1
|
Han C, Jia Z, Wei C, Zhang T, Wang R, Meng HM, Li Z. A Novel Afterglow Molecular Probe for Monitoring of pH and Viscosity in Infected Wounds with Two-Dimensional Signal. Anal Chem 2025; 97:10821-10829. [PMID: 40357528 DOI: 10.1021/acs.analchem.5c01108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Organic afterglow materials have shown tremendous potential in the field of biomedical imaging. However, reports on small-molecule afterglow probes, particularly those with multitarget detection capabilities, remain limited. Here, we report a novel afterglow molecule probe (Hcy-Br-SO) that effectively responds to changes in pH and viscosity during wound infection, based on a two-dimensional (2D) signal. In this design, the enhancement of molecular afterglow performance was achieved through molecular engineering, and the underlying mechanism of afterglow emission was derived. Additionally, the synergistic enhancement of the afterglow intensity of Hcy-Br-SO by the increase in the pH and viscosity was confirmed. Besides, we observed that viscosity could retard the photoreaction process, thereby extending the duration of afterglow emission. Based on this phenomenon, we transformed the traditional time-dependent characteristics of afterglow into a measurable parameter for monitoring viscosity changes. It is noteworthy that the introduction of the time dimension not only facilitates the separation of signal sources but also explores the application potential of afterglow molecular probes. To the best of our knowledge, this is the first afterglow small-molecule probe that uses 2D signals (intensity and half-life) to monitor binocular targets. Furthermore, the Hcy-Br-SO probe was successfully used to distinguish between normal and infected wounds. This work may be useful to unravel the pathological mechanisms of chronic wounds and provide guidance for intervention.
Collapse
Affiliation(s)
- Chen Han
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhihui Jia
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Chiyuan Wei
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Tengfei Zhang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Rong Wang
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Hong-Min Meng
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
| | - Zhaohui Li
- College of Chemistry, Institute of Analytical Chemistry for Life Science, Zhengzhou Key Laboratory of Functional Nanomaterial and Medical Theranostic, Zhengzhou University, Zhengzhou 450001, China
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
2
|
Wang H, Xing S, Chen C, Si Z, Li M, Wang B, Zhou F, Zhang J. Rationally designed photosensitizers with enhanced spin-orbit coupling for high quantum yield and potent antibacterial activity. J Mater Chem B 2025. [PMID: 40424029 DOI: 10.1039/d5tb00391a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
As a novel approach to killing bacteria, photodynamic therapy holds great potential in antibacterial treatment. However, the majority of traditional photosensitizers exhibit relatively low reactive oxygen species (ROS) quantum yield. Therefore, it is essential to develop photosensitizers with high ROS quantum yield to effectively kill bacteria. Herein, we propose a molecular design approach to enhance the spin-orbit coupling (SOC) and improve the ROS quantum yield by introducing carbonyl groups into a donor-acceptor (D-A) system. In the meantime, we also introduced membrane-anchoring functional groups to the photosensitizer to anchor on the bacterial surface for improved antibacterial treatment. In this design, two D-A photosensitizers (CTI-1-anchor and CTI-2-anchor) were synthesized by linking membrane-anchoring functional groups to carbazole and indanedione derivatives. Notably, the resulting CTI-1-anchor exhibited a significantly enhanced ROS generation capability, and its ROS quantum yield can reach 87%. Moreover, the CTI-1-anchor demonstrated superior antibacterial performance against Gram-positive bacteria (S. aureus) and Gram-negative bacteria (E. coli). The antibacterial efficacy of CTI-1-anchor reached 97.7% and 73.4% for S. aureus and E. coli, respectively. This study is expected to inspire further molecular designs of photosensitizers, ultimately contributing to the development of efficient antibacterial therapy.
Collapse
Affiliation(s)
- Hongsen Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Shu Xing
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Chonghao Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
| | - Zhangyong Si
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Meng Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
| | - Bing Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, PR China.
- Ningbo Cixi institute of Biomedical Engineering, Cixi, 315300, PR China
- Zhejiang Key Laboratory of Biopharmaceutical Contact Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| |
Collapse
|
3
|
Chen L, Peng M, Ouyang Y, Chen J, Li H, Wu M, Qu R, Zhou W, Zhang C, Jiang Y, Xu S, Wu W, Jiang X, Zhen X. Tuning Second Near-Infrared Fluorescence Activation by Regulating the Excited-State Charge Transfer Dynamics Change Ratio. J Am Chem Soc 2025; 147:17330-17341. [PMID: 40331824 DOI: 10.1021/jacs.5c03763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Second near-infrared (NIR-II) fluorescence imaging holds great promise for studying biopathological processes with high spatial resolution. However, developing activatable NIR-II fluorescent probes (AFPs) remains challenging due to insufficient signal activation in response to biomarkers and labor-intensive probe optimization. Here, we identify the excited-state charge transfer dynamics change ratios (δ) as a critical determinant of the fluorescence "turn-on" ratio of AFPs. We design a series of AFPs and their uncaged counterparts (uAFPs) and systematically analyze their photophysical characteristics and responsiveness. Comprehensive analyses including computational calculations, femtosecond transient absorption spectroscopy, steady-state fluorescence spectra, and fluorescence titration experiments verify a strong correlation between the theoretical and experimental δ values and the fluorescence "turn-on" ratios of activated AFPs. As a proof of concept, the optimal probe AFP2 indicated by δ enables early diagnosis of drug-induced liver injury and ultrasensitive detection of tiny metastatic foci (<2 mm) in mouse models, demonstrating superior sensitivity outperforming conventional methods. This study highlights the potential of δ as a predictor of probe responsiveness, which can streamline and accelerate the development and optimization of NIR-II AFPs for broader preclinical and translational applications.
Collapse
Affiliation(s)
- Linrong Chen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Meitang Peng
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, P. R. China
| | - Yanni Ouyang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Jian Chen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Haoze Li
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Min Wu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Wenya Zhou
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Chunfeng Zhang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center for Advanced Microstructures, Nanjing University, Nanjing 210093, P. R. China
| | - Yuyan Jiang
- Department of Radiation Oncology, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Shidang Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou 511442, P. R. China
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
4
|
Wei ZJ, Long K, Yin C, Yuan X, Sun M, Wang W, Yuan Z. One-pot synthesis of enhanced dye-sensitized persistent luminescence nanoparticles to alleviate concentration quenching. J Mater Chem B 2025. [PMID: 40376842 DOI: 10.1039/d5tb00312a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
ZnGa2O4:Cr3+ (ZGC) persistent luminescence (PersL) nanoparticles (PLNPs) are extensively researched in the fields of bioimaging and therapy due to their simple preparation and uniform morphology. Typically, the luminescence intensity increases with the Cr3+ concentration of luminescent ions up to an optimal range of 0.4-0.6%, beyond which concentration quenching often occurs, leading to a decrease in both intensity and lifetime. In this study, we introduce a one-pot solvothermal synthesis method to address the issue of concentration quenching by coating ZGCn PLNPs with an optimal concentration of the organic dye OAm-RhB, yielding ZGCn@OAm-RhB PLNPs. Here, OAm-RhB serves as a strong absorber, harvesting energy and subsequent energy transfer to Cr3+. Notably, the Cr3+ doping concentration can be increased to 1.2% without causing concentration quenching. Strikingly, the energy transfer efficiency between OAm-RhB and Cr3+ is up to 71%. ZGC1.2@OAm-RhB PLNPs significantly enhance the afterglow intensity by 60 times and extend the lifetime from 85.35 to 112.05 s. After modification with DSPE-PEG and HA, ZGC1.2@OAm-RhB@PEG@HA PLNPs were obtained, demonstrating good cellular uptake and precise tumor imaging, guiding complete tumor resection confirmed by H&E staining analysis. This strategy is anticipated to mitigate the concentration quenching of other PLNPs for improving PersL performance.
Collapse
Affiliation(s)
- Zi-Jin Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Kai Long
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Chang Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Xinxin Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Mengjie Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Xu Y, Hu R, Zhang X. Recent Advances in Reactive Oxygen Species -Mediated Near-Infrared Organic Long-Persistent Luminescence Imaging. Chem Asian J 2025; 20:e202401918. [PMID: 39945087 DOI: 10.1002/asia.202401918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/08/2025] [Indexed: 03/14/2025]
Abstract
Organic luminophores have found extensive applications in cellular and in vivo fluorescence imaging. However, their efficacy is often hindered by formidable challenges, including a low signal-to-noise ratio (SNR), susceptibility to false-positive signals, limited tissue penetration depth, and autofluorescence arising from non-negligible background interference. The emergence of near-infrared (NIR) afterglow imaging has addressed these problems. Organic afterglow imaging distinguishes by its unique capacity to emit light long after the cessation of external excitation, thereby exhibiting extraordinary persistence in luminescence. The integration of deep tissue penetration with prolonged luminescence in NIR organic long-persistent luminescent materials confers a distinct advantage for in vivo biological imaging, effectively minimizing the confounding effects of autofluorescence while enhancing spatial resolution for imaging in deep tissues, which is favorable for biosensing. In this review, we present a comprehensive summary of recent advancements in reactive oxygen species (ROS)-mediated NIR organic afterglow imaging, positioning this emerging technique as an exceptionally promising approach for in vivo biosensing, biological imaging, imaging-guided surgery, and therapeutic applications. Furthermore, we critically examine the challenges facing this field and propose future avenues for its continued evolution and refinement.
Collapse
Affiliation(s)
- Yan Xu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China
| | - Rong Hu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, Yunnan, 650500, P.R. China
| | - Xiaobing Zhang
- Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Molecular Engineering for Theronastics, Hunan University, Changsha, 410082, China
| |
Collapse
|
6
|
Wang Y, Guo J, Chen M, Liao S, Xu L, Chen Q, Song G, Zhang XB. Ultrabright and ultrafast afterglow imaging in vivo via nanoparticles made of trianthracene derivatives. Nat Biomed Eng 2025; 9:656-670. [PMID: 39472533 DOI: 10.1038/s41551-024-01274-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 09/16/2024] [Indexed: 05/22/2025]
Abstract
Low sensitivity, photobleaching, high-power excitation and long acquisition times constrain the utility of afterglow luminescence. Here we report the design and imaging performance of nanoparticles made of electron-rich trianthracene derivatives that, on excitation by room light at ultralow power (58 μW cm-2), emit afterglow luminescence at ~500 times those of commonly used organic afterglow nanoparticles. The nanoparticles' ultrabright afterglow allowed for deep-tissue imaging (up to 6 cm), for ultrafast afterglow imaging (at short acquisition times down to 0.01 s) of naturally behaving mice with negligible photobleaching, even after re-excitation for over 15 cycles, and for the accurate visualization of subcutaneous and orthotopic tumours and of plaque in carotid arteries. We also show that an afterglow nanoparticle that is activated only in the presence of granzyme B allowed for the tracking of granzyme-B activity in the context of therapeutic monitoring. The high sensitivity and negligible photobleaching of the organic afterglow nanoparticles offer advantages for real-time in vivo monitoring of physiopathological processes.
