1
|
Marchiori E, Romagnoli G, Schneider L, Gross B, Sahafi P, Jordan A, Budakian R, Baral PR, Magrez A, White JS, Poggio M. Imaging magnetic spiral phases, skyrmion clusters, and skyrmion displacements at the surface of bulk Cu 2OSeO 3. COMMUNICATIONS MATERIALS 2024; 5:202. [PMID: 39351280 PMCID: PMC11438600 DOI: 10.1038/s43246-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/19/2024] [Indexed: 10/04/2024]
Abstract
Surfaces - by breaking bulk symmetries, introducing roughness, or hosting defects - can significantly influence magnetic order in magnetic materials. Determining their effect on the complex nanometer-scale phases present in certain non-centrosymmetric magnets is an outstanding problem requiring high-resolution magnetic microscopy. Here, we use scanning SQUID microscopy to image the surface of bulk Cu2OSeO3 at low temperature and in a magnetic field applied along100 . Real-space maps measured as a function of applied field reveal the microscopic structure of the magnetic phases and their transitions. In low applied field, we observe a magnetic texture consistent with an in-plane stripe phase, pointing to the existence of a distinct surface state. In the low-temperature skyrmion phase, the surface is populated by clusters of disordered skyrmions, which emerge from rupturing domains of the tilted spiral phase. Furthermore, we displace individual skyrmions from their pinning sites by applying an electric potential to the scanning probe, thereby demonstrating local skyrmion control at the surface of a magnetoelectric insulator.
Collapse
Affiliation(s)
| | | | - Lukas Schneider
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| | - Boris Gross
- Department of Physics, University of Basel, Basel, Switzerland
| | - Pardis Sahafi
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
- Present Address: National Research Council, Ottawa, Canada
| | - Andrew Jordan
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Priya R. Baral
- Laboratory for Neutron Scattering and Imaging, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, Villigen PSI, Switzerland
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Present Address: Department of Applied Physics and Quantum-Phase Electronics Center, University of Tokyo, Tokyo, Japan
| | - Arnaud Magrez
- Institute of Physics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Jonathan S. White
- Laboratory for Neutron Scattering and Imaging, PSI Center for Neutron and Muon Sciences, Paul Scherrer Institute, Villigen PSI, Switzerland
| | - Martino Poggio
- Department of Physics, University of Basel, Basel, Switzerland
- Swiss Nanoscience Institute, University of Basel, Basel, Switzerland
| |
Collapse
|
2
|
Budakian R, Finkler A, Eichler A, Poggio M, Degen CL, Tabatabaei S, Lee I, Hammel PC, Eugene SP, Taminiau TH, Walsworth RL, London P, Bleszynski Jayich A, Ajoy A, Pillai A, Wrachtrup J, Jelezko F, Bae Y, Heinrich AJ, Ast CR, Bertet P, Cappellaro P, Bonato C, Altmann Y, Gauger E. Roadmap on nanoscale magnetic resonance imaging. NANOTECHNOLOGY 2024; 35:412001. [PMID: 38744268 DOI: 10.1088/1361-6528/ad4b23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 05/14/2024] [Indexed: 05/16/2024]
Abstract
The field of nanoscale magnetic resonance imaging (NanoMRI) was started 30 years ago. It was motivated by the desire to image single molecules and molecular assemblies, such as proteins and virus particles, with near-atomic spatial resolution and on a length scale of 100 nm. Over the years, the NanoMRI field has also expanded to include the goal of useful high-resolution nuclear magnetic resonance (NMR) spectroscopy of molecules under ambient conditions, including samples up to the micron-scale. The realization of these goals requires the development of spin detection techniques that are many orders of magnitude more sensitive than conventional NMR and MRI, capable of detecting and controlling nanoscale ensembles of spins. Over the years, a number of different technical approaches to NanoMRI have emerged, each possessing a distinct set of capabilities for basic and applied areas of science. The goal of this roadmap article is to report the current state of the art in NanoMRI technologies, outline the areas where they are poised to have impact, identify the challenges that lie ahead, and propose methods to meet these challenges. This roadmap also shows how developments in NanoMRI techniques can lead to breakthroughs in emerging quantum science and technology applications.
