1
|
Du W, Chen X, Wang T, Lin Q, Nijhuis CA. Tuning Overbias Plasmon Energy and Intensity in Molecular Plasmonic Tunneling Junctions by Atomic Polarizability. J Am Chem Soc 2024; 146:21642-21650. [PMID: 38940772 PMCID: PMC11311224 DOI: 10.1021/jacs.4c05544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
Plasmon excitation in molecular tunnel junctions is interesting because the plasmonic properties of the device can be, in principle, controlled by varying the chemical structure of the molecules. The plasmon energy of the excited plasmons usually follows the quantum cutoff law, but frequently overbias plasmon energy has been observed, which can be explained by quantum shot noise, multielectron processes, or hot carrier models. So far, clear correlations between molecular structure and the plasmon energy have not been reported. Here, we introduce halogenated molecules (HS(CH2)12X, with X = H, F, Cl, Br, or I) with polarizable terminal atoms as the tunnel barriers and demonstrate molecular control over both the excited plasmon intensity and energy for a given applied voltage. As the polarizability of the terminal atom increases, the tunnel barrier height decreases, resulting in an increase in the tunneling current and the plasmon intensity without changing the tunneling barrier width. We also show that the plasmon energy is controlled by the electrostatic potential drop at the molecule-electrode interface, which depends on the polarizability of the terminal atom and the metal electrode material (Ag, Au, or Pt). Our results give new insights in the relation between molecular structure, electronic structure of the molecular junction, and the plasmonic properties which are important for the development of molecular scale plasmonic-electronic devices.
Collapse
Affiliation(s)
- Wei Du
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Xiaoping Chen
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
- Fujian
Provincial Key Laboratory of Modern Analytical Science and Separation
Technology, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou 363000, China
| | - Tao Wang
- Department
of Chemistry, National University of Singapore, 3 Science Drive 3, 117543 Singapore, Singapore
| | - Qianqi Lin
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, Molecules Center and Center for
Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands
| | - Christian A. Nijhuis
- Hybrid
Materials for Optoelectronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology, Molecules Center and Center for
Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, 7500AE Enschede, The Netherlands
| |
Collapse
|
2
|
Guo Q, Zhang H, Zhao H, Ding Y, Hu Y, Zhu S, Wen X, Deng S, Wang T, Du W. Electrically Driven Deterministic Plasmon Light Sources Based on Arrays of Molecular Tunnel Junctions. NANO LETTERS 2024; 24:9720-9726. [PMID: 39051601 DOI: 10.1021/acs.nanolett.4c02523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Surface plasmons excited via inelastic tunnelling have led to plasmon light sources with small footprints and ultrafast response speeds, which are favored by integrated optical circuits. Self-assembled monolayers of organic molecules function as highly tunable tunnel barriers with novel functions. However, limited by the low effective contact between the liquid metal electrode and the self-assembled monolayers, it is quite challenging to obtain molecular plasmon light sources with high density and uniform emission. Here, by combining lithographic patterning with a solvent treatment method, we have demonstrated electrically driven deterministic plasmon emission from arrays of molecular tunnel junctions. The solvent treatment could largely improve the effective contact from 9.6% to 48% and simultaneously allow the liquid metal to fill into lithographically patterned micropore structures toward deterministic plasmon emission with desired patterns. Our findings open up new possibilities for tunnel junction-based plasmon light sources, laying the foundation for electrically driven light-emitting metasurfaces.
Collapse
Affiliation(s)
- Qianqian Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Huilin Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Haijun Zhao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Youyi Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Yidan Hu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Shu Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Xinyu Wen
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Shikai Deng
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
- 2020 X-Lab, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, P. R. China
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
3
|
Zhu Y, Raschke MB, Natelson D, Cui L. Molecular scale nanophotonics: hot carriers, strong coupling, and electrically driven plasmonic processes. NANOPHOTONICS (BERLIN, GERMANY) 2024; 13:2281-2322. [PMID: 39633666 PMCID: PMC11501151 DOI: 10.1515/nanoph-2023-0710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/07/2024] [Indexed: 12/07/2024]
Abstract
Plasmonic modes confined to metallic nanostructures at the atomic and molecular scale push the boundaries of light-matter interactions. Within these extreme plasmonic structures of ultrathin nanogaps, coupled nanoparticles, and tunnelling junctions, new physical phenomena arise when plasmon resonances couple to electronic, exitonic, or vibrational excitations, as well as the efficient generation of non-radiative hot carriers. This review surveys the latest experimental and theoretical advances in the regime of extreme nano-plasmonics, with an emphasis on plasmon-induced hot carriers, strong coupling effects, and electrically driven processes at the molecular scale. We will also highlight related nanophotonic and optoelectronic applications including plasmon-enhanced molecular light sources, photocatalysis, photodetection, and strong coupling with low dimensional materials.