Collapse
Affiliation(s)
- Youjuan Wang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Jing Guo
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Muchao Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Shiyi Liao
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Li Xu
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Qian Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, China
| | - Guosheng Song
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| |
Collapse
|
7
|
Zhang L, Li J, Zhang Y, Dai W, Zhang Y, Gao X, Liu M, Wu H, Huang X, Lei Y, Ding D. White light-excited organic room-temperature phosphorescence for improved in vivo bioimaging. Nat Commun 2025; 16:3970. [PMID: 40295555 PMCID: PMC12037864 DOI: 10.1038/s41467-025-59367-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Organic phosphorescence materials offer significant advantages for bioimaging applications. However, most of these materials are excited exclusively by ultraviolet (UV) light, which poses risks to living organisms. Herein, six donor-acceptor-type compounds incorporating triazine groups are designed as guests within doped systems. White-light excitable phosphorescent guests enable doped materials to show efficient afterglow under white-light excitation. By leveraging the ability of white-light to penetrate biological tissues, a bioimaging mode in which the materials are first concentrated within the organism and then excited was developed, yielding superior imaging effects compared with the traditional method in which materials are first excited and then concentrated. Furthermore, these materials are applied in imaging diagnosis of atherosclerosis plaques (male Apoe-/- mice) and intestinal diseases (female BALB/c-nude mice), as well as in navigation for in situ liver tumor surgery (female BALB/c-nude mice), achieving excellent imaging outcomes. This work addresses the limitations of phosphorescent materials that rely on UV-light, significantly enhancing their potential for practical applications in clinical imaging.
Collapse
Affiliation(s)
- Lutong Zhang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Jisen Li
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Yifan Zhang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Wenbo Dai
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China.
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou, P. R. China.
| | - Yufan Zhang
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, P.R. China
| | - Xue Gao
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Miaochang Liu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Huayue Wu
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Xiaobo Huang
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, P. R. China.
- Key Lab of Biohealth Materials and Chemistry of Wenzhou, Wenzhou, P. R. China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, State Key Laboratory of Medicinal Chemical Biology, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, P.R. China.
| |
Collapse
|
8
|
Yuan H, Sun K, Su X, Hu D, Luo Y, Sun Y, Liu Q, Chen L, Qiao J, Xu M, Li F. A dark-state-dominated photochemical upconversion afterglow via triplet energy transfer relay. SCIENCE ADVANCES 2025; 11:eadt1225. [PMID: 40279422 PMCID: PMC12024634 DOI: 10.1126/sciadv.adt1225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 03/21/2025] [Indexed: 04/27/2025]
Abstract
Photochemical afterglow materials have drawn considerable attention due to their attractive luminescent properties and great application potential. Considering the classical photochemical afterglow materials always exhibit poor luminescence, it is urgent to gain fundamental understanding of the main limiting factors. Here, we identified the existence of a dark-state triplet in the photochemical process, and an overwhelming percentage of ~98.5% was revealed for this non-emissive triplet state. Guided by these observations, we proposed to activate an unprecedented triplet energy transfer relay to simultaneously harness the singlet and triplet energy. Consequently, an upconverted afterglow material was constructed with amazing luminescence performance albeit its moderate fluorescence emission property. The generality of this strategy was evidenced by the adaptation to similar emitters with varied emission wavelengths. The optimized afterglow performance enabled time-gated upconversion bioimaging under ultralow-power excitation. This study not only reveals the energy transfer pathways for photochemical afterglow but also paves the way for rational design of bright upconverted materials with ultralong lifetime.
Collapse
Affiliation(s)
- Hang Yuan
- Department of Chemical Biology, School of Chemistry and Chemical Engineering and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Kuangshi Sun
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xianlong Su
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Donghao Hu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanju Luo
- Analytical and Testing Centre, Sichuan University, Chengdu 610064, China
| | - Yishuo Sun
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Qian Liu
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Lijun Chen
- Department of Chemical Biology, School of Chemistry and Chemical Engineering and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Juan Qiao
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ming Xu
- Department of Chemical Biology, School of Chemistry and Chemical Engineering and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Fuyou Li
- Department of Chemical Biology, School of Chemistry and Chemical Engineering and Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
- Department of Chemistry and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| |
Collapse
|
9
|
Tan R, Wu J, Wang C, Zhao Z, Zhang X, Zhong C, Tang Z, Zheng R, Du B, He Y, Sun Y, Zhou P. The develop of persistent luminescence nanoparticles with excellent performances in cancer targeted bioimaging and killing: a review. J Nanobiotechnology 2025; 23:299. [PMID: 40247320 PMCID: PMC12007383 DOI: 10.1186/s12951-025-03350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
The use of fluorescent nanomaterials in tumor imaging and treatment effectively avoids the original limitations of traditional tumor clinical diagnostic methods. The PLNPs emitted persistent luminescence after the end of excitation light. Owing to their superior optical properties, such as a reduced laser irradiation dose, spontaneous fluorescence interference elimination, and near-infrared imaging, PLNPs show great promise in tumor imaging. Moreover, they also achieve excellent anti-tumor therapeutic effects through surface modification and drug delivery. However, their relatively large size and limited surface modification capacity limit their ability to kill tumors effectively enough for clinical applications. Thus, this article reviews the synthesis and modification of PLNPs and the research progress in targeted tumor imaging and tumor killing. We also discuss the challenges and prospects of their future applications in these fields. This review has value for accelerating the design of PLNPs based platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rongshuang Tan
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianing Wu
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chunya Wang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhengyan Zhao
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoyuan Zhang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chang Zhong
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zihui Tang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Zheng
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yunhan He
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yuhua Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
- Department of Stomatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Ping Zhou
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Cheng Q, Wang Q, Qu S. Photon-triggered pyroptosis and ferroptosis dual-functional nanoplatform for cancer immunotherapy. LIGHT, SCIENCE & APPLICATIONS 2025; 14:104. [PMID: 40011473 DOI: 10.1038/s41377-025-01757-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
A dual-functional nanoplatform is demonstrated that is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. It can simultaneously achieve pyroptosis and ferroptosis under the mediation of photons for cancer immunotherapy.
Collapse
Affiliation(s)
- Quansheng Cheng
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Qingcheng Wang
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China
| | - Songnan Qu
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau SAR, 999078, China.
- Department of Physics and Chemistry, Faculty of Science and Technology, University of Macau, Taipa, Macau SAR, 999078, China.
| |
Collapse
|
11
|
Osman R, Haris U, Cabello MC, Mason RP, Lippert AR. A silicon rhodamine 1,2-dioxetane chemiluminophore for in vivo near-infrared imaging. Org Biomol Chem 2025; 23:1846-1850. [PMID: 39831780 PMCID: PMC11839319 DOI: 10.1039/d4ob02002b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Near-infrared (NIR) chemiluminescent probes have attracted increasing attention in recent years due to their attractive properties for in vivo imaging. Herein, we developed a NIR chemiluminophore silicon rhodamine (SiRCL-1) based on the intramolecular energy transfer process from excited state benzoate to a silicon rhodamine emitter under aqueous conditions. SiRCL-1 exhibited dual emission peaks at 540 nm and 680 nm with a high signal penetration through tissue at 680 nm (>30 mm) and long-lasting in vivo luminescence (>50 min), demonstrating its significance as a chemiluminescence scaffold for biological application.
Collapse
Affiliation(s)
- Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | - Uroob Haris
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| | | | - Ralph P Mason
- Prognostic Imaging Research Laboratory, Pre-clinical Imaging Section, Department of Radiology, UT Southwestern Medical Center, Dallas, TX 75390-9058, USA
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, TX 75275-0314, USA.
| |
Collapse
|
12
|
Zhu J, Zhao L, An W, Miao Q. Recent advances and design strategies for organic afterglow agents to enhance autofluorescence-free imaging performance. Chem Soc Rev 2025; 54:1429-1452. [PMID: 39714452 DOI: 10.1039/d4cs01060d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Long-lasting afterglow luminescence imaging that detects photons slowly being released from chemical defects has emerged, eliminating the need for real-time photoexcitation and enabling autofluorescence-free in vivo imaging with high signal-to-background ratios (SBRs). Organic afterglow nano-systems are notable for their tunability and design versatility. However, challenges such as unsatisfactory afterglow intensity, short emission wavelengths, limited activatable strategies, and shallow tissue penetration depth hinder their widespread biomedical applications and clinical translation. Such contradiction between promising prospects and insufficient properties has spurred researchers' efforts to improve afterglow performance. In this review, we briefly outline the general composition and mechanisms of organic afterglow luminescence, with a focus on design strategies and an in-depth understanding of the structure-property relationship to advance afterglow luminescence imaging. Furthermore, pending issues and future perspectives are discussed.
Collapse
Affiliation(s)
- Jieli Zhu
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Liangyou Zhao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Weihao An
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
| | - Qingqing Miao
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei 230026, China.
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| |
Collapse
|
13
|
Song R, Jiang T, Zhang X, Shen C, Lou Q, Shan C. Triplet Electron Exchange in Carbon Nanodots-assisted Long-persistent near-infrared Chemiluminescence for Oncology Synergistic Imaging and Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411898. [PMID: 39661728 PMCID: PMC11791938 DOI: 10.1002/advs.202411898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/07/2024] [Indexed: 12/13/2024]
Abstract
In classical photodynamic therapy, tumor cells are killed by the cytotoxic species via type-I/II photochemical reactions, seriously limited by the external photoexcitation and hypoxia. Herein, the electron transfer mechanism between fluorophores and peroxalate-H2O2 reaction is investigated and the singlet/triplet electron exchange is utilized to achieve long-persistent chemiluminescence imaging and synergistic type-I/II/III photodynamic therapy. As a proof-of-concept, the photosensitizers of carbon nanodots (CDs)-loaded chlorin e6 (CDs-Ce6) are designed and integrated with the peroxalate molecules, and the as-prepare polymer carbon nanodots (p-CDs) exhibit novel tumor microenvironment (TME)-responsive long-persistent near-infrared CL and photochemical reactions, evoking the in vivo imaging and synergistic dynamic therapy in tumor tissue. Mechanistically, the excess reactive oxygen species in TME can trigger the chemically initiated singlet/triplet electron exchange between the hydrophobic CDs-Ce6 and peroxalate-derived 1,2-dioxetanes and thus the excess excited singlet/triplet electron of the CDs-Ce6 can ensure the long-persistent near-infrared CL, type I/II photochemical production of hydroxyl radicals, superoxide radical and singlet oxygen, and type III photochemical damage of maladjusted biomacromolecules, enabling the long-persistent near-infrared biological imaging and enhanced cancer therapy. These results shed a new sight into the energy transfer mechanism in chemiluminescence and pave a new sight into the architecture of multifunctional theragnostic nanoplatforms.
