2
|
Zhang W, Zhang X, Wang J, Ghosh A, Zhu J, LiBretto NJ, Zhang G, Datye AK, Liu W, Miller JT. Bismuth-Modulated Surface Structural Evolution of Pd 3Bi Intermetallic Alloy Catalysts for Selective Propane Dehydrogenation and Acetylene Semihydrogenation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wenqing Zhang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoben Zhang
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianyang Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Arnab Ghosh
- Department of Chemical & Biological Engineering & Center for Micro-engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Jie Zhu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Nicole J. LiBretto
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Guanghui Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Abhaya K. Datye
- Department of Chemical & Biological Engineering & Center for Micro-engineered Materials, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Wei Liu
- Division of Energy Research Resources, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023 China
| | - Jeffrey T. Miller
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
3
|
Chen W, Luo S, Sun M, Tang M, Fan X, Cheng Y, Wu X, Liao Y, Huang B, Quan Z. Hexagonal PtBi Intermetallic Inlaid with Sub-Monolayer Pb Oxyhydroxide Boosts Methanol Oxidation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107803. [PMID: 35212141 DOI: 10.1002/smll.202107803] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Engineering multicomponent nanocatalysts is effective to improve electrocatalysis in many applications, yet it remains a challenge in constructing well-defined multimetallic active sites at the atomic level. Herein, the surface inlay of sub-monolayer Pb oxyhydroxide onto hexagonal PtBi intermetallic nanoplates with intrinsically isolated Pt atoms to boost the methanol oxidation reaction (MOR) is reported. The well-defined PtBi@6.7%Pb nanocatalyst exhibits 4.0 and 7.4 times higher mass activity than PtBi nanoplates and commercial Pt/C catalyst toward MOR in the alkaline electrolyte at 30 °C. Meanwhile, it also achieves a record-high mass activity of 51.07 A mg-1 Pt at direct methanol fuel cells operation temperature of 60 °C. DFT calculations reveal that the introduction of Pb oxyhydroxide on the surface not only promotes the electron transfer efficiency but also suppresses the CO poisoning effect, and the efficient p-d coupling optimizes the electroactivity of PtBi@6.7%Pb nanoplates toward the MOR process with low reaction barriers. This work offers a nanoengineering strategy to effectively construct and modulate multimetallic nanocatalysts to improve the electroactivity toward the MOR in future research.
Collapse
Affiliation(s)
- Wen Chen
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Shuiping Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Mingzi Sun
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Min Tang
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaokun Fan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yu Cheng
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Xiaoyu Wu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Yujia Liao
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| | - Bolong Huang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR, 999077, China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, and Guangdong Provincial Key Laboratory of Energy Materials for Electric Power, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen, 518055, China
| |
Collapse
|
4
|
Nakaya Y, Xing F, Ham H, Shimizu K, Furukawa S. Doubly Decorated Platinum–Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107210] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Feilong Xing
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Hyungwon Ham
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
| | - Ken‐ichi Shimizu
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Katsura Kyoto 615-8520 Japan
| | - Shinya Furukawa
- Institute for Catalysis Hokkaido University N-21, W-10 Sapporo 001-0021 Japan
- Elements Strategy Initiative for Catalysts and Batteries Kyoto University Katsura Kyoto 615-8520 Japan
- Japan Science and Technology Agency Department of Research Promotion Chiyoda Tokyo 102-0076 Japan
| |
Collapse
|
5
|
Nakaya Y, Xing F, Ham H, Shimizu KI, Furukawa S. Doubly Decorated Platinum-Gallium Intermetallics as Stable Catalysts for Propane Dehydrogenation. Angew Chem Int Ed Engl 2021; 60:19715-19719. [PMID: 34185941 DOI: 10.1002/anie.202107210] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Indexed: 11/07/2022]
Abstract
Propane dehydrogenation (PDH) is a promising chemical process that can satisfy the increasing global demand for propylene. However, the Pt-based catalysts that have been reported thus far are typically deactivated at ≥600 °C by side reactions and coke formation. Thus, such catalysts possess an insufficient life. Herein, we report a novel catalyst design concept, namely, the double decoration of PtGa intermetallics by Pb and Ca, which synergize the geometric and electronic promotion effects on the catalyst stability, respectively. Pb is deposited on the three-fold Pt3 sites of the PtGa nanoparticles to block them, whereas Ca, which affords an electron-enriched single-atom-like Pt1 site, is placed around the nanoparticles. Thus, PtGa-Ca-Pb/SiO2 exhibits an outstandingly high catalytic stability, even at 600 °C (kd =0.00033 h-1 , τ=3067 h), and almost no deactivation of the catalyst was observed for up to 1 month for the first time.
Collapse
Affiliation(s)
- Yuki Nakaya
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Feilong Xing
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Hyungwon Ham
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan
| | - Ken-Ichi Shimizu
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan
| | - Shinya Furukawa
- Institute for Catalysis, Hokkaido University, N-21, W-10, Sapporo, 001-0021, Japan.,Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Katsura, Kyoto, 615-8520, Japan.,Japan Science and Technology Agency, Department of Research Promotion, Chiyoda, Tokyo, 102-0076, Japan
| |
Collapse
|