Collapse
Affiliation(s)
- Yunxuan Zhu
- Department of Physics and Astronomy, Rice University, Houston, TX, USA
| | - Markus B. Raschke
- Department of Physics, and JILA, University of Colorado Boulder, Boulder, CO, USA
| | - Douglas Natelson
- Department of Physics and Astronomy, Electrical and Computer Engineering, Materials Science and Nanoengineering, Rice University, Houston, TX, USA
| | - Longji Cui
- Department of Mechanical Engineering, Materials Science and Engineering Program, & Center for Experiments on Quantum Materials (CEQM), University of Colorado Boulder, Boulder, CO, USA
| |
Collapse
|
4
|
Zhang X, Li Z, Ji S, Xu W, Chen L, Xiao Z, Liu J, Hong W. Plasmon-Molecule Interactions in Single-Molecule Junctions. Chempluschem 2024; 89:e202300556. [PMID: 38050755 DOI: 10.1002/cplu.202300556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023]
Abstract
Single-molecule optoelectronics offers opportunities for advancing integrated photonics and electronics, which also serves as a tool to elucidate the underlying mechanism of light-matter interaction. Plasmonics, which plays pivotal role in the interaction of photons and matter, have became an emerging area. A comprehensive understanding of the plasmonic excitation and modulation mechanisms within single-molecule junctions (SMJs) lays the foundation for optoelectronic devices. Consequently, this review primarily concentrates on illuminating the fundamental principles of plasmonics within SMJs, delving into their research methods and modulation factors of plasmon-exciton. Moreover, we underscore the interaction phenomena within SMJs, including the enhancement of molecular fluorescence by plasmonics, Fano resonance and Rabi splitting caused by the interaction of plasmon-exciton. Finally, by emphasizing the potential applications of plasmonics within SMJs, such as their roles in optical tweezers, single-photon sources, super-resolution imaging, and chemical reactions, we elucidate the future prospects and current challenges in this domain.
Collapse
Affiliation(s)
- Xiangui Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zhengyu Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Shurui Ji
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wei Xu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Lijue Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Zongyuan Xiao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Junyang Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| | - Wenjing Hong
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering & Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
5
|
Tang J, Guo Q, Wu Y, Ge J, Zhang S, Xu H. Light-Emitting Plasmonic Tunneling Junctions: Current Status and Perspectives. ACS NANO 2024; 18:2541-2551. [PMID: 38227821 DOI: 10.1021/acsnano.3c08628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Quantum tunneling, in which electrons can tunnel through a finite potential barrier while simultaneously interacting with other matter excitation, is one of the most fascinating phenomena without classical correspondence. In an extremely thin metallic nanogap, the deep-subwavelength-confined plasmon modes can be directly excited by the inelastically tunneling electrons driven by an externally applied voltage. Light emission via inelastic tunneling possesses a great potential application for next-generation light sources, with great superiority of ultracompact integration, large bandwidth, and ultrafast response. In this Perspective, we first briefly introduce the mechanism of plasmon generation in the inelastic electron tunneling process. Then the state of the art in plasmonic tunneling junctions will be reviewed, particularly emphasizing efficiency improvement, precise construction, active control, and electrically driven optical antenna integration. Ultimately, we forecast some promising and critical prospects that require further investigation.
