1
|
Shin D, Lee HJ, Jung D, Chae JA, Park JW, Lim J, Im S, Min S, Hwang E, Lee DC, Park YS, Chang JH, Park K, Kim J, Park JS, Bae WK. Growth Control of InP/ZnSe Heterostructured Nanocrystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2312250. [PMID: 38300222 DOI: 10.1002/adma.202312250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/23/2024] [Indexed: 02/02/2024]
Abstract
The morphology of heterostructured semiconductor nanocrystals (h-NCs) dictates the spatial distribution of charge carriers and their recombination dynamics and/or transport, which are the main performance indicators of photonic applications utilizing h-NCs. The inability to control the morphology of heterovalent III-V/II-VI h-NCs composed of heavy-metal-free elements hinders their practical use. As a case study of III-V/II-VI h-NCs, the growth control of ZnSe epilayers on InP NCs is demonstrated here. The anisotropic morphology in InP/ZnSe h-NCs is attributed to the facet-dependent energy costs for the growth of ZnSe epilayers on different facets of InP NCs, and effective chemical means for controlling the growth rates of ZnSe on different surface planes are demonstrated. Ultimately, this article capitalizes on the controlled morphology of InP/ZnSe h-NCs to expand their photophysical characteristics from stable and pure emission to environment-sensitive one, which will facilitate their use in a variety of photonic applications.
Collapse
Affiliation(s)
- Doyoon Shin
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Hak June Lee
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Dongju Jung
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jong Ah Chae
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jeong Woo Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jaemin Lim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Seongbin Im
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sejong Min
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Euyheon Hwang
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Doh C Lee
- Department of Chemical and Biomolecular Engineering, KAIST Institute for the Nanocentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Young-Shin Park
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jun Hyuk Chang
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Kyoungwon Park
- Display Research Center, Korea Electronics Technology Institute (KETI), Seongnam, 13509, Republic of Korea
| | - Junki Kim
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ji-Sang Park
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Wan Ki Bae
- SKKU Advanced Institute of Nano Technology (SAINT), Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| |
Collapse
|
2
|
Yuan G, Higginbotham HF, Han J, Yadav A, Kirkwood N, Mulvaney P, Bell TDM, Cole JH, Funston AM. Tuning the Photoluminescence Anisotropy of Semiconductor Nanocrystals. ACS NANO 2023; 17:19109-19120. [PMID: 37748102 DOI: 10.1021/acsnano.3c05214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Semiconductor nanocrystals are promising optoelectronic materials. Understanding their anisotropic photoluminescence is fundamental for developing quantum-dot-based devices such as light-emitting diodes, solar cells, and polarized single-photon sources. In this study, we experimentally and theoretically investigate the photoluminescence anisotropy of CdSe semiconductor nanocrystals with various shapes, including plates, rods, and spheres, with either wurtzite or zincblende structures. We use defocused wide-field microscopy to visualize the emission dipole orientation and find that spheres, rods, and plates exhibit the optical properties of 2D, 1D, and 2D emission dipoles, respectively. We rationalize the seemingly counterintuitive observation that despite having similar aspect ratios (width/length), rods and long nanoplatelets exhibit different defocused emission patterns by considering valence band structures calculated using multiband effective mass theory and the dielectric effect. The principles are extended to provide general relationships that can be used to tune the emission dipole orientation for different materials, crystalline structures, and shapes.
