1
|
Kang X, Yu M, Xu Y, Cao Z, Balme S, Ma T. Nanochannel functionalization using POFs: Progress and prospects. Adv Colloid Interface Sci 2025; 342:103533. [PMID: 40318384 DOI: 10.1016/j.cis.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Biomimetic nanochannels, inspired by natural ion channels found in living organisms, are synthetic systems designed to replicate the highly selective and efficient ion/molecule transport processes essential for various biological functions. These artificial channels mimic the structural and functional properties of their biological counterparts, offering precise control over ion and molecular transport. Porous organic framework materials (POFs), including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have emerged as promising materials for functionalizing nanochannels due to their unique structures and exceptional properties. This functionalization strategy not only enhances the performance of synthetic nanochannels but also broadens their application potential across various fields. This review comprehensively examines the recent progress in the preparation and application of POFs stereoscopic-functionalized solid nanochannels. Special emphasis is placed on their practical applications, including proton conduction, ion-selective membranes, photo-responsive materials, sensing and detection, chiral separation, and catalysis. Finally, the future development prospects and challenges in this research area are discussed, highlighting opportunities for advancing the design and application of biomimetic nanochannels.
Collapse
Affiliation(s)
- Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingyi Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
2
|
Li XY, Zhou MH, Zeng DW, Zhu YF, Zhang FL, Liao S, Fan YC, Zhao XQ, Zhang L, Bai FW. Membrane transport engineering for efficient yeast biomanufacturing. BIORESOURCE TECHNOLOGY 2025; 418:131890. [PMID: 39644936 DOI: 10.1016/j.biortech.2024.131890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/14/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Yeast strains have been widely recognized as useful cell factories for biomanufacturing. To improve production efficiency, their biosynthetic pathways and regulatory strategies have been continuously optimized. However, commercial production using yeasts is still limited by low product yield and high production cost. Accumulating evidences have demonstrated the importance of metabolite transport processes in addressing these challenges. Engineering yeast membrane transporters for transporting precursors, substrates, intermediates, products and toxic inhibitors has been successful. In addition, membrane properties are also important for metabolite production. Here we propose membrane transport engineering (MTE) to integrate manipulation of both membrane transporters and membrane properties. We emphasize that systematic optimization of both transporters and membrane lipid bilayers benefits production efficiency. We also envision the potential of artificial intelligence and automation process in MTE for economic and sustainable bioproduction using yeast cell factories.
Collapse
Affiliation(s)
- Xin-Yue Li
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ming-Hai Zhou
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yi-Fan Zhu
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Ya-Chao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd, Dalian 116045, China.
| | - Feng-Wu Bai
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Olov N, Nour S, Harris AR, Li D, Cook M, Williams RJ, Cheeseman S, Nisbet DR. Using Nanoscale Passports To Understand and Unlock Ion Channels as Gatekeepers of the Cell. ACS NANO 2024; 18:22709-22733. [PMID: 39136685 DOI: 10.1021/acsnano.4c05654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Natural ion channels are proteins embedded in the cell membrane that control many aspects of cell and human physiology by acting as gatekeepers, regulating the flow of ions in and out of cells. Advances in nanotechnology have influenced the methods for studying ion channels in vitro, as well as ways to unlock the delivery of therapeutics by modulating them in vivo. This review provides an overview of nanotechnology-enabled approaches for ion channel research with a focus on the synthesis and applications of synthetic ion channels. Further, the uses of nanotechnology for therapeutic applications are critically analyzed. Finally, we provide an outlook on the opportunities and challenges at the intersection of nanotechnology and ion channels. This work highlights the key role of nanoscale interactions in the operation and modulation of ion channels, which may prompt insights into nanotechnology-enabled mechanisms to study and exploit these systems in the near future.