Collapse
Affiliation(s)
- Raffi Budakian
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Amit Finkler
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Alexander Eichler
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Martino Poggio
- Department of Physics and Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland
| | - Christian L Degen
- Institute for Solid State Physics, ETH Zurich, Otto-Stern-Weg 1, 8093 Zurich, Switzerland
| | - Sahand Tabatabaei
- Department of Physics and Astronomy, University of Waterloo, Waterloo, Canada
- Institute for Quantum Computing, University of Waterloo, Waterloo, Canada
| | - Inhee Lee
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - P Chris Hammel
- Department of Physics, The Ohio State University, Columbus, OH 43210, United States of America
| | - S Polzik Eugene
- Niels Bohr Institute, University of Copenhagen, 17, Copenhagen, 2100, Denmark
| | - Tim H Taminiau
- QuTech and Kavli Institute of Nanoscience, Delft University of Technology, Netherlands
| | - Ronald L Walsworth
- University of Maryland 2218 Kim Engineering Building, College Park, MD 20742, United States of America
| | - Paz London
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ania Bleszynski Jayich
- Department of Physics, University of California, Santa Barbara, CA 93106, United States of America
| | - Ashok Ajoy
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720, United States of America
- Quantum Information Science Program, CIFAR, 661 University Ave., Toronto, ON M5G 1M1, Canada
| | - Arjun Pillai
- Department of Chemistry, University of California, Berkeley, CA 97420, United States of America
| | - Jörg Wrachtrup
- 3. Physikalisches Institut, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Fedor Jelezko
- Institute of Quantum Optics, Ulm University, Ulm, 89081, Germany
| | - Yujeong Bae
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Andreas J Heinrich
- Center for Quantum Nanoscience, Institute for Basic Science, Seoul 03760, Republic of Korea
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Christian R Ast
- Max Planck Institute for Solid State Research, Heisenbergstraße 1, 70569 Stuttgart, Germany
| | - Patrice Bertet
- Université Paris-Saclay, CEA, CNRS, SPEC, 91191 Gif-sur-Yvette, France
| | - Paola Cappellaro
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States of America
| | - Cristian Bonato
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| | - Yoann Altmann
- Institute of Signals, Sensors and Systems, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, United Kingdom
| | - Erik Gauger
- SUPA, Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, HeriotWatt University, Edinburgh EH14 4AS, United Kingdom
| |
Collapse
|
3
|
Mattiat H, Schneider L, Reiser P, Poggio M, Sahafi P, Jordan A, Budakian R, Averyanov DV, Sokolov IS, Taldenkov AN, Parfenov OE, Kondratev OA, Tokmachev AM, Storchak VG. Mapping the phase-separated state in a 2D magnet. NANOSCALE 2024; 16:5302-5312. [PMID: 38372414 DOI: 10.1039/d3nr06550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Intrinsic 2D magnets have recently been established as a playground for studies on fundamentals of magnetism, quantum phases, and spintronic applications. The inherent instability at low dimensionality often results in coexistence and/or competition of different magnetic orders. Such instability of magnetic ordering may manifest itself as phase-separated states. In 4f 2D materials, magnetic phase separation is expressed in various experiments; however, the experimental evidence is circumstantial. Here, we employ a high-sensitivity MFM technique to probe the spatial distribution of magnetic states in the paradigmatic 4f 2D ferromagnet EuGe2. Below the ferromagnetic transition temperature, we discover the phase-separated state and follow its evolution with temperature and magnetic field. The characteristic length-scale of magnetic domains amounts to hundreds of nanometers. These observations strongly shape our understanding of the magnetic states in 2D materials at the monolayer limit and contribute to engineering of ultra-compact spintronics.