Collapse
Affiliation(s)
- Jibo Tang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Quanbing Guo
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Yu Wu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Junhao Ge
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Shunping Zhang
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
| | - Hongxing Xu
- School of Physics and Technology and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
- Wuhan Institute of Quantum Technology, Wuhan 430206, China
- School of Microelectronics, Wuhan University, Wuhan 430072, China
- Henan Academy of Sciences, Zhengzhou, Henan 450046 China
| |
Collapse
|
6
|
Xu W, Wang D, Guo Q, Zhu S, Zhang L, Wang T, Moloney MG, Du W. Robust Sub-5 Nanometer bis(Diarylcarbene)-Based Thin Film for Molecular Electronics and Plasmonics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303057. [PMID: 37266891 DOI: 10.1002/adma.202303057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Indexed: 06/03/2023]
Abstract
In miniaturized electronic and optoelectronic circuits, molecular tunnel junctions have attracted enormous research interest due to their small footprint, low power consumption, and rich molecular functions. However, the most popular building blocks used in contemporary molecular tunnel junctions are thiol molecules, which attach to electrode surfaces via a metal-thiolate (MS) bond, showing low stability and usually quick degradation within several days. To pave the way for more widely applicable and stable molecular tunnel junctions, there is a need to develop new molecular anchoring groups. Here, this work demonstrates robust and air-stable molecular tunnel junctions with a sub-5 nanometer bis(diarylcarbene)-based thin film as the tunneling barrier, which anchors to the electrode surface via a AuC bond. The bis(diarylcarbene)-based molecular tunnel junctions exhibit high thermal stability against heating up to 200 °C and long storage lifetime over 5 months in an ambient environment. Both electrical and optical performance of these bis(diarylcarbene)-based molecular junctions are characterized systematically, showing similar behaviors to thiol-based junctions as well as largely improved emission stability. This research highlights the excellent performance of bis(diarylcarbene)-based molecular tunnel junctions, which could be useful for applications in molecular electronics and plasmonics.
Collapse
Affiliation(s)
- Wenrui Xu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Dandan Wang
- Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
| | - Qianqian Guo
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Shu Zhu
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Lan Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Tao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| | - Mark G Moloney
- Oxford Suzhou Centre for Advanced Research, Building A, 388 Ruo Shui Road, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, P. R. China
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, OX1 3TA, UK
| | - Wei Du
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
7
|
Deeb C, Toudert J, Pelouard JL. Electrically driven nanogap antennas and quantum tunneling regime. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3029-3051. [PMID: 39635058 PMCID: PMC11501410 DOI: 10.1515/nanoph-2023-0099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/15/2023] [Indexed: 12/07/2024]
Abstract
The optical and electrical characteristics of electrically-driven nanogap antennas are extremely sensitive to the nanogap region where the fields are tightly confined and electrons and photons can interplay. Upon injecting electrons in the nanogap, a conductance channel opens between the metal surfaces modifying the plasmon charge distribution and therefore inducing an electrical tuning of the gap plasmon resonance. Electron tunneling across the nanogap can be harnessed to induce broadband photon emission with boosted quantum efficiency. Under certain conditions, the energy of the emitted photons exceeds the energy of electrons, and this overbias light emission is due to spontaneous emission of the hot electron distribution in the electrode. We conclude with the potential of electrically controlled nanogap antennas for faster on-chip communication.
Collapse
Affiliation(s)
- Claire Deeb
- Almae Technologies, Route de Nozay, 91460Marcoussis, France
| | | | - Jean-Luc Pelouard
- Centre for Nanoscience and Nanotechnology, CNRS, Université Paris-Saclay, 10 Bvd T. Gobert, 91120Palaiseau, France
| |
Collapse
|
8
|
Plasmonic phenomena in molecular junctions: principles and applications. Nat Rev Chem 2022; 6:681-704. [PMID: 37117494 DOI: 10.1038/s41570-022-00423-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2022] [Indexed: 11/08/2022]
Abstract
Molecular junctions are building blocks for constructing future nanoelectronic devices that enable the investigation of a broad range of electronic transport properties within nanoscale regions. Crossing both the nanoscopic and mesoscopic length scales, plasmonics lies at the intersection of the macroscopic photonics and nanoelectronics, owing to their capability of confining light to dimensions far below the diffraction limit. Research activities on plasmonic phenomena in molecular electronics started around 2010, and feedback between plasmons and molecular junctions has increased over the past years. These efforts can provide new insights into the near-field interaction and the corresponding tunability in properties, as well as resultant plasmon-based molecular devices. This Review presents the latest advancements of plasmonic resonances in molecular junctions and details the progress in plasmon excitation and plasmon coupling. We also highlight emerging experimental approaches to unravel the mechanisms behind the various types of light-matter interactions at molecular length scales, where quantum effects come into play. Finally, we discuss the potential of these plasmonic-electronic hybrid systems across various future applications, including sensing, photocatalysis, molecular trapping and active control of molecular switches.