Collapse
Affiliation(s)
- Nafiseh Olov
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Shirin Nour
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Polymer Science Group, Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Alexander R Harris
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - Dan Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Mark Cook
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Department of Medicine, St Vincent's Hospital, Melbourne, Fitzroy, VIC 3065, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Centre for Sustainable Bioproducts, Deakin University, Waurn Ponds, VIC 3217, Australia
- IMPACT, School of Medicine, Deakin University, Waurn Ponds, VIC 3217, Australia
| | - Samuel Cheeseman
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| | - David R Nisbet
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- The Graeme Clark Institute, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
- Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Parkville, VIC 3010, Melbourne, Australia
| |
Collapse
|
4
|
Lee S, Poojari CS, Maznichenko A, Roesel D, Swiderska I, Pohl P, Hub JS, Roke S. Dynamic Second Harmonic Imaging of Proton Translocation Through Water Needles in Lipid Membranes. J Am Chem Soc 2024; 146:19818-19827. [PMID: 38991220 PMCID: PMC11273352 DOI: 10.1021/jacs.4c02810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024]
Abstract
Proton translocation through lipid membranes is a fundamental process in the field of biology. Several theoretical models have been developed and presented over the years to explain the phenomenon, yet the exact mechanism is still not well understood. Here, we show that proton translocation is directly related to membrane potential fluctuations. Using high-throughput wide-field second harmonic (SH) microscopy, we report apparently universal transmembrane potential fluctuations in lipid membrane systems. Molecular simulations and free energy calculations suggest that H+ permeation proceeds predominantly across a thin, membrane-spanning water needle and that the transient transmembrane potential drives H+ ions across the water needle. This mechanism differs from the transport of other cations that require completely open pores for transport and follows naturally from the well-known Grotthuss mechanism for proton transport in bulk water. Furthermore, SH imaging and conductivity measurements reveal that the rate of proton transport depends on the structure of the hydrophobic core of bilayer membranes.
Collapse
Affiliation(s)
- Seonwoo Lee
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Chetan S. Poojari
- Theoretical
Physics and Center for Biophysics, Saarland
University, Saarbrücken 66123, Germany
| | - Anna Maznichenko
- Institute
of Biophysics, Johannes Kepler University
Linz, Gruberstraße 40, Linz 4020, Austria
| | - David Roesel
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Iwona Swiderska
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| | - Peter Pohl
- Institute
of Biophysics, Johannes Kepler University
Linz, Gruberstraße 40, Linz 4020, Austria
| | - Jochen S. Hub
- Theoretical
Physics and Center for Biophysics, Saarland
University, Saarbrücken 66123, Germany
| | - Sylvie Roke
- Laboratory
for fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
and Institute of Materials Science (IMX), School of Engineering (STI),
and Lausanne Centre for Ultrafast Science (LACUS), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne CH-1015, Switzerland
| |
Collapse
|
5
|
Eremchev M, Roesel D, Dansette PM, Michailovas A, Roke S. High throughput wide field second harmonic imaging of giant unilamellar vesicles. Biointerphases 2023; 18:031202. [PMID: 37289033 DOI: 10.1116/6.0002640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
Cell-sized giant unilamellar vesicles (GUVs) are an ideal tool for understanding lipid membrane structure and properties. Label-free spatiotemporal images of their membrane potential and structure would greatly aid the quantitative understanding of membrane properties. In principle, second harmonic imaging is a great tool to do so, but the low degree of spatial anisotropy that arises from a single membrane limits its application. Here, we advance the use of wide-field high throughput SH imaging by SH imaging with the use of ultrashort laser pulses. We achieve a throughput improvement of 78% of the maximum theoretical value and demonstrate subsecond image acquisition times. We show how the interfacial water intensity can be converted into a quantitative membrane potential map. Finally, for GUV imaging, we compare this type of nonresonant SH imaging to resonant SH imaging and two photon imaging using fluorophores.
Collapse
Affiliation(s)
- M Eremchev
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineerinsg (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - D Roesel
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineerinsg (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - P-M Dansette
- Ekspla Ltd., Savanoriu Ave. 237, LT-02300 Vilnius, Lithuania
| | - A Michailovas
- Ekspla Ltd., Savanoriu Ave. 237, LT-02300 Vilnius, Lithuania
- Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania
| | - S Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineerinsg (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Eremchev M, Roesel D, Poojari CS, Roux A, Hub JS, Roke S. Passive transport of Ca 2+ ions through lipid bilayers imaged by widefield second harmonic microscopy. Biophys J 2023; 122:624-631. [PMID: 36659849 PMCID: PMC9989880 DOI: 10.1016/j.bpj.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/04/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
In biology, release of Ca2+ ions in the cytosol is essential to trigger or control many cell functions. Calcium signaling acutely depends on lipid membrane permeability to Ca2+. For proper understanding of membrane permeability to Ca2+, both membrane hydration and the structure of the hydrophobic core must be taken into account. Here, we vary the hydrophobic core of bilayer membranes and observe different types of behavior in high-throughput wide-field second harmonic imaging. Ca2+ translocation is observed through mono-unsaturated (DOPC:DOPA) membranes, reduced upon the addition of cholesterol, and completely inhibited for branched (DPhPC:DPhPA) and poly-unsaturated (SLPC:SLPA) lipid membranes. We propose, using molecular dynamics simulations, that ion transport occurs through ion-induced transient pores, which requires nonequilibrium membrane restructuring. This results in different rates at different locations and suggests that the hydrophobic structure of lipids plays a much more sophisticated regulating role than previously thought.