Collapse
Affiliation(s)
- Gangcheng Yuan
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | | | - Jiho Han
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Anchal Yadav
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Nicholas Kirkwood
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Toby D M Bell
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Jared H Cole
- ARC Centre of Excellence in Exciton Science and Chemical and Quantum Physics, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Alison M Funston
- ARC Centre of Excellence in Exciton Science, Monash University, Clayton, Victoria 3800, Australia
- School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
3
|
Amgar D, Lubin G, Yang G, Rabouw FT, Oron D. Resolving the Emission Transition Dipole Moments of Single Doubly Excited Seeded Nanorods via Heralded Defocused Imaging. NANO LETTERS 2023. [PMID: 37290051 DOI: 10.1021/acs.nanolett.3c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Semiconductor nanocrystal emission polarization is a crucial probe of nanocrystal physics and an essential factor for nanocrystal-based technologies. While the transition dipole moment for the lowest excited state to ground state transition is well characterized, the dipole moment of higher multiexcitonic transitions is inaccessible via most spectroscopy techniques. Here, we realize direct characterization of the doubly excited-state relaxation transition dipole by heralded defocused imaging. Defocused imaging maps the dipole emission pattern onto a fast single-photon avalanche diode detector array, allowing the postselection of photon pairs emitted from the biexciton-exciton emission cascade and resolving the differences in transition dipole moments. Type-I1/2 seeded nanorods exhibit higher anisotropy of the biexciton-to-exciton transition compared to the exciton-to-ground state transition. In contrast, type-II seeded nanorods display a reduction of biexciton emission anisotropy. These findings are rationalized in terms of an interplay between the transient dynamics of the refractive index and the excitonic fine structure.
Collapse
Affiliation(s)
- Daniel Amgar
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gur Lubin
- Department of Physics of Complex Systems, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gaoling Yang
- School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
| | - Freddy T Rabouw
- Debye Institute of Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Dan Oron
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
4
|
Ghosh S, Ross U, Chizhik AM, Kuo Y, Jeong BG, Bae WK, Park K, Li J, Oron D, Weiss S, Enderlein J, Chizhik AI. Excitation Intensity-Dependent Quantum Yield of Semiconductor Nanocrystals. J Phys Chem Lett 2023; 14:2702-2707. [PMID: 36892266 PMCID: PMC10026174 DOI: 10.1021/acs.jpclett.3c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
One of the key phenomena that determine the fluorescence of nanocrystals is the nonradiative Auger-Meitner recombination of excitons. This nonradiative rate affects the nanocrystals' fluorescence intensity, excited state lifetime, and quantum yield. Whereas most of the above properties can be directly measured, the quantum yield is the most difficult to assess. Here we place semiconductor nanocrystals inside a tunable plasmonic nanocavity with subwavelength spacing and modulate their radiative de-excitation rate by changing the cavity size. This allows us to determine absolute values of their fluorescence quantum yield under specific excitation conditions. Moreover, as expected considering the enhanced Auger-Meitner rate for higher multiple excited states, increasing the excitation rate reduces the quantum yield of the nanocrystals.
Collapse
Affiliation(s)
- Subhabrata Ghosh
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Ulrich Ross
- IV. Physical
Institute - Solids and Nanostructures, Georg
August University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Anna M. Chizhik
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| | - Yung Kuo
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Byeong Guk Jeong
- School of
Chemical and Biomolecular Engineering, Pusan
National University, Busan 46241, Republic
of Korea
| | - Wan Ki Bae
- SKKU Advanced
Institute of Nanotechnology (SAINT), Sungkyunkwan
University, Suwon 16419, Republic
of Korea
| | - Kyoungwon Park
- Korea Electronics
Technology Institute, Seongnam-si, Gyeonggi-do 13509, Republic of Korea
| | - Jack Li
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
| | - Dan Oron
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shimon Weiss
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los Angeles, California 90095, United States
- California
NanoSystems Institute, University of California
Los Angeles, Los Angeles, California 90095, United States
- Department
of Physiology, University of California
Los Angeles, Los Angeles, California 90095, United States
- Department
of Physics, Institute for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan, 52900, Israel
| | - Jörg Enderlein
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
- Cluster
of Excellence “Multiscale Bioimaging: from Molecular Machines
to Networks of Excitable Cells,” (MBExC), Georg August University of Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Alexey I. Chizhik
- Third Institute
of Physics − Biophysics, Georg August
University Göttingen, Friedrich-Hund Platz 1, 37077 Göttingen, Germany
| |
Collapse
|
5
|
Rebmann J, Werners H, Johst F, Dohrmann M, Staechelin YU, Strelow C, Mews A, Kipp T. Cation Exchange during the Synthesis of Colloidal Type-II ZnSe-Dot/CdS-Rod Nanocrystals. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:1238-1248. [PMID: 36818587 PMCID: PMC9933437 DOI: 10.1021/acs.chemmater.2c03278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/13/2022] [Indexed: 06/18/2023]
Abstract
Cation exchange is known to occur during the synthesis of colloidal semiconductor heteronanoparticles, affecting their band gap and thus altering their optoelectronic properties. It is often neglected, especially when anisotropic heterostructures are discussed. We present a study on the role of cation exchange inevitably occurring during the growth of anisotropic dot-in-rod structures consisting of a spherical ZnSe core enclosed by a rod-shaped CdS shell. The material combination exhibits a type-II band alignment. Two reactions are compared: the shell-growth reaction of CdS on ZnSe and an exchange-only reaction of ZnSe cores to CdSe. Transmission electron microscopy and a comprehensive set of optical spectroscopy data, including linear and time-resolved absorption and fluorescence data, prove that cation exchange from ZnSe to CdSe is the dominant process in the initial stages of the shell-growth reaction. The degree of cation exchange before significant shell growth starts was determined to be about 50%, highlighting the importance of cation exchange during the heteronanostructure growth.