Collapse
Affiliation(s)
- Run‐Wei Song
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Material PhysicsMinistry of Educationand School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Tian‐Ci Jiang
- Department of Respiratory and Critical Care MedicineThe First Affiliated Hospital of Zhengzhou UniversityZhengzhou450052China
| | - Xue‐Yang Zhang
- College of Public HealthZhengzhou UniversityZhengzhou450052China
| | - Cheng‐Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Material PhysicsMinistry of Educationand School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Material PhysicsMinistry of Educationand School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Chong‐Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and DevicesKey Laboratory of Material PhysicsMinistry of Educationand School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| |
Collapse
|
14
|
Xu C, Qin X, Wei X, Yu J, Zhang Y, Zhang Y, Ding D, Song J, Pu K. A cascade X-ray energy converting approach toward radio-afterglow cancer theranostics. NATURE NANOTECHNOLOGY 2025; 20:286-295. [PMID: 39548317 DOI: 10.1038/s41565-024-01809-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/18/2024] [Indexed: 11/17/2024]
Abstract
Leveraging X-rays to initiate prolonged luminescence (radio-afterglow) and stimulate radiodynamic 1O2 production from optical agents provides opportunities for diagnosis and therapy at tissue depths inaccessible to light. However, X-ray-responsive organic luminescent materials are rare due to their intrinsic low X-ray conversion efficiency. Here we report a cascade X-ray energy converting approach to develop organic radio-afterglow nanoprobes (RANPs) for cancer theranostics. RANPs comprise a radiowave absorber that down-converts X-ray energy to emit radioluminescence, which is transferred to a radiosensitizer to produce singlet oxygen (1O2). 1O2 then reacts with a radio-afterglow substrate to generate an active intermediate that simultaneously decomposes to emit radio-afterglow. Through finetuning such a cascade, intraparticle radioluminescence energy transfer and the 1O2 transfer process, RANPs possess tunable wavelengths and long half-lives, and generate radio-afterglow and 1O2 at tissue depths of up to 15 cm. Moreover, we developed a biomarker-activatable nanoprobe (tRANP) that produces a tumour-specific radio-afterglow signal, leading to ultrasensitive detection and the possibility of surgical removal of diminutive tumours (1 mm3) under an X-ray dosage 20 times lower than inorganic materials. The efficient radiodynamic 1O2 generation of tRANP permits complete tumour eradication at an X-ray dosage lower than clinical radiotherapy and a drug dosage one to two orders of magnitude lower than most existing inorganic agents, leading to prolonged survival rates with minimized radiation-related adverse effects. Thus, our work reveals a generic approach to address the lack of organic radiotheranostic materials and provides molecular design towards precision cancer radiotherapy.
Collapse
Affiliation(s)
- Cheng Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Xue Qin
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China
| | - Xin Wei
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore
| | - Jie Yu
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bio-inorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China
| | - Youjia Zhang
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Yan Zhang
- National Engineering Research Centre for Nanomedicine, College of Life Science and Technology, Hubei Key Laboratory of Bio-inorganic Chemistry and Materia Medical, Huazhong University of Science and Technology, Wuhan, PR China.
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, and College of Life Sciences, Nankai University, Tianjin, PR China.
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, PR China.
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, Singapore.
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
15
|
Yuan M, Fang X, Liu W, Ge X, Wu Y, Su L, Gao S, Song J. Ultrasound-Activated Near-Infrared-II Afterglow Luminescence for Precise Cancer Imaging. ACS APPLIED BIO MATERIALS 2025; 8:368-373. [PMID: 39700402 DOI: 10.1021/acsabm.4c01352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Afterglow fluorescence imaging has been extensively assessed in ultrasensitive bioimaging. Since it eliminates the need for real-time excitation light and thereby circumvents the autofluorescence background of tissue, it holds tremendous potential in accurate biomedical imaging. However, current afterglow probes are rare and emit light only in the visible to near-infrared (NIR) range, which is inadequate for in vivo imaging. To resolve this issue, an ultrasound (US)-activated NIR-II afterglow luminescence probe (NPs-Ce4-SN) emitting afterglow luminescence with a peak at ∼1100 nm was developed. This peak is nearly 400 nm red-shifted compared with other reported afterglow probes. Of note, after US termination, NPs-Ce4-SN undergoes energy transformation to produce 1O2 and subsequently undergoes internal oxidation-reduction reaction to produce NIR-II afterglow, generating high signal-to-noise ratio and high-penetration depth imaging. In vitro and in vivo NIR-II afterglow imaging experiments revealed that NPs-Ce4-SN has good biocompatibility and deep tissue penetration depth, suggesting a diagnostic strategy for in vivo tumor imaging with a high signal-to-noise ratio.
Collapse
Affiliation(s)
- Meng Yuan
- Key BioAI Synthetica Lab for Natural Product Drug Discovery, College of Bee and Biomedical Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, People's Republic of China
| | - Xiao Fang
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Wenzheng Liu
- The Gastroenterology Department of Peking University Third Hospital, Beijing 100191, China
| | - Xiaoguang Ge
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ying Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Lichao Su
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, People's Republic of China
| | - Shi Gao
- Department of Nuclear Medicine, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Jibin Song
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| |
Collapse
|
16
|
Wang Z, Tang Y, Li Q. A self-assembling nanoplatform for pyroptosis and ferroptosis enhanced cancer photoimmunotherapy. LIGHT, SCIENCE & APPLICATIONS 2025; 14:16. [PMID: 39743555 DOI: 10.1038/s41377-024-01673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 01/04/2025]
Abstract
The microenvironment of immunosuppression and low immunogenicity of tumor cells has led to unsatisfactory therapeutic effects of the currently developed nanoplatforms. Immunogenic cell death, such as pyroptosis and ferroptosis, can efficiently boost antitumor immunity. However, the exploration of nanoplatform for dual function inducers and combined immune activators that simultaneously trigger pyroptosis and ferroptosis remains limited. Herein, a multifunctional pH-responsive theranostic nanoplatform (M@P) is designed and constructed by self-assembly of aggregation-induced emission photosensitizer MTCN-3 and immunoadjuvant Poly(I: C), which are further encapsulated in amphiphilic polymers. This nanoplatform is found to have the characteristics of cancer cell targeting, pH response, near-infrared fluorescence imaging, and lysosome targeting. Therefore, after targeting lysosomes, M@P can cause lysosome dysfunction through the generation of reactive oxygen species and heat under light irradiation, triggering pyroptosis and ferroptosis of tumor cells, achieving immunogenic cell death, and further enhancing immunotherapy through the combined effect with the immunoadjuvant Poly(I: C). The anti-tumor immunotherapy effect of M@P has been further demonstrated in in vivo antitumor experiment of 4T1 tumor-bearing mouse model with poor immunogenicity. This research would provide an impetus as well as a novel strategy for dual function inducers and combined immune activators enhanced photoimmunotherapy.
Collapse
Affiliation(s)
- Zhichao Wang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuqi Tang
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Quan Li
- Institute of Advanced Materials and School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
- Materials Science Graduate Program, Kent State University, Kent, OH, 44242, USA.
| |
Collapse
|
17
|
Xu W, Jian D, Yang H, Wang W, Ding Y. Aggregation-induced emission: Application in diagnosis and therapy of hepatocellular carcinoma. Biosens Bioelectron 2024; 266:116722. [PMID: 39232431 DOI: 10.1016/j.bios.2024.116722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/24/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Hepatocellular carcinoma (HCC) is a serious health issue due to its low early diagnosis rate, resistance to chemotherapy, and poor five-year survival rate. Therefore, it is crucial to explore novel diagnostic and therapeutic approaches tailored to the characteristics of HCC. Aggregation-induced emission (AIE) is a phenomenon where the luminescence of certain molecules, typically non-luminescent or weakly luminescent in solution, is significantly enhanced upon aggregation. AIE has been extensively applied in bioimaging, biosensors, and therapy. Fluorophore materials based on AIE (AIEgens) have a wide range of application scenarios and potential for clinical translation. This review focuses on recent advances in AIE-based strategies for diagnosing and treating HCC. First, the specific functional mechanism of AIE is described. Next, we summarize recent progress in the application of AIE for multimodal imaging, biosensor detection, and phototherapy. Finally, prospects and challenges for the AIE-based application in the diagnosis and therapy of HCC are discussed.
Collapse
Affiliation(s)
- Wenjing Xu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Danfeng Jian
- MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Huang Yang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China; MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Weili Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; The Second Affiliated Hospital of Zhejiang University, Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University, Research Center of Diagnosis and Treatment Technology for Hepatocellular Carcinoma of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Clinical Medicine Innovation Center of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Disease, Zhejiang University, Hangzhou, Zhejiang, 310009, China; The Second Affiliated Hospital of Zhejiang University Clinical Research Center of Hepatobiliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang, 310009, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang, 310009, China.
| |
Collapse
|
18
|
Qu R, Jiang X, Zhen X. Light/X-ray/ultrasound activated delayed photon emission of organic molecular probes for optical imaging: mechanisms, design strategies, and biomedical applications. Chem Soc Rev 2024; 53:10970-11003. [PMID: 39380344 DOI: 10.1039/d4cs00599f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Conventional optical imaging, particularly fluorescence imaging, often encounters significant background noise due to tissue autofluorescence under real-time light excitation. To address this issue, a novel optical imaging strategy that captures optical signals after light excitation has been developed. This approach relies on molecular probes designed to store photoenergy and release it gradually as photons, resulting in delayed photon emission that minimizes background noise during signal acquisition. These molecular probes undergo various photophysical processes to facilitate delayed photon emission, including (1) charge separation and recombination, (2) generation, stabilization, and conversion of the triplet excitons, and (3) generation and decomposition of chemical traps. Another challenge in optical imaging is the limited tissue penetration depth of light, which severely restricts the efficiency of energy delivery, leading to a reduced penetration depth for delayed photon emission. In contrast, X-ray and ultrasound serve as deep-tissue energy sources that facilitate the conversion of high-energy photons or mechanical waves into the potential energy of excitons or the chemical energy of intermediates. This review highlights recent advancements in organic molecular probes designed for delayed photon emission using various energy sources. We discuss distinct mechanisms, and molecular design strategies, and offer insights into the future development of organic molecular probes for enhanced delayed photon emission.
Collapse
Affiliation(s)
- Rui Qu
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Xu Zhen
- MOE Key Laboratory of High Performance Polymer Materials & Technology and State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Li Z, Liu H, Zhang XB. Reactive oxygen species-mediated organic long-persistent luminophores light up biomedicine: from two-component separated nano-systems to integrated uni-luminophores. Chem Soc Rev 2024; 53:11207-11227. [PMID: 39363873 DOI: 10.1039/d4cs00443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Organic luminophores have been widely utilized in cells and in vivo fluorescence imaging but face extreme challenges, including a low signal-to-noise ratio (SNR) and even false signals, due to non-negligible background signals derived from real-time excitation lasers. To overcome these challenges, in the last decade, functionalized organic long-persistent luminophores have gained much attention. Such luminophores could not only overcome the biological toxicity of inorganic long-persistent luminescent materials (metabolic toxicity and leakage risk of inorganic heavy metals), but also continue to emit long-persistent luminescence after removing the excitation source, thus effectively improving imaging quality. More importantly, organic long-persistent luminophores have good structure tailorability for the construction of activable probes, which is favorable for biosensing. Recently, the development of reactive oxygen species (ROS)-mediated long-persistent (ROSLP) luminophores (especially organic small-molecule ROSLP luminophores) is still in the rising stage. Notably, ROSLP luminophores for in vivo imaging have experienced from two-component separated nano-systems to integrated uni-luminophores, which obtained gradually better designability and biocompatibility. In this review, we summarize the progress and challenges of organic long-persistent luminophores, focusing on their development history, long-persistent luminescence working mechanisms, and biomedical applications. We hope that these insights will help scientists further develop functionalized organic long-persistent luminophores for the biomedical field.
Collapse
Affiliation(s)
- Zhe Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, School of Medicine and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200092, China.