Collapse
Affiliation(s)
- Hinrich Mattiat
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Lukas Schneider
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Patrick Reiser
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Martino Poggio
- Department of Physics & Swiss Nanoscience Institute, University of Basel, 4056 Basel, Switzerland.
| | - Pardis Sahafi
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Andrew Jordan
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Raffi Budakian
- Department of Physics and Astronomy & Institute for Quantum Computing, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Dmitry V Averyanov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Ivan S Sokolov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Alexander N Taldenkov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Oleg E Parfenov
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Oleg A Kondratev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Andrey M Tokmachev
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| | - Vyacheslav G Storchak
- National Research Center "Kurchatov Institute", Kurchatov Sq. 1, 123182 Moscow, Russia.
| |
Collapse
|
4
|
Magnetic Functionalization of Scanning Probes by Focused Electron Beam Induced Deposition Technology. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7100140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fabrication of nanostructures with high resolution and precise control of the deposition site makes Focused Electron Beam Induced Deposition (FEBID) a unique nanolithography process. In the case of magnetic materials, apart from the FEBID potential in standard substrates for multiple applications in data storage and logic, the use of this technology for the growth of nanomagnets on different types of scanning probes opens new paths in magnetic sensing, becoming a benchmark for magnetic functionalization. This work reviews the recent advances in the integration of FEBID magnetic nanostructures onto cantilevers to produce advanced magnetic sensing devices with unprecedented performance.
Collapse
|
5
|
Molina J, Escobar JE, Ramos D, Gil-Santos E, Ruz JJ, Tamayo J, San Paulo Á, Calleja M. High Dynamic Range Nanowire Resonators. NANO LETTERS 2021; 21:6617-6624. [PMID: 34288677 PMCID: PMC8361434 DOI: 10.1021/acs.nanolett.1c02056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/09/2021] [Indexed: 06/13/2023]
Abstract
Dynamic range quantifies the linear operation regime available in nanomechanical resonators. Nonlinearities dominate the response of flexural beams in the limit of very high aspect ratio and very small diameter, which leads to expectation of low dynamic range for nanowire resonators in general. However, the highest achievable dynamic range for nanowire resonators with practical dimensions remains to be determined. We report dynamic range measurements on singly clamped silicon nanowire resonators reaching remarkably high values of up to 90 dB obtained with a simple harmonic actuation scheme. We explain these measurements by a comprehensive theoretical examination of dynamic range in singly clamped flexural beams including the effect of tapering, a usual feature of semiconductor nanowires. Our analysis reveals the nanowire characteristics required for broad linear operation, and given the relationship between dynamic range and mass sensing performance, it also enables analytical determination of mass detection limits, reaching atomic-scale resolution for feasible nanowires.
Collapse
|
6
|
Tepsic S, Gruber G, Møller CB, Magén C, Belardinelli P, Hernández ER, Alijani F, Verlot P, Bachtold A. Interrelation of Elasticity and Thermal Bath in Nanotube Cantilevers. PHYSICAL REVIEW LETTERS 2021; 126:175502. [PMID: 33988423 DOI: 10.1103/physrevlett.126.175502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
We report the first study on the thermal behavior of the stiffness of individual carbon nanotubes, which is achieved by measuring the resonance frequency of their fundamental mechanical bending modes. We observe a reduction of the Young's modulus over a large temperature range with a slope -(173±65) ppm/K in its relative shift. These findings are reproduced by two different theoretical models based on the thermal dynamics of the lattice. These results reveal how the measured fundamental bending modes depend on the phonons in the nanotube via the Young's modulus. An alternative description based on the coupling between the measured mechanical modes and the phonon thermal bath in the Akhiezer limit is discussed.