Collapse
|
9
|
Wang F, Liu Y, Hoang TX, Chu HS, Chua SJ, Nijhuis CA. CMOS-Compatible Electronic-Plasmonic Transducers Based on Plasmonic Tunnel Junctions and Schottky Diodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105684. [PMID: 34741404 DOI: 10.1002/smll.202105684] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Indexed: 06/13/2023]
Abstract
To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.
Collapse
Affiliation(s)
- Fangwei Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
| | - Yan Liu
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
| | - Thanh Xuan Hoang
- Department of Electronics and Photonics, Institute of High Performance Computing, A*STAR (Agency for Science Technology and Research), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Hong-Son Chu
- Department of Electronics and Photonics, Institute of High Performance Computing, A*STAR (Agency for Science Technology and Research), 1 Fusionopolis Way, #16-16 Connexis, Singapore, 138632, Singapore
| | - Soo-Jin Chua
- Department of Electrical and Computer Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117576, Singapore
- LEES Program, Singapore-MIT Alliance for Research and Technology (SMART), Singapore, 138602, Singapore
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore, 6 Science Drive 2, Singapore, 117564, Singapore
- Hybrid Materials for Opto-Electronics Group, Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 2017, Enschede, 7500 AE, The Netherlands
| |
Collapse
|
10
|
Zhang Z, Cao L, Chen X, Thompson D, Qi D, Nijhuis CA. Energy-Level Alignment and Orbital-Selective Femtosecond Charge Transfer Dynamics of Redox-Active Molecules on Au, Ag, and Pt Metal Surfaces. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:18474-18482. [PMID: 34476044 PMCID: PMC8404196 DOI: 10.1021/acs.jpcc.1c04655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Indexed: 06/13/2023]
Abstract
Charge transfer (CT) dynamics across metal-molecule interfaces has important implications for performance and function of molecular electronic devices. CT times, on the order of femtoseconds, can be precisely measured using synchrotron-based core-hole clock (CHC) spectroscopy, but little is known about the impact on CT times of the metal work function and the bond dipole created by metals and the anchoring group. To address this, here we measure CT dynamics across self-assembled monolayers bound by thiolate anchoring groups to Ag, Au, and Pt. The molecules have a terminal ferrocene (Fc) group connected by varying numbers of methylene units to a diphenylacetylene (DPA) wire. CT times measured using CHC with resonant photoemission spectroscopy (RPES) show that conjugated DPA wires conduct electricity faster than aliphatic carbon wires of a similar length. Shorter methylene connectors exhibit increased conjugation between Fc and DPA, facilitating CT by providing greater orbital mixing. We find nearly 10-fold increase in the CT time on Pt compared to Ag due to a larger bond dipole generated by partial electron transfer from the metal-sulfur bond to the carbon-sulfur bond, which creates an electrostatic field that impedes CT from the molecules. By fitting the RPES signal, we distinguish electrons coming from the Fe center and from cyclopentadienyl (Cp) rings. The latter shows faster CT rates because of the delocalized Cp orbitals. Our study demonstrates the fine tuning of CT rates across junctions by careful engineering of several parts of the molecule and the molecule-metal interface.