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Collaborative Innovation Center for Chemistry and Molecular Medicine, Hunan University, Changsha 410082, China.
| |
Collapse
|
20
|
Gao H, Zhang T, Lei Y, Jiao D, Yu B, Yuan WZ, Ji J, Jin Q, Ding D. An Organophosphorescence Probe with Ultralong Lifetime and Intrinsic Tissue Selectivity for Specific Tumor Imaging and Guided Tumor Surgery. Angew Chem Int Ed Engl 2024; 63:e202406651. [PMID: 38781352 DOI: 10.1002/anie.202406651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 05/25/2024]
Abstract
Organic phosphorescent materials are excellent candidates for use in tumor imaging. However, a systematic comparison of the effects of the intensity, lifetime, and wavelength of phosphorescent emissions on bioimaging performance has not yet been undertaken. In addition, there have been few reports on organic phosphorescent materials that specifically distinguish tumors from normal tissues. This study addresses these gaps and reveals that longer lifetimes effectively increase the signal intensity, whereas longer wavelengths enhance the penetration depth. Conversely, a strong emission intensity with a short lifetime does not necessarily yield robust imaging signals. Building upon these findings, an organo-phosphorescent material with a lifetime of 0.94 s was designed for tumor imaging. Remarkably, the phosphorescent signals of various organic nanoparticles are nearly extinguished in blood-rich organs because of the quenching effect of iron ions. Moreover, for the first time, we demonstrated that iron ions universally quench the phosphorescence of organic room-temperature phosphorescent materials, which is an inherent property of such substances. Leveraging this property, both the normal liver and hepatitis tissues exhibit negligible phosphorescent signals, whereas liver tumors display intense phosphorescence. Therefore, phosphorescent materials, unlike chemiluminescent or fluorescent materials, can exploit this unique inherent property to selectively distinguish liver tumor tissues from normal tissues without additional modifications or treatments.
Collapse
Affiliation(s)
- Heqi Gao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Tingting Zhang
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Yunxiang Lei
- School of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. China
| | - Di Jiao
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| | - Bo Yu
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Wang Zhang Yuan
- Shanghai Key Lab of Electrical Insulation and Thermal Aging, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Dan Ding
- Frontiers Science Center for New Organic Matter, Engineering & Smart Sensing Interdisciplinary Science Center, MOE Key Laboratory of Bioactive Materials, College of Life Sciences, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
21
|
Li X, Liu L, Yang K, Wang Z, Yuan T, Sha Q, Chen W, Yi T, Hua J. A Diketopyrrolopyrrole-Based All-in-One Nanoplatform for Self-Reinforcing Mild Photothermal Therapy Cascade Immunotherapy for Tumors. Adv Healthc Mater 2024; 13:e2400766. [PMID: 39007249 DOI: 10.1002/adhm.202400766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 06/20/2024] [Indexed: 07/16/2024]
Abstract
Mild photothermal therapy (PTT) has attracted attention for effectively avoiding the severe side effects associated with high-temperature tumor ablation. However, its progress is hindered by the limited availability of high-performance photothermal agents (PTAs) and the thermoresistance of cancer cells induced by heat shock reactions. Herein, this work proposes a new strategy to expand the library of high-performance organic small-molecule PTAs and utilize it to construct a multifunctional nano-theranostic platform. By incorporating additional acceptors and appropriate π-bridges, a diketopyrrolopyrrole-based dye BDB is developed, which exhibits strong absorption and bright fluorescence emission in the near-infrared (NIR) region. Subsequently, BDB is co-coated with the heat shock protein (HSP) inhibitor tanespimycin (17-AAG) using the functional amphiphilic polymers DSPE-Hyd-PEG2000-cRGD to form an all-in-one nanoplatform BAG NPs. As a result, BAG NPs can precisely target tumor tissue, guide the treatment process in real-time through NIR-II fluorescence/photoacoustic/photothermal imaging, and release 17-AAG on demand to enhance mild PTT. Additionally, the mild PTT has been demonstrated to induce immunogenic cell death (ICD) and activate a systemic anti-tumor immune response, thereby suppressing both primary and distant tumors. Overall, this study presents a multifunctional nanoplatform designed for precise mild PTT combined with immunotherapy for effective tumor treatment.
Collapse
Affiliation(s)
- Xinsheng Li
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Lingyan Liu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Kaini Yang
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Zhiqiang Wang
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Tao Yuan
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qingyang Sha
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wei Chen
- Department of Biliary-pancreatic Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Tao Yi
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai, 201620, China
| | - Jianli Hua
- Key Laboratory for Advanced Materials, College of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
22
|
Liu L, Pan Y, Ye L, Liang C, Mou X, Dong X, Cai Y. Optical functional nanomaterials for cancer photoimmunotherapy. Coord Chem Rev 2024; 517:216006. [DOI: 10.1016/j.ccr.2024.216006] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
23
|
Shen Y, Li Y, Yuan S, Shen J, Wang D, Zhang N, Niu J, Wang Z, Wang Z. Polyfunctional Arylamine Based Nanofiltration Membranes with Enhanced Aggressive Organic Solvents Resistance. NANO LETTERS 2024; 24:10169-10176. [PMID: 39109989 DOI: 10.1021/acs.nanolett.4c02403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Organic solvent nanofiltration (OSN) membranes with high separation performance and excellent stability in aggressive organic solvents are urgently desired for chemical separation. Herein, we utilized a polyfunctional arylamine tetra-(4-aminophenyl) ethylene (TAPE) to prepare a highly cross-linked polyamide membrane with a low molecular weight cut-off (MWCO) of 312 Da. Owing to its propeller-like conformation, TAPE formed micropores within the polyamide membrane and provided fast solvent transport channels. Importantly, the rigid conjugated skeleton and high connectivity between micropores effectively prevented the expansion of the polyamide matrix in aggressive organic solvents. The membrane maintained high separation performance even immersed in N,N-dimethylformamide for 90 days. Based on the aggregation-induced emission (AIE) effect of TAPE, the formation of polyamide membrane can be visually monitored by fluorescence imaging technology, which achieved visual guidance for membrane fabrication. This work provides a vital foundation for utilizing polyfunctional monomers in the interfacial polymerization reaction to prepare high-performance OSN membranes.
Collapse
Affiliation(s)
- Yun Shen
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
| | - Shideng Yuan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jiangnan Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dong Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Jingyu Niu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, P. R. China
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Ziming Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
24
|
Wang Y, He J, Feng R, Chen J, Xie G, Yu S, Wu YX, Tang K. Lighting up endogenous H 2O 2 in the tumor microenvironment using a dual-mode nanoprobe for long afterglow and MR bioimaging. Analyst 2024; 149:4230-4238. [PMID: 38874099 DOI: 10.1039/d4an00576g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Persistent luminescent nanoparticles (PLNPs) are excellent luminescent materials, and near-infrared PLNPs are efficiently applied for biosensing and bioimaging due to their advantages of no excitation, excellent light stability and long afterglow. However, due to interference from the complex environment within organisms, single-mode imaging methods often face limitations in selectivity, sensitivity, and accuracy. Therefore, it is desirable to construct a dual-mode imaging probe strategy with higher specificity and sensitivity for bioimaging. Magnetic resonance imaging (MRI) has been widely used in the field of bioimaging due to its advantages of high resolution, non-radiation and non-invasiveness. Here, by combining near-infrared PLNPs and manganese dioxide (MnO2) nanosheets, a sensitive and convenient dual-mode "turn on" bioimaging nanoprobe ZGC@MnO2 has been developed for long afterglow imaging and MRI of endogenous hydrogen peroxide (H2O2) in the tumor microenvironment (TME). The monitoring of H2O2 has garnered significant attention due to its crucial role in human pathologies. For the dual-mode "turn on" bioimaging nanoprobe, the near-infrared PLNPs of quasi-spherical ZnGa2O4:Cr (ZGC) nanoparticles were synthesized as luminophores, and MnO2 nanosheets were utilized as a fluorescence quencher, carrier and H2O2 recognizer. H2O2 in the TME could reduce MnO2 nanosheets to Mn2+ for MRI, and ZGC nanoparticles were released for long afterglow imaging. Finally, the ZGC@MnO2 nanoprobe exhibited a rapid response, an excellent signal-to-noise ratio and a limit of detection of 3.67 nM for endogenous H2O2 in the TME. This dual-mode approach enhances the detection sensitivity for endogenous H2O2, thereby facilitating the research of endogenous H2O2-associated diseases and clinical diagnostics.
Collapse
Affiliation(s)
- Yiming Wang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Jintao He
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Rong Feng
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Jingwen Chen
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Gege Xie
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
| | - Shengrong Yu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Yong-Xiang Wu
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| | - Keqi Tang
- Institute of Mass Spectrometry, Zhejiang Engineering Research Center of Advanced Mass spectrometry and Clinical Application, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China.
- Zhenhai Institute of Mass Spectrometry, Ningbo, Zhejiang 315211, China
| |
Collapse
|
25
|
Chen C, Zhang X, Gao Z, Feng G, Ding D. Preparation of AIEgen-based near-infrared afterglow luminescence nanoprobes for tumor imaging and image-guided tumor resection. Nat Protoc 2024; 19:2408-2434. [PMID: 38637702 DOI: 10.1038/s41596-024-00990-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 02/21/2024] [Indexed: 04/20/2024]
Abstract
Fluorescence imaging represents a vital tool in modern biology, oncology and biomedical applications. Afterglow luminescence (AGL), which circumvents the light scattering and tissue autofluorescence interference associated with real-time excitation source, shows remarkably increased imaging sensitivity and depth. Here we present a protocol for the design and synthesis of AGL nanoprobes with an aggregation-induced emission (AIE) effect to simultaneously red shift and amplify the afterglow signal for tumor imaging and image-guided tumor resection. The nanoprobe (AGL AIE dot) is composed of an enol ether format of Schaap's agent and a near-infrared AIE fluorogen (AIEgen) (tetraphenylethylene-phenyl-dicyanomethylene-4H-chromene, TPE-Ph-DCM) to suppress the nonradiative dissipation pathway. Pre-irradiating AGL AIE dots with white light could generate singlet oxygen to convert Schaap's agent to its 1,2-dioxetane format, thus initializing the AGL process. With the aid of AIEgen, the AGL shows simultaneously red shifted emission maximum (from ~540 nm to ~625 nm) and enhanced intensity (by 3.2-fold), facilitating better signal-to-background ratio, imaging sensitivity and depth. Intriguingly, the activated AGL can last for over 10 days. Compared with conventional approaches, our method provides a new solution to concurrently red shift and amplify afterglow signals for better in vivo imaging outcomes. The preparation of AGL AIE dots takes ~2 days, the in vitro characterization takes ~10 days (less than 1 day if not involving afterglow kinetic profile study) and the tumor imaging and image-guided tumor resection takes ~7 days. These procedures can be easily reproduced and amended after standard laboratory training in chemical synthesis and animal handling.
Collapse
Affiliation(s)
- Chao Chen
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaoyan Zhang
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Zhiyuan Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China
| | - Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, School of Materials Science and Engineering, South China University of Technology, Guangzhou, P. R. China.
| | - Dan Ding
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
26
|
Li J, Li Y, Ming J, Zeng X, Wang T, Yang H, Liu H, An Y, Zhang X, Zhuang R, Su X, Guo Z, Zhang X. Progressive Optimization of Lanthanide Nanoparticle Scintillators for Enhanced Triple-Activated Radioluminescence Imaging. Angew Chem Int Ed Engl 2024; 63:e202401683. [PMID: 38719735 DOI: 10.1002/anie.202401683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Indexed: 06/21/2024]
Abstract
Lanthanide nanoparticle (LnNP) scintillators exhibit huge potential in achieving radionuclide-activated luminescence (radioluminescence, RL). However, their structure-activity relationship remains largely unexplored. Herein, progressive optimization of LnNP scintillators is presented to unveil their structure-dependent RL property and enhance their RL output efficiency. Benefiting from the favorable host matrix and the luminescence-protective effect of core-shell engineering, NaGdF4 : 15 %Eu@NaLuF4 nanoparticle scintillators with tailored structures emerged as the top candidates. Living imaging experiments based on optimal LnNP scintillators validated the feasibility of laser-free continuous RL activated by clinical radiopharmaceuticals for tumor multiplex visualization. This research provides unprecedented insights into the rational design of LnNP scintillators, which would enable efficient energy conversion from Cerenkov luminescence, γ-radiation, and β-electrons into visible photon signals, thus establishing a robust nanotechnology-aided approach for tumor-directed radio-phototheranostics.
