phenomenon opens up an avenue for investigating the variability of cellular responses to mechanical stimulation. The lymphatic system is involved in various biological processes, including fluid transport from the interstitium into the venous circulation, lipid absorption, and immune cell trafficking. Despite its critical role in homeostasis, lymphangiogenesis (lymphatic vessel formation) is less widely studied than its counterpart, angiogenesis (blood vessel formation). Although the incorporation of lymphatic vasculature in engineered tissues or organoids would enable more precise mimicry of native tissue, few studies have focused on creating engineered tissues containing lymphatic vessels. Here, we populated thick collagen sheets with human lymphatic endothelial cells, combined with supporting cells and blood endothelial cells, and examined lymphangiogenesis within the resulting constructs. Our model required just a few days to develop a functional lymphatic vessel network, in contrast to other reported models requiring several weeks. Coculture of lymphatic endothelial cells with the appropriate supporting cells and intact PDGFR-β signaling proved essential for the lymphangiogenesis process. Additionally, subjecting the constructs to cyclic stretch enabled the creation of complex muscle tissue aligned with the lymphatic and blood vessel networks, more precisely biomimicking native tissue. Interestingly, the response of developing lymphatic vessels to tensile forces was different from that of blood vessels; while blood vessels oriented perpendicularly to the stretch direction, lymphatic vessels mostly oriented in parallel to the stretch direction. Implantation of the engineered lymphatic constructs into a mouse abdominal wall muscle resulted in anastomosis between host and implant lymphatic vasculatures, demonstrating the engineered construct's potential functionality in vivo. Overall, this model provides a potential platform for investigating lymphangiogenesis and lymphatic disease mechanisms.
Collapse
|
10
|
Shiroud Heidari B, Ruan R, De-Juan-Pardo EM, Zheng M, Doyle B. Biofabrication and Signaling Strategies for Tendon/Ligament Interfacial Tissue Engineering. ACS Biomater Sci Eng 2021; 7:383-399. [PMID: 33492125 DOI: 10.1021/acsbiomaterials.0c00731] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tendons and ligaments (TL) have poor healing capability, and for serious injuries like tears or ruptures, surgical intervention employing autografts or allografts is usually required. Current tissue replacements are nonideal and can lead to future problems such as high retear rates, poor tissue integration, or heterotopic ossification. Alternatively, tissue engineering strategies are being pursued using biodegradable scaffolds. As tendons connect muscle and bone and ligaments attach bones, the interface of TL with other tissues represent complex structures, and this intricacy must be considered in tissue engineered approaches. In this paper, we review recent biofabrication and signaling strategies for biodegradable polymeric scaffolds for TL interfacial tissue engineering. First, we discuss biodegradable polymeric scaffolds based on the fabrication techniques as well as the target tissue application. Next, we consider the effect of signaling factors, including cell culture, growth factors, and biophysical stimulation. Then, we discuss human clinical studies on TL tissue healing using commercial synthetic scaffolds that have occurred over the past decade. Finally, we highlight the challenges and future directions for biodegradable scaffolds in the field of TL and interface tissue engineering.
Collapse
Affiliation(s)
- Behzad Shiroud Heidari
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia
| | - Elena M De-Juan-Pardo
- School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,T3mPLATE, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,Science and Engineering Faculty, Queensland University of Technology, Brisbane, Queensland, 4000, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Perth, Western Australia 6009, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia 6009, Australia
| | - Barry Doyle
- Vascular Engineering Laboratory, Harry Perkins Institute of Medical Research, QEII Medical Centre and the UWA Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia.,School of Engineering, The University of Western Australia, Perth, Western Australia 6009, Australia.,Australian Research Council Centre for Personalised Therapeutics Technologies, Australia.,BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|
11
|
Allan B, Ruan R, Landao-Bassonga E, Gillman N, Wang T, Gao J, Ruan Y, Xu Y, Lee C, Goonewardene M, Zheng M. Collagen Membrane for Guided Bone Regeneration in Dental and Orthopedic Applications. Tissue Eng Part A 2020; 27:372-381. [PMID: 32741266 DOI: 10.1089/ten.tea.2020.0140] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Treatment of cortical bone defects is a clinical challenge. Guided bone regeneration (GBR), commonly used in oral and maxillofacial dental surgery, may show promise for orthopedic applications in repair of cortical bone defects. However, a limitation in the use of GBR for cortical bone defects is the lack of an ideal scaffold that provides sufficient mechanical support to bridge the cortical bone with minimal interference in the repair process. We have developed a new collagen membrane, CelGro™, for use in GBR. We report the material characterization of CelGro and evaluate the performance of CelGro in translational preclinical and clinical studies. The results show CelGro has a bilayer structure of different fiber alignment and is composed almost exclusively of type I collagen. CelGro was found to be completely acellular and free from xenoantigen, α-gal (galactose-alpha-1,3-galactose). In the preclinical study of a rabbit cortical bone defect model, CelGro demonstrated enhanced bone-remodeling activity and cortical bone healing. Microcomputed tomography evaluation showed early bony bridging over the defect area 30 days postoperatively, and nearly complete restoration of mature cortical bone at the bone defect site 60 days postoperatively. Histological analysis 60 days after surgery further confirmed that CelGro enables bridging of the cortical bone defect by induction of newly formed cortical bone. Compared to a commercially available collagen membrane, Bio-Gide®, CelGro showed much better cortical alignment and reduced porosity at the defect interface. As selection of orthopedic patients with cortical bone defects is complex, we conducted a clinical study evaluating the performance of CelGro in guided bone regeneration around dental implants. CelGro was used in GBR procedures in a total of 16 implants placed in 10 participants. Cone-beam computed tomography images show significantly increased bone formation both horizontally and vertically, which provides sufficient support to stabilize implants within 4 months. Together, the findings of our study demonstrate that CelGro is an ideal membrane for GBR not only in oral and maxillofacial reconstructive surgery but also in orthopedic applications (Clinical Trial ID ACTRN12615000027516).