Collapse
|
6
|
Ghosh S, Hollingsworth JA, Gallea JI, Majumder S, Enderlein J, Chizhik AI. Excited state lifetime modulation in semiconductor nanocrystals for super-resolution imaging. NANOTECHNOLOGY 2022; 33:365201. [PMID: 35617874 DOI: 10.1088/1361-6528/ac73a2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
We report on proof of principle measurements of a concept for a super-resolution imaging method that is based on excitation field density-dependent lifetime modulation of semiconductor nanocrystals. The prerequisite of the technique is access to semiconductor nanocrystals with emission lifetimes that depend on the excitation intensity. Experimentally, the method requires a confocal microscope with fluorescence-lifetime measurement capability that makes it easily accessible to a broad optical imaging community. We demonstrate with single particle imaging that the method allows one to achieve a spatial resolution of the order of several tens of nanometers at moderate fluorescence excitation intensity.
Collapse
Affiliation(s)
- Subhabrata Ghosh
- Third Institute of Physics-Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Jennifer A Hollingsworth
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Jose Ignacio Gallea
- Third Institute of Physics-Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| | - Somak Majumder
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, NM 87545, United States of America
| | - Jörg Enderlein
- Third Institute of Physics-Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
- Cluster of Excellence 'Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells' (MBExC), Georg August University, D-37077 Göttingen, Germany
| | - Alexey I Chizhik
- Third Institute of Physics-Biophysics, University of Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen, Germany
| |
Collapse
|
7
|
Kolmakov K, Winter FR, Sednev MV, Ghosh S, Borisov SM, Nizovtsev AV. Everlasting rhodamine dyes and true deciding factors in their STED microscopy performance. Photochem Photobiol Sci 2020; 19:1677-1689. [PMID: 33179701 DOI: 10.1039/d0pp00304b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The authors took an independent and closer look at the family of red-emitting rhodamine dyes known for a decade due to their excellent performance in STED microscopy. After the family was further extended, the true grounds of this performance became clear. Small-molecule protective agents and/or auxiliary groups were attached at two different sites of the dye's scaffold. Thus, a rhodamine core, which is already quite photostable as it is, and an intramolecular stabilizer - a 4-nitrobenzyl or a 4-nitrobenzylthio group were combined to give potentially "everlasting dyes". The fluorescence quantum yields (Φf) and the fluorescence lifetimes (τ) of the modified dyes were thoroughly measured with comparison to those of the parent dyes. The correlation of their STED performance with photostability and fluorescence color stability under illumination in water were explored. Unexpectedly, the anaerobic GSDIM (GOC) buffer proved unhelpful with respect to STED performance. It was demonstrated that, even dyes with a Φf of only 14-17% allow STED imaging with a sufficient photon budget and good signal-to-noise ratio. For the dyes with photostabilizing groups (PSG) the Φf values are 4-5 times lower than in the reference dyes, and lifetimes τ are also strongly reduced. Noteworthy are very high fluorescence color stability and constant or even increasing fluorescence signal under photobleaching in bulk aqueous solutions, which suggests a sacrificing role of the 4-nitrobenzyl-containing moieties. Straightforward and improved recipes for "last-minute" modifications and preparations of "self-healing" red-emitting fluorescent tags are described.