Collapse
Affiliation(s)
- Jingchao Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Yun Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Jiang Ming
- State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials and Engineering Research Center for Nano-Preparation Technology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361102, China
| | - Xinying Zeng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Tingting Wang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Hongzhang Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongwu Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xun Zhang
- School of Medicine, Xiamen University, Xiamen, 361102, China
| | - Rongqiang Zhuang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xinhui Su
- PET Center, Department of Nuclear Medicine, The First Affiliated Hospital, School of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, 310003, China
| | - Zhide Guo
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Xianzhong Zhang
- Department of Nuclear Medicine, Peking Union Medical College Hospital & Theranostics and Translational Research Center, Institute of Clinical Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100730, China
| |
Collapse
|
27
|
Fang L, Dai Y, Bai Y, Meng Y, Yu W, Gao Y, Tang R, Zhang Y, Li L, Wang J, Ding Y, Wang Y, Chen T, Cai Y, Yao Y. Fluorescence-enhanced supra-amphiphiles based on pillar[5]arene: construction, controllable self-assembly and application in cell imaging. Chem Commun (Camb) 2024; 60:7646-7649. [PMID: 38963720 DOI: 10.1039/d4cc01987c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Fluorescence-enhanced supra-amphiphiles based on (WP5)2⊃ENDTn were constructed successfully. When n = 9, they can self-assemble into uniform micelles with an average diameter of about 90 nm and be further applied in cell imaging.
Collapse
Affiliation(s)
- Lizhen Fang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yu Dai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yiqiao Bai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yujia Meng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Wenqiang Yu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yunhan Gao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Ruowen Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Liang Li
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Jin Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yang Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yan Cai
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| | - Yong Yao
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China.
| |
Collapse
|
28
|
Song X, Zhao W, Cui S, Su X, Yu J, Guo L, Song K. Deciphering the dual role of persistent luminescence materials: Toxicity and photoreception effects on rice development. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174542. [PMID: 38977096 DOI: 10.1016/j.scitotenv.2024.174542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/28/2024] [Accepted: 07/04/2024] [Indexed: 07/10/2024]
Abstract
Studies on the toxicity of micro- and nanomaterials in plants have primarily focused on their intrinsic effects. However, there is often oversight when considering the potential perceptual responses that plants may exhibit in response to these materials. In this investigation, we assessed the impact of three commercially available persistent luminescence materials (PLMs) that emit red, green, or blue light under various environmental conditions. We subjected rice (Oryza sativa L.), a short-day plant, to nine distinct treatments, including exposure to particles in isolation, their nocturnal afterglow, or a combination of both. We thoroughly examined rice seedling morphology, photosynthesis patterns, metabolite dynamics, and flowering gene expression to determine the biological responses of plants to these particles. These findings demonstrated that PLMs stably interact with rice, and their emitted afterglow precisely matches the perceptual bandwidth of rice photoreceptors. Notably, the nocturnal afterglow from the red and blue PLMs enhanced the vegetative growth of rice seedlings while inhibiting their reproductive development. The blue PLMs exhibited the most pronounced positive effects, while the red PLMs exhibited inhibitory effects. When exposed to a combination of red and blue PLMs, rice displays enhanced growth and development. The observed alterations in the expression patterns of genes responsible for flowering supported these effects. We concluded that PLMs influence rice growth and development due to their inherent properties and intermittent illumination during dark periods. Both factors collectively shape rice growth and development.
Collapse
Affiliation(s)
- Xiangwei Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Wei Zhao
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Shuyuan Cui
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Xiaomeng Su
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Jingbo Yu
- School of Life Science, Changchun Normal University, Changchun, 130032, China
| | - Liquan Guo
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China.
| | - Kai Song
- School of Life Science, Changchun Normal University, Changchun, 130032, China; Research Institute for Scientific and Technological Innovation, Changchun Normal University.
| |
Collapse
|
29
|
Shi TJ, Wang DH, Zhao X, Chen LJ, Yan XP. Afterglow Performance of Phenylenevinylene-Based Semiconducting Polymer Nanoparticles Doped with Photosensitizers Containing Electron-Withdrawing Groups. Chemistry 2024; 30:e202400950. [PMID: 38655749 DOI: 10.1002/chem.202400950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 04/26/2024]
Abstract
It is usually believed that doping with photosensitizers capable of generating singlet oxygen (1O2) plays a pivotal role in enhancing the afterglow performance of semiconducting polymer nanoparticles (SPNs). However, the effect of doping photosensitizer bearing electron-withdrawing groups has not been reported. Here we report the effect of doping with six photosensitizers possessing different electron-withdrawing groups on the afterglow performance of SPNs using poly[(9,9-di(2-ethylhexyl)-9H-fluo-rene-2,7-vinylene)-co-(1-methoxy-4-(2-ethylhexyloxy)-2,5-phenylenevinylene)] (PF-MEHPPV) as substrate. It was found that the afterglow performance of SPNs was significantly influenced by doping with photosensitizers bearing electron-withdrawing groups. For the doped photosensitizers with strong electron-withdrawing groups, the stronger the electron-withdrawing ability of the group, the worse of the afterglow performance of the SPN regardless of the 1O2 generation ability of the photosensitizer. When the doped photosensitizer exhibited weak or none electron-withdrawing effect, the 1O2 generation ability of the photosensitizer played a dominant role on the afterglow performance of the SPNs. This work deepens the understanding of the design and synthesis of SPNs with different afterglow properties.
Collapse
Affiliation(s)
- Ting-Jiao Shi
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Dong-Hui Wang
- College of Food and Health, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
| | - Xu Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Li-Jian Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiu-Ping Yan
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, 214122, China
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
30
|
Huang W, Zeng W, Huang Z, Fang D, Liu H, Feng M, Mao L, Ye D. Ratiometric Afterglow Luminescent Imaging of Matrix Metalloproteinase-2 Activity via an Energy Diversion Process. Angew Chem Int Ed Engl 2024; 63:e202404244. [PMID: 38639067 DOI: 10.1002/anie.202404244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/08/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Ratiometric afterglow luminescent (AGL) probes are attractive for in vivo imaging due to their high sensitivity and signal self-calibration function. However, there are currently few ratiometric AGL probes available for imaging enzymatic activity in living organisms. Here, we present an energy diversion (ED) strategy that enables the design of an enzyme-activated ratiometric AGL probe (RAG-RGD) for in vivo afterglow imaging. The ED process provides RAG-RGD with a radiative transition for an 'always on' 520-nm AGL signal (AGL520) and a cascade three-step energy transfer (ET) process for an 'off-on' 710-nm AGL signal (AGL710) in response to a specific enzyme. Using matrix metalloproteinase-2 (MMP-2) as an example, RAG-RGD shows a significant ~11-fold increase in AGL710/AGL520 toward MMP-2. This can sensitively detect U87MG brain tumors through ratiometric afterglow imaging of MMP-2 activity, with a high signal-to-background ratio and deep imaging depth. Furthermore, by utilizing the self-calibration effect of ratiometric imaging, RAG-RGD demonstrated a strong negative correlation between the AGL710/AGL520 value and the size of orthotopic U87MG tumor, enabling accurate monitoring of orthotopic glioma growth in vivo. This ED process may be applied for the design of other enzyme-activated ratiometric afterglow probes for sensitive afterglow imaging.
Collapse
Affiliation(s)
- Weijing Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Wenhui Zeng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Zheng Huang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| | - Daqing Fang
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research and Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Min Feng
- Department of General Surgery, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Liang Mao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Deju Ye
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, 210023, China
| |
Collapse
|
31
|
Li F, Li T, Li K, Meng M, Guo X, He S, Tian H. Organic Semiconducting Sono-Metallo-Detonated Immunobombs for Ultrasensitized Domestication of Immunosuppressive Cells. NANO LETTERS 2024. [PMID: 38848322 DOI: 10.1021/acs.nanolett.4c01464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Cancer immunotherapy harnesses the immune system to combat cancer, yet tumors often evade immune surveillance through immunosuppressive cells. Herein, we report an organic semiconducting sono-metallo-detonated immunobomb (SMIB) to spatiotemporally tame immunosuppressive cells in situ. SMIB consists of an amphiphilic semiconducting polymer (SP) with a repeatable thiophene-based Schiff base serving as an iron ion chelator (Fe3+). SMIB increases sonochemical activity through iron chelation and reduces immunosuppressive cell differentiation with metals and sonochemicals, thereby decreasing the irradiation dose. Upon ultrasound irradiation, SMIB acts as a sono-metallo-detonated immunobomb and inhibits Tregs via the mTOR pathway and M2 macrophage polarization through GPX4 regulation. Ultrasensitized sono-generated reactive oxygen species also promote activation of antigen-presenting cells in deep solid tumors (1 cm), resulting in cytotoxic T cell infiltration and enhanced antitumor efficacy. This platform provides a versatile approach for synergistic sono- and metalloregulation of immunosuppressive cells in situ.
Collapse
Affiliation(s)
- Fei Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tong Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Keyang Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Meng Meng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Xiaoya Guo
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
| | - Shasha He
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
- Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China
| |
Collapse
|
32
|
Su T, Zhao F, Ying Y, Li W, Li J, Zheng J, Qiao L, Che S, Yu J. Self-Monitoring Theranostic Nanomaterials: Emerging Visual Agents for Real-Time Monitoring of Tumor Treatment Processes. SMALL METHODS 2024; 8:e2301470. [PMID: 38044269 DOI: 10.1002/smtd.202301470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/14/2023] [Indexed: 12/05/2023]
Abstract
Self-monitoring in tumor therapy is a concept that allows for real-time monitoring of the location and state of applied nanomaterials. This monitoring relies on dynamic signals, such as wave or magnetic signals, which vary in response to changes in the location and state of nanomaterials. Dynamic changes in nanomaterials can be monitored using dynamic signals, making it possible to determine and control the treatment process. Theranostic nanomaterials, which possess unique physical and chemical properties, have recently been explored as a viable option for self-monitoring. With the help of self-monitoring, theranostic nanomaterials can guide themselves to achieve region-selective treatment with higher controllability and safety. In this review, self-monitoring theranostic nanomaterials will be introduced in three parts according to their roles during therapy: tumor accumulation, tumor therapy, and metabolism. The limitations and future challenges of current self-monitoring theranostic nanomaterials will also be discussed.