Collapse
Affiliation(s)
- Ziyu Zhang
- Department
of Chemistry, National University of Singapore, 3 Science Drive, 117543, Singapore
| | - Liang Cao
- Anhui
Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,
High Magnetic Field Laboratory, Chinese
Academy of Sciences, Hefei, Anhui 230031, China
| | - Xue Chen
- Anhui
Province Key Laboratory of Condensed Matter Physics at Extreme Conditions,
High Magnetic Field Laboratory, Chinese
Academy of Sciences, Hefei, Anhui 230031, China
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Dongchen Qi
- Centre
for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Christian A. Nijhuis
- Department
of Chemistry, National University of Singapore, 3 Science Drive, 117543, Singapore
- Centre
for Advanced 2D Materials, National University
of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
- Hybrid Materials
for Opto-Electronics Group, Department of Molecules and Materials,
MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano
Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
11
|
Bi H, Jing C, Hasch P, Gong Y, Gerster D, Barth JV, Reichert J. Single Molecules in Strong Optical Fields: A Variable-Temperature Molecular Junction Spectroscopy Setup. Anal Chem 2021; 93:9853-9859. [PMID: 34229433 DOI: 10.1021/acs.analchem.1c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In order to advance the development of molecular electronic devices, it is mandatory to improve the understanding of electron transport and functionalities in single molecules, integrated in a well-defined environment. However, limited information can be obtained by solely analyzing I-V characteristics, whence multiparameter studies are required to obtain more information on such systems including chemical bonds, geometry, and intramolecular strain. Therefore, we developed an analytical method incorporating an optical near-field technique, which allows us to investigate single-molecule junctions at variable temperatures in strong optical fields. An apertureless near-field emitter acts as a counter electrode and a plasmonic waveguide to focus surface plasmon polaritons into the molecular junctions, where a strongly enhanced evanescent field is confined to only a few nanometers around the apex of the tip. The proof of concept, even at low temperatures, is demonstrated by simultaneously investigating electronic and optical features of the molecule p-terphenyl-4,4″-dithiol in dependence of its charge state. This multichannel method can be employed to analyze a variety of nearly unexplored properties in single-molecule junctions such as photoconductance and photocurrent generation and allows a characterization of the molecular junctions by spectroscopic means as well.
Collapse
Affiliation(s)
- Hai Bi
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Chao Jing
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany.,Department of Hydrogen Technique, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Jialuo Road 2019, 201800 Shanghai, China.,School of Chemistry & Molecular Engineering, East China University of Science and Technology, Meilong Road 130, 200237 Shanghai, China
| | - Peter Hasch
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Yuxiang Gong
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Daniel Gerster
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Johannes V Barth
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| | - Joachim Reichert
- Physics-Department E20, Technical University of Munich, James Franck Str. 1, 85748 Garching, Germany
| |
Collapse
|
12
|
Radulescu A, Makarenko KS, Hoang TX, Kalathingal V, Duffin TJ, Chu HS, Nijhuis CA. Geometric control over surface plasmon polariton out-coupling pathways in metal-insulator-metal tunnel junctions. OPTICS EXPRESS 2021; 29:11987-12000. [PMID: 33984968 DOI: 10.1364/oe.413698] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/14/2020] [Indexed: 06/12/2023]
Abstract
Metal-insulator-metal tunnel junctions (MIM-TJs) can electrically excite surface plasmon polaritons (SPPs) well below the diffraction limit. When inelastically tunneling electrons traverse the tunnel barrier under applied external voltage, a highly confined cavity mode (MIM-SPP) is excited, which further out-couples from the MIM-TJ to photons and single-interface SPPs via multiple pathways. In this work we control the out-coupling pathways of the MIM-SPP mode by engineering the geometry of the MIM-TJ. We fabricated MIM-TJs with tunneling directions oriented vertical or lateral with respect to the directly integrated plasmonic strip waveguides. With control over the tunneling direction, preferential out-coupling of the MIM-SPP mode to SPPs or photons is achieved. Based on the wavevector distribution of the single-interface SPPs or photons in the far-field emission intensity obtained from back focal plane (BFP) imaging, we estimate the out-coupling efficiency of the MIM-SPP mode to multiple out-coupling pathways. We show that in the vertical-MIM-TJs the MIM-SPP mode preferentially out-couples to single-interface SPPs along the strip waveguides while in the lateral-MIM-TJs photon out-coupling to the far-field is more efficient.