Collapse
Affiliation(s)
- S Tepsic
- ICFO-Institut De Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - G Gruber
- ICFO-Institut De Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - C B Møller
- ICFO-Institut De Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| | - C Magén
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, 50009 Zaragoza, Spain
- Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - P Belardinelli
- DICEA, Polytechnic University of Marche, 60131 Ancona, Italy
| | - E R Hernández
- Instituto de Ciencia de Materiales de Madrid (ICMM-CSIC), 28049 Madrid, Spain
| | - F Alijani
- Department of Precision and Microsystems Engineering, 3ME, Mekelweg 2, (2628 CD) Delft, The Netherlands
| | - P Verlot
- School of Physics and Astronomy-The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | - A Bachtold
- ICFO-Institut De Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain
| |
Collapse
|
7
|
Ai H, Qiao L, Zhao L, Li S, Du K. Fabrication and Characterization of Anisotropic Porous Poly(styrene@acrylic acid) Monolith for Enhanced Ability of Heavy Metal Adsorption. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Hao Ai
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liangzhi Qiao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Liangshen Zhao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Shasha Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Kaifeng Du
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
8
|
Gonzalez-Ballestero C, Gieseler J, Romero-Isart O. Quantum Acoustomechanics with a Micromagnet. PHYSICAL REVIEW LETTERS 2020; 124:093602. [PMID: 32202851 DOI: 10.1103/physrevlett.124.093602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
We show theoretically how to strongly couple the center-of-mass motion of a micromagnet in a harmonic potential to one of its acoustic phononic modes. The coupling is induced by a combination of an oscillating magnetic field gradient and a static homogeneous magnetic field. The former parametrically couples the center-of-mass motion to a magnonic mode while the latter tunes the magnonic mode in resonance with a given acoustic phononic mode. The magnetic fields can be adjusted to either cool the center-of-mass motion to the ground state or to enter into the strong quantum coupling regime. The center of mass can thus be used to probe and manipulate an acoustic mode, thereby opening new possibilities for out-of-equilibrium quantum mesoscopic physics. Our results hold for experimentally feasible parameters and apply to levitated micromagnets as well as micromagnets deposited on a clamped nanomechanical oscillator.
Collapse
Affiliation(s)
- Carlos Gonzalez-Ballestero
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jan Gieseler
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
- ICFO-Institut de Ciencies Fotoniques, Mediterranean Technology Park, 08860 Castelldefels (Barcelona), Spain
| | - Oriol Romero-Isart
- Institute for Quantum Optics and Quantum Information of the Austrian Academy of Sciences, A-6020 Innsbruck, Austria
- Institute for Theoretical Physics, University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
9
|
Sahafi P, Rose W, Jordan A, Yager B, Piscitelli M, Budakian R. Ultralow Dissipation Patterned Silicon Nanowire Arrays for Scanning Probe Microscopy. NANO LETTERS 2020; 20:218-223. [PMID: 31765571 DOI: 10.1021/acs.nanolett.9b03668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
In recent years, self-assembled semiconductor nanowires have been successfully used as ultrasensitive cantilevers in a number of unique scanning probe microscopy (SPM) settings. We describe the fabrication of ultralow dissipation patterned silicon nanowire (SiNW) arrays optimized for scanning probe applications. Our fabrication process produces ultrahigh aspect ratio vertical SiNWs that exhibit exceptional force sensitivity. The highest sensitivity SiNWs have thermomechanical noise-limited force sensitivity of [Formula: see text] at room temperature and [Formula: see text] at 4 K. To facilitate their use in SPM, the SiNWs are patterned within 7 μm from the edge of the substrate, allowing convenient optical access for displacement detection.