Collapse
Affiliation(s)
- Tuo Su
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fan Zhao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yao Ying
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wangchang Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Juan Li
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingwu Zheng
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liang Qiao
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shenglei Che
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jing Yu
- College of Materials Science and Engineering, Research Center of Magnetic and Electronic Materials, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
33
|
Li Y, He D, Zheng Q, Tang R, Wan Q, Tang BZ, Wang Z. Single-Component Photochemical Afterglow Near-Infrared Luminescent Nano-Photosensitizers: Bioimaging and Photodynamic Therapy. Adv Healthc Mater 2024; 13:e2304392. [PMID: 38335277 DOI: 10.1002/adhm.202304392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Long afterglow luminescence-guided photodynamic therapy (PDT) performs advantages of noninvasiveness, spatiotemporal controllability, and higher signal to noise ratio. Photochemical afterglow (PCA) system emitting afterglow in an aqueous environment is highly suitable for biomedical applications, but still faces the challenges of poor tissue penetration depth and responsive sensitivity. In this work, two novel compounds, Iso-TPA and ABEI-TPA, are designed and synthesized to integrate the PCA system as a single component by coupling near-infrared (NIR) photosensitizers with singlet oxygen cache units, respectively. Both compounds emit NIR afterglow based on photochemical reaction. ABEI-TPA exhibits higher photoluminescence quantum efficiency with nonconjugated linkage, while Iso-TPA with conjugated linkage possesses better reactive oxygen species generation efficiency to achieve stronger PCA and effective PDT, which is ascribed to stronger intramolecular charge transfer effect of Iso-TPA. Iso-TPA nanoparticles can achieve effective long-lasting NIR afterglow in vivo bioimaging up to 120 s with higher imaging resolution and outstanding PDT efficacy of tumor, exhibiting promising potential on bioimaging and therapy.
Collapse
Affiliation(s)
- Yin Li
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Dong He
- Department of Urology, The First Affiliated Hospital of Soochow University, 188 Shizi RD, Suzhou, 215006, China
| | - Qiangfeng Zheng
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Ruilin Tang
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| | - Qing Wan
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
- School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang, 330063, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, CUHK-Shenzhen, Guangdong, 518172, P. R. China
| | - Zhiming Wang
- AIE institute, State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
34
|
Wei ZJ, Yin C, Sun M, Long K, Zhang Z, Yan Z, Wang W, Yuan Z. Enhancing Persistent Luminescence through Synergy between Optimal Electron Traps and Dye Sensitization. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38657181 DOI: 10.1021/acsami.4c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Due to their unique afterglow ability, long-wavelength-light rechargeable persistent luminescence (PersL) nanoparticles (PLNPs) have been emerging as an important category of imaging probes. Among them, ZnGa2O4:0.6% Cr3+ (ZGC) PLNPs have gained widespread recognition due to the ease of synthesis and uniform morphology. Unfortunately, the limited absorption arising from the low molar extinction coefficient of Cr3+ results in relatively low afterglow intensity and rapid decay after long-wavelength LED light irradiation. Herein, we discovered a strategy that boosting dye-sensitization performance was able to effectively amplify the PersL signal under white LED light. Specifically, Dil served as a highly efficient sensitizer for Cr3+, promoting the absorption of the excitation light. By adjusting the Pr dopant concentrations, ZGCP0.5 PLNPs with optimal trap densities were obtained, which showed the highest PersL intensity and dye-sensitized performance. Strikingly, ZGCP0.5-Dil PLNPs exhibited a 24.3-fold enhancement in intensity and a 2-fold prolongation of decay time over bare ZGC PLNPs through the synergy effect of optimal electron traps and dye sensitization. Photostable ZGCP0.5-Dil PLNPs enabled imaging of the HepG2 tumor and effectively guided tumor surgical resection verified by the H&E staining analysis. This strategy could be a significant reference in other dye-sensitization PLNPs to enhance longer-wavelength rechargeable PersL.
Collapse
Affiliation(s)
- Zi-Jin Wei
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chang Yin
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengjie Sun
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kai Long
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhouyu Zhang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zichao Yan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei Wang
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
35
|
Ma G, Dirak M, Liu Z, Jiang D, Wang Y, Xiang C, Zhang Y, Luo Y, Gong P, Cai L, Kolemen S, Zhang P. Rechargeable Afterglow Nanotorches for In Vivo Tracing of Cell-Based Microrobots. Angew Chem Int Ed Engl 2024; 63:e202400658. [PMID: 38446006 DOI: 10.1002/anie.202400658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/07/2024]
Abstract
As one of the self-luminescence imaging approaches that require pre-illumination instead of real-time light excitation, afterglow luminescence imaging has attracted increasing enthusiasm to circumvent tissue autofluorescence. In this work, we developed organic afterglow luminescent nanoprobe (nanotorch), which could emit persistent luminescence more than 10 days upon single light excitation. More importantly, the nanotorch could be remote charged by 660 nm light in a non-invasive manner, which showed great potential for real-time tracing the location of macrophage cell-based microrobots.
Collapse
Affiliation(s)
- Gongcheng Ma
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Musa Dirak
- Department of Chemistry, Koç University, 34450, Istanbul, Turkey
| | - Zhongke Liu
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Daoyong Jiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Postdoctoral lnnovation Practice Base, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yue Wang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Taipa, Macau, 999078, China
| | - Chunbai Xiang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuding Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Yuan Luo
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
| | - Ping Gong
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Lintao Cai
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| | - Safacan Kolemen
- Department of Chemistry, Koç University, 34450, Istanbul, Turkey
| | - Pengfei Zhang
- Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, CAS Key Laboratory of Biomedical Imaging Science and System, Shenzhen Engineering Laboratory of Nanomedicine and Nanoformulations, CAS Key Lab for Health Informatics, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P.R. China
| |
Collapse
|
36
|
Sk B, Hirata S. Symmetry-Breaking Triplet Excited State Enhances Red Afterglow Enabling Ubiquitous Afterglow Readout. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308897. [PMID: 38311585 PMCID: PMC11005713 DOI: 10.1002/advs.202308897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/09/2024] [Indexed: 02/06/2024]
Abstract
Molecular vibrations are often factors that deactivate luminescence. However, if there are molecular motion elements that enhance luminescence, it may be possible to utilize molecular movement as a design guideline to enhance luminescence. Here, the authors report a large contribution of symmetry-breaking molecular motion that enhances red persistent room-temperature phosphorescence (RTP) in donor-π-donor conjugated chromophores. The deuterated form of the donor-π-donor chromophore exhibits efficient red persistent RTP with a yield of 21% and a lifetime of 1.6 s. A dynamic calculation of the phosphorescence rate constant (kp) indicates that the symmetry-breaking movement has a crucial role in selectively facilitating kp without increasing nonradiative transition from the lowest triplet excited state. Molecules exhibiting efficient red persistent RTP enable long-wavelength excitation, indicating the suitability of observing afterglow readout in a bright indoor environment with a white-light-emitting diode flashlight, greatly expanding the range of anti-counterfeiting applications that use afterglow.
Collapse
Affiliation(s)
- Bahadur Sk
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| | - Shuzo Hirata
- Department of Engineering ScienceThe University of Electro‐Communications1‐5‐1 Chofugaoka, ChofuTokyo182‐8585Japan
| |
Collapse
|
37
|
Li H, Zhang T, Liao Y, Liu C, He Y, Wang Y, Li C, Jiang C, Li C, Luo G, Xiang Z, Duo Y. Recent advances of aggregation‐induced emission in body surface organs. AGGREGATE 2024; 5. [DOI: 10.1002/agt2.470] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
AbstractThe surface organs mainly comprise the superficial layers of various parts of the mammalian body, including the skin, eyes, and ears, which provide solid protection against various threats to the entire body. Damage to surface organs could lead to many serious diseases or even death. Currently, despite significant advancements in this field, there remain numerous enigmas that necessitate expeditious resolution, particularly pertaining to diagnostic and therapeutic objectives. The advancements in nanomedicine have provided a significant impetus for the development of novel approaches in the diagnosis, bioimaging, and therapy of superficial organs. The aggregation‐induced emission (AIE) phenomenon, initially observed by Prof. Ben Zhong Tang, stands out due to its contrasting behavior to the aggregation‐caused quenching effect. This discovery has significantly revolutionized the field of nanomedicine for surface organs owing to its remarkable advantages. In this review of literature, we aim to provide a comprehensive summary of recent advances of AIE lumenogen (AIEgen)‐based nanoplatforms in the fields of detection, diagnosis, imaging, and therapeutics of surface organ‐related diseases and discuss their prospects in the domain. It is hoped that this review will help attract researchers’ attention toward the utilization of this field for the exploration of a wider range of biomedical and clinical applications.
Collapse
Affiliation(s)
- Hang Li
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Tingting Zhang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yingying Liao
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Chutong Liu
- The Eighth Affiliated Hospital Sun Yat‐sen University Shenzhen China
| | - Yisheng He
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Yongfei Wang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Conglei Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Cheng Jiang
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Chenzhong Li
- School of Medicine The Chinese University of Hong Kong (Shenzhen) Shenzhen China
| | - Guanghong Luo
- Department of Radiation Oncology Shenzhen People's Hospital (The Second Clinical Medical College The First Affiliated Hospital Jinan University Southern University of Science and Technology) Shenzhen China
| | - Zhongyuan Xiang
- Department of Laboratory Medicine The Second Xiangya Hospital Central South University Changsha China
- Department of Pharmacy The Second Xiangya Hospital Central South University Changsha China
| | - Yanhong Duo
- Wyss Institute for Biologically Inspired Engineering, School of Engineering and Applied Science Harvard University Boston Massachusetts USA
| |
Collapse
|
38
|
Ma W, Wang Y, Xue Y, Wang M, Lu C, Guo W, Liu YH, Shu D, Shao G, Xu Q, Tu D, Yan H. Molecular engineering of AIE-active boron clustoluminogens for enhanced boron neutron capture therapy. Chem Sci 2024; 15:4019-4030. [PMID: 38487248 PMCID: PMC10935674 DOI: 10.1039/d3sc06222h] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/01/2024] [Indexed: 03/17/2024] Open
Abstract
The development of boron delivery agents bearing an imaging capability is crucial for boron neutron capture therapy (BNCT), yet it has been rarely explored. Here we present a new type of boron delivery agent that integrates aggregation-induced emission (AIE)-active imaging and a carborane cluster for the first time. In doing so, the new boron delivery agents have been rationally designed by incorporating a high boron content unit of a carborane cluster, an erlotinib targeting unit towards lung cancer cells, and a donor-acceptor type AIE unit bearing naphthalimide. The new boron delivery agents demonstrate both excellent AIE properties for imaging purposes and highly selective accumulation in tumors. For example, at a boron delivery agent dose of 15 mg kg-1, the boron amount reaches over 20 μg g-1, and both tumor/blood (T/B) and tumor/normal cell (T/N) ratios reach 20-30 times higher than those required by BNCT. The neutron irradiation experiments demonstrate highly efficient tumor growth suppression without any observable physical tissue damage and abnormal behavior in vivo. This study not only expands the application scopes of both AIE-active molecules and boron clusters, but also provides a new molecular engineering strategy for a deep-penetrating cancer therapeutic protocol based on BNCT.