Collapse
|
13
|
Gupta NK, Schultz T, Karuppannan SK, Vilan A, Koch N, Nijhuis CA. The energy level alignment of the ferrocene-EGaIn interface studied with photoelectron spectroscopy. Phys Chem Chem Phys 2021; 23:13458-13467. [PMID: 34095913 DOI: 10.1039/d1cp01690c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The energy level alignment after the formation of a molecular tunnel junction is often poorly understood because spectroscopy inside junctions is not possible, which hampers the rational design of functional molecular junctions and complicates the interpretation of the data generated by molecular junctions. In molecular junction platforms where the top electrode-molecule interaction is weak; one may argue that the energy level alignment can be deduced from measurements with the molecules supported by the bottom electrode (sometimes referred to as "half junctions"). This approach, however, still relies on a series of assumptions, which are challenging to address experimentally due to difficulties in studying the molecule-top electrode interaction. Herein, we describe top electrode-molecule junctions with a liquid metal alloy top electrode of EGaIn (which stands for eutectic alloy of Ga and In) interacting with well-characterised ferrocene (Fc) moieties. We deposited a ferrocene derivative on films of EGaIn, coated with its native GaOx layer, and studied the energy level alignment with photoelectron spectroscopy. Our results reveal that the electronic interaction between the Fc and GaOx/EGaIn is very weak, resembling physisorption. Therefore, investigations of "half junctions" for this system can provide valuable information regarding the energy level alignment of complete EGaIn junctions. Our results help to improve our understanding of the energy landscape in weakly coupled molecular junctions and aid to the rational design of molecular electronic devices.
Collapse
Affiliation(s)
- Nipun Kumar Gupta
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| | - Thorsten Schultz
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Senthil Kumar Karuppannan
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Ayelet Vilan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Norbert Koch
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany. and Helmholtz Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein Straße 15, 12489 Berlin, Germany
| | - Christian A Nijhuis
- Departement of Chemistry, Faculty of Science, National University of Singapore, Singapore, Singapore and Centre for Advanced 2D Materials, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore and Department of Molecules and Materials, MESA+ Institute for Nanotechnology and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands.
| |
Collapse
|
14
|
Han Y, Maglione MS, Diez Cabanes V, Casado-Montenegro J, Yu X, Karuppannan SK, Zhang Z, Crivillers N, Mas-Torrent M, Rovira C, Cornil J, Veciana J, Nijhuis CA. Reversal of the Direction of Rectification Induced by Fermi Level Pinning at Molecule-Electrode Interfaces in Redox-Active Tunneling Junctions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55044-55055. [PMID: 33237732 DOI: 10.1021/acsami.0c15435] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Control over the energy level alignment in molecular junctions is notoriously difficult, making it challenging to control basic electronic functions such as the direction of rectification. Therefore, alternative approaches to control electronic functions in molecular junctions are needed. This paper describes switching of the direction of rectification by changing the bottom electrode material M = Ag, Au, or Pt in M-S(CH2)11S-BTTF//EGaIn junctions based on self-assembled monolayers incorporating benzotetrathiafulvalene (BTTF) with EGaIn (eutectic alloy of Ga and In) as the top electrode. The stability of the junctions is determined by the choice of the bottom electrode, which, in turn, determines the maximum applied bias window, and the mechanism of rectification is dominated by the energy levels centered on the BTTF units. The energy level alignments of the three junctions are similar because of Fermi level pinning induced by charge transfer at the metal-thiolate interface and by a varying degree of additional charge transfer between BTTF and the metal. Density functional theory calculations show that the amount of electron transfer from M to the lowest unoccupied molecular orbital (LUMO) of BTTF follows the order Ag > Au > Pt. Junctions with Ag electrodes are the least stable and can only withstand an applied bias of ±1.0 V. As a result, no molecular orbitals can fall in the applied bias window, and the junctions do not rectify. The junction stability increases for M = Au, and the highest occupied molecular orbital (HOMO) dominates charge transport at a positive bias resulting in a positive rectification ratio of 83 at ±1.5 V. The junctions are very stable for M = Pt, but now the LUMO dominates charge transport at a negative bias resulting in a negative rectification ratio of 912 at ±2.5 V. Thus, the limitations of Fermi level pinning can be bypassed by a judicious choice of the bottom electrode material, making it possible to access selectively HOMO- or LUMO-based charge transport and, as shown here, associated reversal of rectification.