Collapse
Affiliation(s)
- Maksim Eremchev
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David Roesel
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Aurélien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland; Swiss National Centre for Competence in Research Programme Chemical Biology, Geneva, Switzerland; School of Chemistry and Biochemistry, University of Geneva, Geneva, Switzerland
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland; Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
7
|
Roesel D, Eremchev M, Poojari CS, Hub JS, Roke S. Ion-Induced Transient Potential Fluctuations Facilitate Pore Formation and Cation Transport through Lipid Membranes. J Am Chem Soc 2022; 144:23352-23357. [PMID: 36521841 PMCID: PMC9801421 DOI: 10.1021/jacs.2c08543] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 12/23/2022]
Abstract
Unassisted ion transport through lipid membranes plays a crucial role in many cell functions without which life would not be possible, yet the precise mechanism behind the process remains unknown due to its molecular complexity. Here, we demonstrate a direct link between membrane potential fluctuations and divalent ion transport. High-throughput wide-field non-resonant second harmonic (SH) microscopy of membrane water shows that membrane potential fluctuations are universally found in lipid bilayer systems. Molecular dynamics simulations reveal that such variations in membrane potential reduce the free energy cost of transient pore formation and increase the ion flux across an open pore. These transient pores can act as conduits for ion transport, which we SH image for a series of divalent cations (Cu2+, Ca2+, Ba2+, Mg2+) passing through giant unilamellar vesicle (GUV) membranes. Combining the experimental and computational results, we show that permeation through pores formed via an ion-induced electrostatic field is a viable mechanism for unassisted ion transport.
Collapse
Affiliation(s)
- David Roesel
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Maksim Eremchev
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Chetan S. Poojari
- Theoretical
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Jochen S. Hub
- Theoretical
Physics and Center for Biophysics, Saarland
University, 66123 Saarbrücken, Germany
| | - Sylvie Roke
- Laboratory
for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI),
School of Engineering (STI), École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute
of Materials Science and Engineering (IMX), School of Engineering
(STI), École Polytechnique Fédérale
de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne
Centre for Ultrafast Science, École
Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Dupertuis N, Tarun OB, Lütgebaucks C, Roke S. Three-Dimensional Confinement of Water: H 2O Exhibits Long-Range (>50 nm) Structure while D 2O Does Not. NANO LETTERS 2022; 22:7394-7400. [PMID: 36067223 DOI: 10.1021/acs.nanolett.2c02206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Water is the liquid of life thanks to its three-dimensional adaptive hydrogen (H)-bond network. Confinement of this network may lead to dramatic structural changes influencing chemical and physical transformations. Although confinement effects occur on a <1 nm length scale, the upper length scale limit is unknown. Here, we investigate 3D-confinement over lengths scales ranging from 58-140 nm. By confining water in zwitterionic liposomes of different sizes and measuring the change in H-bond network conformation using second harmonic scattering (SHS), we determined long-range confinement effects in light and heavy water. D2O displays no detectable 3D-confinement effects <58 nm (<3 × 106 D2O molecules). H2O is distinctly different. The vesicle enclosed inner H-bond network has a different conformation compared to the outside network and the SHS response scales with the volume of the confining space. H2O displays confinement effects over distances >100 nm (>2 × 107 H2O molecules).