Collapse
Affiliation(s)
- Wenli Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Yanyang Wang
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University Nanjing 210008 China
| | - Yilin Xue
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Mengmeng Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Changsheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Wanhua Guo
- Department of Nuclear Medicine, Nanjing Tongren Hospital, the Affiliated Hospital of Southeast University Medical School Nanjing 210033 China
| | - Yuan-Hao Liu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Diyun Shu
- Neuboron Therapy System Ltd. Xiamen 361028 China
- Nanjing University of Aeronautics and Astronautics Nanjing 210016 China
- Neuboron Medtech Ltd. Nanjing 211112 China
| | - Guoqiang Shao
- Department of Nuclear Medicine, Nanjing First Hospital, Nanjing Medical University Nanjing 210033 China
| | - Qinfeng Xu
- Department of Nuclear Medicine, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine Nanjing 210029 China
| | - Deshuang Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| |
Collapse
|
39
|
Zhu J, Chen W, Yang L, Zhang Y, Cheng B, Gu W, Li Q, Miao Q. A Self-Sustaining Near-Infrared Afterglow Chemiluminophore for High-Contrast Activatable Imaging. Angew Chem Int Ed Engl 2024; 63:e202318545. [PMID: 38247345 DOI: 10.1002/anie.202318545] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/19/2024] [Accepted: 01/19/2024] [Indexed: 01/23/2024]
Abstract
Afterglow imaging holds great promise for ultrasensitive bioimaging due to its elimination of autofluorescence. Self-sustaining afterglow molecules (SAMs), which enable all-in-one photon sensitization, chemical defect formation and afterglow generation, possess a simplified, reproducible, and efficient superiority over commonly used multi-component systems. However, there is a lack of SAMs, particularly those with much brighter near-infrared (NIR) emission and structural flexibility for building high-contrast activatable imaging probes. To address these issues, this study for the first time reports a methylene blue derivative-based self-sustaining afterglow agent (SAN-M) with brighter NIR afterglow chemiluminescence peaking at 710 nm. By leveraging the structural flexibility and tunability, an activatable nanoprobe (SAN-MO) is customized for simultaneously activatable fluoro-photoacoustic and afterglow imaging of peroxynitrite (ONOO- ), notably with a superior activation ratio of 4523 in the afterglow mode, which is at least an order of magnitude higher than other reported activatable afterglow systems. By virtue of the elimination of autofluorescence and ultrahigh activation contrast, SAN-MO enables early monitoring of the LPS-induced acute inflammatory response within 30 min upon LPS stimulation and precise image-guided resection of tiny metastatic tumors, which is unattainable for fluorescence imaging.
Collapse
Affiliation(s)
- Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuyang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Baoliang Cheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wei Gu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
40
|
Jiang Y, Zhao M, Miao J, Chen W, Zhang Y, Miao M, Yang L, Li Q, Miao Q. Acidity-activatable upconversion afterglow luminescence cocktail nanoparticles for ultrasensitive in vivo imaging. Nat Commun 2024; 15:2124. [PMID: 38459025 PMCID: PMC10923940 DOI: 10.1038/s41467-024-46436-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 02/27/2024] [Indexed: 03/10/2024] Open
Abstract
Activatable afterglow luminescence nanoprobes enabling switched "off-on" signals in response to biomarkers have recently emerged to achieve reduced unspecific signals and improved imaging fidelity. However, such nanoprobes always use a biomarker-interrupted energy transfer to obtain an activatable signal, which necessitates a strict distance requisition between a donor and an acceptor moiety (<10 nm) and hence induces low efficiency and non-feasibility. Herein, we report organic upconversion afterglow luminescence cocktail nanoparticles (ALCNs) that instead utilize acidity-manipulated singlet oxygen (1O2) transfer between a donor and an acceptor moiety with enlarged distance and thus possess more efficiency and flexibility to achieve an activatable afterglow signal. After in vitro validation of acidity-activated afterglow luminescence, ALCNs achieve in vivo imaging of 4T1-xenograft subcutaneous tumors in female mice and orthotopic liver tumors in male mice with a high signal-to-noise ratio (SNR). As a representative targeting trial, Bio-ALCNs with biotin modification prove the enhanced targeting ability, sensitivity, and specificity for pulmonary metastasis and subcutaneous tumor imaging via systemic administration of nanoparticles in female mice, which also implies the potential broad utility of ALCNs for tumor imaging with diverse design flexibility. Therefore, this study provides an innovative and general approach for activatable afterglow imaging with better imaging performance than fluorescence imaging.
Collapse
Affiliation(s)
- Yue Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jia Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Yuan Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Minqian Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China.
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
41
|
Gao G, Jiang YW, Chen J, Xu X, Sun X, Xu H, Liang G, Liu X, Zhan W, Wang M, Xu Y, Zheng J, Wang G. Three-in-One Peptide Prodrug with Targeting, Assembly and Release Properties for Overcoming Bacterium-Induced Drug Resistance and Potentiating Anti-Cancer Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312153. [PMID: 38444205 DOI: 10.1002/adma.202312153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/02/2024] [Indexed: 03/07/2024]
Abstract
The presence of bacteria in tumor results in chemotherapeutic drug resistance and weakens the immune response in colorectal cancer. To overcome bacterium-induced chemotherapeutic drug resistance and potentiate antitumor immunity, herein a novel molecule Biotin-Lys(SA-Cip-OH)-Lys(SA-CPT)-Phe-Phe-Nap (Biotin-Cip-CPT-Nap) is rationally designed containing four functional motifs (i.e., a biotin motif for targeting, Phe-Phe(-Nap) motif for self-assembly, ciprofloxacin derivative (Cip-OH) motif for antibacterial effect, and camptothecin (CPT) motif for chemotherapy). Using the designed molecule, a novel strategy of intracellular enzymatic nanofiber formation and synergistic antibacterium-enhanced chemotherapy and immunotherapy is achieved. Under endocytosis mediated by highly expressed biotin receptor in colorectal cancer cell membrane and the catalysis of highly expressed carboxylesterase in the cytoplasm, this novel molecule can be transformed into Biotin-Nap, which self-assembled into nanofibers. Meanwhile, antibiotic Cip-OH and chemotherapeutic drug CPT are released, overcoming bacterium-induced drug resistance and enhancing the therapeutic efficacy of immunotherapy towards colorectal cancer. This work offers a feasible strategy for the design of novel multifunctional prodrugs to improve the efficiency of colorectal cancer treatment.
Collapse
Affiliation(s)
- Ge Gao
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yao-Wen Jiang
- School of Medical Imaging, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Jiaxuan Chen
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xiaodi Xu
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Xianbao Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Haidong Xu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Xiaoyang Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Wenjun Zhan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Yixin Xu
- Department of General Surgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, 99 Huaihai Road, Xuzhou, Jiangsu, 221002, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| |
Collapse
|
42
|
Shi Y, He X. Aggregation-Induced Emission-Based Chemiluminescence Systems in Biochemical Analysis and Disease Theranostics. Molecules 2024; 29:983. [PMID: 38474496 DOI: 10.3390/molecules29050983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Chemiluminescence (CL) is of great significance in biochemical analysis and imaging due to its high sensitivity and lack of need for external excitation. In this review, we summarized the recent progress of AIE-based CL systems, including their working mechanisms and applications in biochemical analysis, bioimaging, and disease diagnosis and treatment. In ion and molecular detection, CL shows high selectivity and high sensitivity, especially in the detection of dynamic reactive oxygen species (ROS). Further, the integrated NIR-CL single-molecule system and nanostructural CL platform harnessing CL resonance energy transfer (CRET) have remarkable advantages in long-term imaging with superior capability in penetrating deep tissue depth and high signal-to-noise ratio, and are promising in the applications of in vivo imaging and image-guided disease therapy. Finally, we summarized the shortcomings of the existing AIE-CL system and provided our perspective on the possible ways to develop more powerful CL systems in the future. It can be highly expected that these promoted CL systems will play bigger roles in biochemical analysis and disease theranostics.
Collapse
Affiliation(s)
- Yixin Shi
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Xuewen He
- The Key Lab of Health Chemistry and Molecular Diagnosis of Suzhou, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
43
|
Yang L, Zhao M, Chen W, Zhu J, Xu W, Li Q, Pu K, Miao Q. A Highly Bright Near-Infrared Afterglow Luminophore for Activatable Ultrasensitive In Vivo Imaging. Angew Chem Int Ed Engl 2024; 63:e202313117. [PMID: 38018329 DOI: 10.1002/anie.202313117] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 11/30/2023]
Abstract
Afterglow luminescence imaging probes, with long-lived emission after cessation of light excitation, have drawn increasing attention in biomedical imaging field owing to their elimination of autofluorescence. However, current afterglow agents always suffer from an unsatisfactory signal intensity and complex systems consisting of multiple ingredients. To address these issues, this study reports a near-infrared (NIR) afterglow luminophore (TPP-DO) by chemical conjugation of an afterglow substrate and a photosensitizer acting as both an afterglow initiator and an energy relay unit into a single molecule, resulting in an intramolecular energy transfer process to improve the afterglow brightness. The constructed TPP-DO NPs emit a strong NIR afterglow luminescence with a signal intensity of up to 108 p/s/cm2 /sr at a low concentration of 10 μM and a low irradiation power density of 0.05 W/cm2 , which is almost two orders of magnitude higher than most existing organic afterglow probes. The highly bright NIR afterglow luminescence with minimized background from TPP-DO NPs allows a deep tissue penetration depth ability. Moreover, we develop a GSH-activatable afterglow probe (Q-TPP-DO NPs) for ultrasensitive detection of subcutaneous tumor with the smallest tumor volume of 0.048 mm3 , demonstrating the high potential for early diagnosis and imaging-guided surgical resection of tumors.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Min Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Wan Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Jieli Zhu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Weina Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Qing Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Kanyi Pu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637457, Singapore
| | - Qingqing Miao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
- School of Nuclear Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
44
|
Chen H, Bao P, Lv Y, Luo R, Deng J, Yan Y, Ding D, Gao H. Enhancing NIR-II Imaging and Photothermal Therapy for Improved Oral Cancer Theranostics by Combining TICT and Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38019760 DOI: 10.1021/acsami.3c14905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
In the treatment process of cancers like oral cancer, it is necessary to employ extensive surgical resection to achieve cancer eradication. However, this often results in damage to crucial functions such as chewing and speaking, leading to a poorer prognosis and a reduced quality of life. To address this issue, a multifunctional theranostic agent named MBPN-T-BTD has been developed by precisely modulating the excitation state energy distribution in the radiative/nonradiative decay pathways using the characteristics of twisted intramolecular charge transfer and aggregation-induced emission. This agent outperforms clinically utilized indocyanine green (ICG) in various aspects, including the second near-infrared window (NIR-II, 1000-1700 nm) fluorescence (FL) and photothermal conversion efficiency (PCE). Its nanoparticle form (BTB NPs) can be effectively used for high-contrast delineation of lymph node mapping and tongue and floor of mouth cancers using NIR-II FL, enabling surgeons to achieve more precise and thorough tumor clearance. For tumors located in close proximity to vital organs such as the tongue, the exceptional PCE (71.96%) of BTB NPs allows for targeted photothermal ablation with minimal damage to peripheral healthy tissues. This contribution provides a safer and more effective paradigm for minimally invasive or noninvasive treatment of oral cancer, ensuring the preservation of normal organ functions and showing potential for improving the overall prognosis and quality of life for cancer patients.