Collapse
Affiliation(s)
- Brent Allan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.,Oral and Maxillofacial Department, St John of God Subiaco Hospital, Subiaco, Western Australia, Australia.,Orthodontics, Dental School, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Rui Ruan
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Euphemie Landao-Bassonga
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Nicholas Gillman
- Griffith University School of Medicine, Gold Coast, Queensland, Australia
| | - Tao Wang
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Junjie Gao
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| | - Yonghua Ruan
- Department of Pathology, Kunming Medical University, Kunming, China
| | - Yuan Xu
- Medical Imaging Center, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Clair Lee
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Mithran Goonewardene
- Orthodontics, Dental School, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - Minghao Zheng
- Centre for Orthopaedic Research, Faculty of Health and Medical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, Western Australia, Australia
| |
Collapse
|
12
|
Li R, Deng X, Liu F, Yang Y, Zhang Y, Reddy N, Liu W, Qiu Y, Jiang Q. Three-dimensional rope-like and cloud-like nanofibrous scaffolds facilitating in-depth cell infiltration developed using a highly conductive electrospinning system. NANOSCALE 2020; 12:16690-16696. [PMID: 32766629 DOI: 10.1039/d0nr03071f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Three-dimensional (3D) nanofibrous scaffolds are at the forefront of tissue engineering research. However, owing to the compact geometries or unstable reserved pores, the scaffolds produced by the current techniques provide limited in-depth cell infiltration, leaving the regeneration of 3D tissues a major challenge. Herein, we have developed a novel single-step 3D electrospinning technique to create 3D rope-like or cloud-like nanofibrous scaffolds by introducing 0 to 0.9 wt% of silver nanoparticles (Ag NPs) into a spinning system and provided an insight into the mechanism. The incorporation of Ag NPs caused intense jet whipping and elevated fiber conductivity, allowing reverse charge transfer and segmented charge storage to provoke vertical collection of waved spirals. The resultant scaffolds exhibited ultrahigh specific pore volumes, facilitating in-depth cell attachment, migration, and proliferation. This work demonstrated a feasible approach to establish versatile 3D culture nanofibrous platforms for a variety of biomedical applications.
Collapse
Affiliation(s)
- Ran Li
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Xiong Deng
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Fei Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yuan Yang
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Yu Zhang
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru, 560082, India
| | - Wanshuang Liu
- Center for Civil Aviation Composites, Donghua University, Shanghai, 201620, China
| | - Yiping Qiu
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. and College of Textiles, Donghua University, Shanghai, 201620, China
| | - Qiuran Jiang
- Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. and College of Textiles, Donghua University, Shanghai, 201620, China
| |
Collapse
|
13
|
Dai J, Gong J, Kong N, Yao Y. Cellular architecture response to aspect ratio tunable nanoarrays. NANOSCALE 2020; 12:12395-12404. [PMID: 32490496 DOI: 10.1039/d0nr01003k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanoarrays have been emerging as popular nanostructure platforms to investigate both cell behaviors and biological functions, due to the cell architecture respondence to the biointerface of nanostructures. Herein, we developed a series of aspect ratio tunable nanoarrays through a metal-assisted chemical etching method. Nanoarrays including nanoneedles, nanopillars, and nanoclusters were fabricated with a controllable aspect ratio. We found that nanostructures with a high aspect ratio (>10) induced significant alterations of cell physiological behaviors such as surface attachment, architecture deformation, viability, proliferation and motility. The cells on nanostructures with a high aspect ratio exhibited reorganized actin stress fibers and vimentin filaments, as well as reduced focal adhesion. This research enlarges the diversity of nanostructures on nano-bio interface investigation, provides a new insight for the surface-dependent architecture of cells, and offers unbiased understanding of factors influencing cell physiology.
Collapse
Affiliation(s)
- Jing Dai
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China.
| | | | | | | |
Collapse
|
14
|
Straining 3D Hydrogels with Uniform Z-Axis Strains While Enabling Live Microscopy Imaging. Ann Biomed Eng 2019; 48:868-880. [PMID: 31802281 DOI: 10.1007/s10439-019-02426-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 11/24/2019] [Indexed: 10/25/2022]
Abstract
External forces play an important role in the development and regulation of many tissues. Such effects are often studied using specialized stretchers-standardized commercial and novel laboratory-designed. While designs for 2D stretchers are abundant, the range of available 3D stretcher designs is more limited, especially when live imaging is required. This work presents a novel method and a stretching device that allow straining of 3D hydrogels from their circumference, using a punctured elastic silicone strip as the sample carrier. The system was primarily constructed from 3D-printed parts and low-cost electronics, rendering it simple and cost-efficient to reproduce in other labs. To demonstrate the system functionality, > 100 μm thick soft fibrin gels (< 1 KPa) were stretched, while performing live confocal imaging. The subsequent strains and fiber alignment were analyzed and found to be relatively homogenous throughout the gel's thickness (Z axis). The uniform Z-response enabled by our approach was found to be in contrast to a previously reported approach that utilizes an underlying elastic substrate to convey strain to a 3D thick sample. This work advances the ability to study the role of external forces on biological processes under more physiological 3D conditions, and can contribute to the field of tissue engineering.
Collapse
|