Collapse
Affiliation(s)
- Pardis Sahafi
- Department of Physics , University of Waterloo , Waterloo , ON N2L3G1 , Canada
- Institute for Quantum Computing , University of Waterloo , Waterloo , ON N2L3G1 , Canada
| | - William Rose
- Department of Physics , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Andrew Jordan
- Department of Physics , University of Waterloo , Waterloo , ON N2L3G1 , Canada
- Institute for Quantum Computing , University of Waterloo , Waterloo , ON N2L3G1 , Canada
| | - Ben Yager
- Department of Physics , University of Waterloo , Waterloo , ON N2L3G1 , Canada
- Institute for Quantum Computing , University of Waterloo , Waterloo , ON N2L3G1 , Canada
| | - Michèle Piscitelli
- Department of Physics , University of Waterloo , Waterloo , ON N2L3G1 , Canada
- Institute for Quantum Computing , University of Waterloo , Waterloo , ON N2L3G1 , Canada
| | - Raffi Budakian
- Department of Physics , University of Waterloo , Waterloo , ON N2L3G1 , Canada
- Institute for Quantum Computing , University of Waterloo , Waterloo , ON N2L3G1 , Canada
- Canadian Institute for Advanced Research , Toronto , ON M5G1Z8 , Canada
| |
Collapse
|
10
|
Gruber G, Urgell C, Tavernarakis A, Stavrinadis A, Tepsic S, Magén C, Sangiao S, de Teresa JM, Verlot P, Bachtold A. Mass Sensing for the Advanced Fabrication of Nanomechanical Resonators. NANO LETTERS 2019; 19:6987-6992. [PMID: 31478676 PMCID: PMC6788197 DOI: 10.1021/acs.nanolett.9b02351] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/07/2019] [Indexed: 06/01/2023]
Abstract
We report on a nanomechanical engineering method to monitor matter growth in real time via e-beam electromechanical coupling. This method relies on the exceptional mass sensing capabilities of nanomechanical resonators. Focused electron beam-induced deposition (FEBID) is employed to selectively grow platinum particles at the free end of singly clamped nanotube cantilevers. The electron beam has two functions: it allows both to grow material on the nanotube and to track in real time the deposited mass by probing the noise-driven mechanical resonance of the nanotube. On the one hand, this detection method is highly effective as it can resolve mass deposition with a resolution in the zeptogram range; on the other hand, this method is simple to use and readily available to a wide range of potential users because it can be operated in existing commercial FEBID systems without making any modification. The presented method allows one to engineer hybrid nanomechanical resonators with precisely tailored functionalities. It also appears as a new tool for studying the growth dynamics of ultrathin nanostructures, opening new opportunities for investigating so far out-of-reach physics of FEBID and related methods.
Collapse
Affiliation(s)
- G. Gruber
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - C. Urgell
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - A. Tavernarakis
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - A. Stavrinadis
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - S. Tepsic
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| | - C. Magén
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - S. Sangiao
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - J. M. de Teresa
- Instituto
de Ciencia de Materiales de Aragón (ICMA), Universidad de Zaragoza-CSIC, 50009 Zaragoza, Spain
- Laboratorio
de Microscopías Avanzadas (LMA), Instituto de Nanociencia de
Aragón (INA), Universidad de Zaragoza, 50018 Zaragoza, Spain
| | - P. Verlot
- School
of Physics and Astronomy, The University
of Nottingham, University Park, Nottingham NG7 2RD, United
Kingdom
| | - A. Bachtold
- ICFO
- Institut de Ciencies Fotoniques, The Barcelona
Institute of Science and Technology, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
11
|
Abstract
Nanometer-scale structures with high aspect ratios such as nanowires and nanotubes combine low mechanical dissipation with high resonance frequencies, making them ideal force transducers and scanning probes in applications requiring the highest sensitivity. Such structures promise record force sensitivities combined with ease of use in scanning probe microscopes. A wide variety of possible material compositions and functionalizations is available, allowing for the sensing of various kinds of forces. In addition, nanowires possess quasi-degenerate mechanical mode doublets, which allow for sensitive vectorial force and mass detection. These developments have driven researchers to use nanowire cantilevers in various force sensing applications, which include imaging of sample surface topography, detection of optomechanical, electrical, and magnetic forces, and magnetic resonance force microscopy. In this review, we discuss the motivation behind using nanowires as force transducers, explain the methods of force sensing with nanowire cantilevers, and give an overview of the experimental progress so far and future prospects of the field.
Collapse
Affiliation(s)
- F R Braakman
- University of Basel, Klingelbergstrasse 82, 4056 Basel, Switzerland
| | | |
Collapse
|