Collapse
Affiliation(s)
- Haitao Chen
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Pingping Bao
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
- Department of Endodontics, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, P. R. China
| | - Yonghui Lv
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Rui Luo
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Jiayin Deng
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin 300070, P. R. China
| | - Yingbin Yan
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
| | - Dan Ding
- Department of Oromaxillofacial-Head and Neck Surgery, Tianjin Stomatological Hospital, The Affiliated Stomatological Hospital of Nankai University, Tianjin 300041, P. R. China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, P. R. China
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
| | - Heqi Gao
- Frontiers Science Center for Cell Responses, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin 300071, P. R. China
- College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Center for AIE Research, Shenzhen University, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
45
|
Hao XL, Ren AM, Zhou L. Research and Design of Aggregation-Regulated Thermally Activated Delayed Fluorescence Materials for Time-Resolved Two-Photon Excited Fluorescence Imaging and Biological Monitoring. J Phys Chem Lett 2023; 14:10309-10317. [PMID: 37943283 DOI: 10.1021/acs.jpclett.3c02666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Exploring the nature of aggregation-regulated thermally activated delayed fluorescence (TADF) and proposing effective design strategies for two-photon excited TADF materials for time-resolved biological imaging and monitoring are urgent and encouraging. In this work, it is found that the aggregation effect not only plays an important role in decreasing the internal conversion decay rate but also strongly influences the singlet-triplet excited-state energy difference as well as the intersystem crossing rate. It is proposed that the transformation from prompt fluorescence materials to long lifetime TADF or phosphorescence materials can be accomplished by regulating the position of substituent groups, which provides an effective method to design and develop long afterglow materials. Then, a high-performance TADF compound with a large two-photon absorption cross section in the biological window (112 GM/775 nm), high TADF efficiency (nearly 100%), and long fluorescence lifetime (50.75 μs) has been designed, which demonstrates the potential application in time-resolved two-photon excited fluorescence imaging and biological detection.
Collapse
Affiliation(s)
- Xue-Li Hao
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Ai-Min Ren
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, People's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| |
Collapse
|
46
|
Dai W, Chen Y, Xue Y, Wan M, Mao C, Zhang K. Progress in the Treatment of Peritoneal Metastatic Cancer and the Application of Therapeutic Nanoagents. ACS APPLIED BIO MATERIALS 2023; 6:4518-4548. [PMID: 37916787 DOI: 10.1021/acsabm.3c00662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
Peritoneal metastatic cancer is a cancer caused by the direct growth of cancer cells from the primary site through the bloodstream, lymph, or peritoneum, which is a difficult part of current clinical treatment. In the abdominal cavity of patients with metastatic peritoneal cancer, there are usually nodules of various sizes and malignant ascites. Among them, nodules of different sizes can obstruct intestinal movement and form intestinal obstruction, while malignant ascites can cause abdominal distension and discomfort, and even cause patients to have difficulty in breathing. The pathology and physiology of peritoneal metastatic cancer are complex and not fully understood. The main hypothesis is "seed" and "soil"; i.e., cells from the primary tumor are shed and implanted in the peritoneal cavity (peritoneal metastasis). In the last two decades, the main treatment modalities used clinically are cytoreductive surgery (CRS), systemic chemotherapy, intraperitoneal chemotherapy, and combined treatment, all of which help to improve patient survival and quality of life (QOL). However, the small-molecule chemotherapeutic drugs used clinically still have problems such as rapid drug metabolism and systemic toxicity. With the rapid development of nanotechnology in recent years, therapeutic nanoagents for the treatment of peritoneal metastatic cancer have been gradually developed, which has improved the therapeutic effect and reduced the systemic toxicity of small-molecule chemotherapeutic drugs to a certain extent. In addition, nanomaterials have been developed not only as therapeutic agents but also as imaging agents to guide peritoneal tumor CRS. In this review, we describe the etiology and pathological features of peritoneal metastatic cancer, discuss in detail the clinical treatments that have been used for peritoneal metastatic cancer, and analyze the advantages and disadvantages of the different clinical treatments and the QOL of the treated patients, followed by a discussion focusing on the progress, obstacles, and challenges in the use of therapeutic nanoagents in peritoneal metastatic cancer. Finally, therapeutic nanoagents and therapeutic tools that may be used in the future for the treatment of peritoneal metastatic cancer are prospected.
Collapse
Affiliation(s)
- Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yidan Chen
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Ke Zhang
- Department of Radiation Oncology, Affiliated Hangzhou Cancer Hospital, Zhejiang University School of Medicine, Hangzhou 310006, China
| |
Collapse
|
47
|
Zhang J, Wang M, He D, Zhang L, Liu T, Wang K. Synergetic regulation of cancer cells and exhausted T cells to fight cold tumors with a fluorinated EGCG-based nanocomplex. J Nanobiotechnology 2023; 21:420. [PMID: 37957632 PMCID: PMC10644671 DOI: 10.1186/s12951-023-02205-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/07/2023] [Indexed: 11/15/2023] Open
Abstract
Immune therapy that targets PD-L1 (programmed cell death-ligand 1) is attractive to augment immune response by breaking the programmed cell death-1 (PD-1)/PD-L1 axis. However, T cell exhaustion associated with insufficient T cells infiltration may diminish the efficacy of cancer therapy. Here, we report a novel delivery system of FEGCG/FPEI@siTOX composed of fluorinated EGCG (FEGCG) and fluorinated polyethyleneimine (FPEI) for delivery of small interfering RNA anti-TOX (thymus high mobility group box protein, TOX) to treat tumor and metastasis. In this way, the reduction in PD-L1 expression by FEGCG can promote T-cell function, while inhibition of TOX expression with siTOX can alleviate T-cell exhaustion. FPEI are designed to deliver siRNA with high efficiency and low toxicity compared to classical PEI. Integrating FEGCG, FPEI and siTOX into such a novel system resulted in excellent anti-tumor and antimetastatic effects. It is a promising delivery system and potential strategy for the treatment of "cold" tumors.
Collapse
Affiliation(s)
- Jinlin Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Mingyue Wang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Doudou He
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Liang Zhang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China
- School of Pharmacy, Nantong University, Nantong, 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, NSW, 2145, Australia.
| | - Kaikai Wang
- Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, 226001, China.
- School of Pharmacy, Nantong University, Nantong, 226001, China.
| |
Collapse
|
48
|
Tao Y, Yan C, Wu Y, Li D, Li J, Xie Y, Cheng Y, Xu Y, Yang K, Zhu W, Guo Z. Uniting Dual‐Modal MRI/Chemiluminescence Nanotheranostics: Spatially and Sensitively Self‐Reporting Photodynamic Therapy in Oral Cancer. ADVANCED FUNCTIONAL MATERIALS 2023; 33. [DOI: 10.1002/adfm.202303240] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Indexed: 01/22/2025]
Abstract
AbstractUnpredictable in vivo therapeutic feedback of reactive oxygen species (ROS) efficiency is the major bottleneck of photodynamic therapy (PDT). Herein, novel PDT‐based nanotheranostics Pa–Mn&CH‐A@P are elaborately constructed for in vivo tracking biodistribution and in situ self‐reporting PDT, which innovatively unites magnetic resonance imaging (MRI) and chemiluminescence (CL) signals. Taking advantages of the versatility of lanthanide coordination chemistry and flash nanoprecipitation (FNP) technology, photosensitizers, MRI, and CL agents are unprecedently integrated within a stable and uniform nanotheranostic. Specifically, MRI signal offers detailed dose distribution of nanotheranostics with high‐spatial resolution, and CL signal timely performs in situ evaluation of ROS generation with high sensitivity. This dual‐modal MRI/CL nanotheranostic makes a breakthrough in high fidelity feedback for oral tumor, conquering the inherent unpredictable obstacles on spatially and sensitively reporting PDT.
Collapse
Affiliation(s)
- Yining Tao
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Chenxu Yan
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Yue Wu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Dan Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Juan Li
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Yuchen Xie
- Human Oncology and Pathogenesis Program Memorial Sloan Kettering Cancer Center New York NY 10065 USA
| | - Yingsheng Cheng
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- Department of Imaging Medicine and Nuclear Medicine Tongji Hospital Shanghai 200065 China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering East China University of Science and Technology Shanghai 200237 China
| | - Kai Yang
- Department of Interventional Radiology Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine Shanghai 200233 China
- Department of Imaging Medicine and Nuclear Medicine Tongji Hospital Shanghai 200065 China
| | - Wei‐Hong Zhu
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| | - Zhiqian Guo
- State Key Laboratory of Bioreactor Engineering Shanghai Key Laboratory of Functional Materials Chemistry Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering Frontiers Science Center for Materiobiology and Dynamic Chemistry Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism Institute of Fine Chemicals School of Chemistry and Molecular Engineering East China University of Science and Technology
| |
Collapse
|
49
|
Zhou T, Li L, Zhu Z, Chen X, Wang Q, Zhu WH. Serum-Based Detection of Liver Pathology Using a Fluorogenic Alkaline Phosphatase Probe. Chembiochem 2023; 24:e202300321. [PMID: 37218114 DOI: 10.1002/cbic.202300321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Development of "ultrahigh contrast" fluorogenic probes for trapping alkaline phosphatase (ALP) activities in human serum is highly desirable for clinical auxiliary diagnosis for hepatobiliary diseases. However, the intrinsic dilemma of incomplete ionization of intramolecular charge transfer (ICT)-based ALP fluorophores and autofluorescence interference of serum result in low sensitivity and accuracy. Given that unique halogen effects could lead to a drastic decrease in the pKa value and a significant enhancement in the fluorescence quantum yield, herein we report an enzyme-activatable near-infrared probe based on a difluoro-substituted dicyanomethylene-4H-chromenep for achieving fluorescent quantification of human serum ALP. Rational design strategy is demonstrated by altering the substituted halogen groups to well regulate the pKa for meeting the physiological precondition. Owing to the complete ionization at pH 7.4 with tremendous fluorescence enhancement, the difluoro-substituted DCM-2F-HP manifests a linear relationship between the emission intensity and ALP concentration in both solution and serum samples. Along with measuring 77 human serum samples, the DCM-2F-HP based fluorescence method not only exhibits significant correlations with clinical colorimetry, but also distinguishes ALP patients from healthy volunteers, as well as assessing the progress of liver disease, thus providing a potential toolbox for quantitatively detecting ALP and warning the stage of hepatopathy.
Collapse
Affiliation(s)
- Tijian Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Li Li
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhirong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Xiaoyan Chen
- Department of Pathology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qi Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| | - Wei-Hong Zhu
- Shanghai Key Laboratory of Functional Materials Chemistry, Key Laboratory for Advanced Materials and Institute of Fine Chemicals, Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 200237, Shanghai, China
| |
Collapse
|
50
|
Ding R, Liu D, Feng Y, Liu H, Ji H, He L, Liu S. Unexcited Light Source Imaging for Biomedical Applications. Chemistry 2023; 29:e202301689. [PMID: 37401914 DOI: 10.1002/chem.202301689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Optical imaging has a wide range of applications in the biomedical field, allowing the visualization of physiological processes and helping in the diagnosis and treatment of diseases. Unexcited light source imaging technologies, such as chemiluminescence imaging, bioluminescence imaging and afterglow imaging have attracted great attention in recent years because of the absence of excitation light interference in their application and the advantages of high sensitivity and high signal-to-noise ratio. In this review, the latest advances in unexcited light source imaging technology for biomedical applications are highlighted. The design strategies of unexcited light source luminescent probes in improving luminescence brightness, penetration depth, quantum yield and targeting, and their applications in inflammation imaging, tumor imaging, liver and kidney injury imaging and bacterial infection imaging are introduced in detail. The research progress and future prospects of unexcited light source imaging for medical applications are further discussed.
Collapse
Affiliation(s)
- Ruihao Ding
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Danqing Liu
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Yu Feng
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Haoxin Liu
- Augustana Faculty, University of Alberta, T4V2R3, Camrose, Canada
| | - Hongrui Ji
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, 150040, Harbin, China
| | - Liangcan He
- Key Laboratory of Micro-systems and, Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, China
| | - Shaoqin Liu
- Key Laboratory of Micro-systems and, Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|