Collapse
Affiliation(s)
- Yingmei Han
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Maria Serena Maglione
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Valentin Diez Cabanes
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Javier Casado-Montenegro
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Xiaojiang Yu
- Singapore Synchrotron Light Source, National University of Singapore, 5 Research Link, Singapore 117603, Singapore
| | - Senthil Kumar Karuppannan
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Ziyu Zhang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Núria Crivillers
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Marta Mas-Torrent
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Concepció Rovira
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Jérôme Cornil
- Laboratory for Chemistry of Novel Materials, University of Mons, Place du Parc 20, Mons 7000, Belgium
| | - Jaume Veciana
- Institut de Ciéncia de Materials de Barcelona (ICMAB-CSIC)/CIBER-BBN, Campus de la UAB, Bellaterra 08193, Spain
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Centre for Advanced 2D Materials and Graphene Research Center, National University of Singapore, 6 Science Drive 2, Singapore 117546, Singapore
| |
Collapse
|
15
|
Han Y, Nijhuis CA. Functional Redox-Active Molecular Tunnel Junctions. Chem Asian J 2020; 15:3752-3770. [PMID: 33015998 PMCID: PMC7756406 DOI: 10.1002/asia.202000932] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Redox-active molecular junctions have attracted considerable attention because redox-active molecules provide accessible energy levels enabling electronic function at the molecular length scales, such as, rectification, conductance switching, or molecular transistors. Unlike charge transfer in wet electrochemical environments, it is still challenging to understand how redox-processes proceed in solid-state molecular junctions which lack counterions and solvent molecules to stabilize the charge on the molecules. In this minireview, we first introduce molecular junctions based on redox-active molecules and discuss their properties from both a chemistry and nanoelectronics point of view, and then discuss briefly the mechanisms of charge transport in solid-state redox-junctions followed by examples where redox-molecules generate new electronic function. We conclude with challenges that need to be addressed and interesting future directions from a chemical engineering and molecular design perspectives.
Collapse
Affiliation(s)
- Yingmei Han
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
| | - Christian A. Nijhuis
- Department of ChemistryNational University of Singapore3 Science Drive 3Singapore117543Singapore
- Centre for Advanced 2D Materials and Graphene Research CentreNational University of Singapore6 Science Drive 2Singapore117546Singapore
| |
Collapse
|
16
|
Han Y, Nickle C, Zhang Z, Astier HPAG, Duffin TJ, Qi D, Wang Z, Del Barco E, Thompson D, Nijhuis CA. Electric-field-driven dual-functional molecular switches in tunnel junctions. NATURE MATERIALS 2020; 19:843-848. [PMID: 32483243 DOI: 10.1038/s41563-020-0697-5] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/28/2020] [Indexed: 05/24/2023]
Abstract
To avoid crosstalk and suppress leakage currents in resistive random access memories (RRAMs), a resistive switch and a current rectifier (diode) are usually combined in series in a one diode-one resistor (1D-1R) RRAM. However, this complicates the design of next-generation RRAM, increases the footprint of devices and increases the operating voltage as the potential drops over two consecutive junctions1. Here, we report a molecular tunnel junction based on molecules that provide an unprecedented dual functionality of diode and variable resistor, resulting in a molecular-scale 1D-1R RRAM with a current rectification ratio of 2.5 × 104 and resistive on/off ratio of 6.7 × 103, and a low drive voltage of 0.89 V. The switching relies on dimerization of redox units, resulting in hybridization of molecular orbitals accompanied by directional ion migration. This electric-field-driven molecular switch operating in the tunnelling regime enables a class of molecular devices where multiple electronic functions are preprogrammed inside a single molecular layer with a thickness of only 2 nm.
Collapse
Affiliation(s)
- Yingmei Han
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Cameron Nickle
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Ziyu Zhang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | | | - Thorin J Duffin
- Department of Chemistry, National University of Singapore, Singapore, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Dongchen Qi
- Centre for Materials Science, School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Zhe Wang
- Department of Chemistry, National University of Singapore, Singapore, Singapore
| | - Enrique Del Barco
- Department of Physics, University of Central Florida, Orlando, FL, USA.
| | - Damien Thompson
- Department of Physics, Bernal Institute, University of Limerick, Limerick, Ireland.
| | - Christian A Nijhuis
- Department of Chemistry, National University of Singapore, Singapore, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore.
- Centre for Advanced 2D Materials and Graphene Research Center, National University of Singapore, Singapore, Singapore.
| |
Collapse
|