Collapse
Affiliation(s)
- Kirill Kolmakov
- glyXera GmbH, Brenneckestraße 20 * ZENIT II/Haus 66, D-39120 Magdeburg, Germany.
| | | | | | | | | | | |
Collapse
|
8
|
Ghosh S, Oleksiievets N, Enderlein J, Chizhik AI. Emission States Variation of Single Graphene Quantum Dots. J Phys Chem Lett 2020; 11:7356-7362. [PMID: 32790308 DOI: 10.1021/acs.jpclett.0c02008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Graphene quantum dots (GQDs) are nanoparticles that consist of a nanometer-sized core of graphene with diverse chemical groups on its boundary. Due to their advantageous properties, they are considered to be a promising material for optoelectronics, bioimaging, or photovoltaics. Despite considerable efforts that have been focused on unraveling the mechanism of their photoluminescence, many fundamental details are still unclear. Here, we report on a single-particle multimodal study that provides new insight into the photoluminescence properties of emission centers of GQDs in various local chemical environments. In particular, we show that the properties that are associated with emission centers of GQDs are significantly more sensitive to the structure of the particle itself than to a nonuniform local chemical environment. A better understanding of the dependence of GQDs' emission states on the complex local chemical environment is an important step toward finding new ways of controlling the optical properties of GQDs and of optimizing their use in various applications.
Collapse
Affiliation(s)
- Subhabrata Ghosh
- Third Institute of Physics - Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Nazar Oleksiievets
- Third Institute of Physics - Biophysics, University of Göttingen, 37077 Göttingen, Germany
| | - Jörg Enderlein
- Third Institute of Physics - Biophysics, University of Göttingen, 37077 Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, 37077 Göttingen, Germany
| | - Alexey I Chizhik
- Third Institute of Physics - Biophysics, University of Göttingen, 37077 Göttingen, Germany
| |
Collapse
|
9
|
Hübner K, Pilo-Pais M, Selbach F, Liedl T, Tinnefeld P, Stefani FD, Acuna GP. Directing Single-Molecule Emission with DNA Origami-Assembled Optical Antennas. NANO LETTERS 2019; 19:6629-6634. [PMID: 31449421 DOI: 10.1021/acs.nanolett.9b02886] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
We demonstrate the capability of DNA self-assembled optical antennas to direct the emission of an individual fluorophore, which is free to rotate. DNA origami is used to fabricate optical antennas composed of two colloidal gold nanoparticles separated by a predefined gap and to place a single Cy5 fluorophore near the gap center. Although the fluorophore is able to rotate, its excitation and far-field emission is mediated by the antenna, with the emission directionality following a dipolar pattern according to the antenna main resonant mode. This work is intended to set out the basis for manipulating the emission pattern of single molecules with self-assembled optical antennas based on colloidal nanoparticles.
Collapse
Affiliation(s)
- Kristina Hübner
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Mauricio Pilo-Pais
- Faculty of Physics and Center for NanoScience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany
- Department of Physics , University of Fribourg , Chemin du Musée 3 , Fribourg CH-1700 , Switzerland
| | - Florian Selbach
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience , Ludwig-Maximilians-Universität München , Geschwister-Scholl-Platz 1 , 80539 München , Germany
| | - Philip Tinnefeld
- Department of Chemistry and Center for NanoScience , Ludwig-Maximilians-Universität München , Butenandtstr. 5-13 Haus E , 81377 München , Germany
| | - Fernando D Stefani
- Centro de Investigaciones en Bionanociencias (CIBION) , Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) , Godoy Cruz 2390, C1425FQD, Ciudad Autónoma de Buenos Aires , Argentina
- Departamento de Física, Facultad de Ciencias Exactas y Naturales , Universidad de Buenos Aires , Güiraldes 2620, C1428EHA, Ciudad Autónoma de Buenos Aires , Argentina
| | - Guillermo P Acuna
- Department of Physics , University of Fribourg , Chemin du Musée 3 , Fribourg CH-1700 , Switzerland
| |
Collapse
|