Collapse
Affiliation(s)
- Nathan Dupertuis
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Orly B Tarun
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Cornelis Lütgebaucks
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Sylvie Roke
- Laboratory for Fundamental BioPhotonics (LBP), Institute of Bioengineering (IBI), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Institute of Materials Science and Engineering (IMX), School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
- Lausanne Centre for Ultrafast Science, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
9
|
Hou Y, Xu B, Chen SL, Gan W, Yuan Q, Lin X. Understanding the different cross-membrane transport kinetics of two charged molecules on the DOPG lipid surface with second harmonic generation and MD simulation. SOFT MATTER 2022; 18:4305-4314. [PMID: 35620962 DOI: 10.1039/d2sm00167e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A clear physical picture of the dynamic behavior of molecules on the surface of the lipid membrane is highly desired and has attracted great attention from researchers. In this study, a step forward in this direction based on previous studies was presented with second harmonic generation (SHG) and molecular dynamic (MD) simulation. Specifically, details on the orientation flipping and cross-membrane transport of two charged molecules, 4-(4-diethylaminostyry)-1-methyl-pyridinium iodide (D289) and malachite green (MG), on the surface of 2-dioleoyl-sn-glycero-3-phospho-rac-(1-glycerol) sodium salt (DOPG) lipids were presented. Firstly, the orientation flipping of the two molecules on the surface of lipids before their cross-membrane transport was confirmed by the MD simulation. Then, the concentration dependent rate of the cross membrane transport for MG/D289 was analyzed. It was found that a simplified model could satisfactorily interpret the faster cross-membrane transport of MG under higher bulk concentrations. A different concentration dependent dynamics was observed with D289 and the reason behind it was also discussed. With this investigation, the surface structures and dynamics of D289 and MG on the DOPG lipid surface were clearly presented.
Collapse
Affiliation(s)
- Yi Hou
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Baomei Xu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Shun-Li Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structure Materials of Guangdong Province, Shantou University, Shantou 515063, Guangdong, China
| | - Wei Gan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Science, Harbin Institute of Technology (Shenzhen), University Town, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Shenzhen 518055, Guangdong, Harbin 150001, Heilongjiang, China.
| | - Qunhui Yuan
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), University Town, Shenzhen 518055, Guangdong, China.
| | - Xi Lin
- School of Materials Science and Engineering, and Institute of Materials Genome & Big Data, Harbin Institute of Technology(Shenzhen), University Town, Shenzhen 518055, China.
| |
Collapse
|
10
|
de Coene Y, Jooken S, Deschaume O, Van Steenbergen V, Vanden Berghe P, Van den Haute C, Baekelandt V, Callewaert G, Van Cleuvenbergen S, Verbiest T, Bartic C, Clays K. Label-Free Imaging of Membrane Potentials by Intramembrane Field Modulation, Assessed by Second Harmonic Generation Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200205. [PMID: 35355419 DOI: 10.1002/smll.202200205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Optical interrogation of cellular electrical activity has proven itself essential for understanding cellular function and communication in complex networks. Voltage-sensitive dyes are important tools for assessing excitability but these highly lipophilic sensors may affect cellular function. Label-free techniques offer a major advantage as they eliminate the need for these external probes. In this work, it is shown that endogenous second-harmonic generation (SHG) from live cells is highly sensitive to changes in transmembrane potential (TMP). Simultaneous electrophysiological control of a living human embryonic kidney (HEK293T) cell, through a whole-cell voltage-clamp reveals a linear relation between the SHG intensity and membrane voltage. The results suggest that due to the high ionic strengths and fast optical response of biofluids, membrane hydration is not the main contributor to the observed field sensitivity. A conceptual framework is further provided that indicates that the SHG voltage sensitivity reflects the electric field within the biological asymmetric lipid bilayer owing to a nonzero χeff(2) tensor. Changing the TMP without surface modifications such as electrolyte screening offers high optical sensitivity to membrane voltage (≈40% per 100 mV), indicating the power of SHG for label-free read-out. These results hold promise for the design of a non-invasive label-free read-out tool for electrogenic cells.
Collapse
Affiliation(s)
- Yovan de Coene
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Stijn Jooken
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Olivier Deschaume
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Valérie Van Steenbergen
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), TAGRID, Department of Chronic Diseases Metabolism and Ageing, Ku Leuven, ON I Herestraat 49, Leuven, 3000, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, Ku Leuven, RK-Herestraat 49, Leuven, 3000, Belgium
| | - Geert Callewaert
- Department of Cellular and Molecular Medicine, Ku Leuven, KULAK Kortrijk Campus, Etienne Sabbelaan 53, Kortrijk, 8500, Belgium
| | - Stijn Van Cleuvenbergen
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Thierry Verbiest
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Carmen Bartic
- Laboratory of Soft Matter and Biophysics, Department of Physics and Astronomy, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| | - Koen Clays
- Laboratory of Molecular Imaging and Photonics, Department of Chemistry, KU Leuven, Celestijnenlaan 200D, Leuven, 3001, Belgium
| |
Collapse
|
11
|
Chen Y, Zhu Z, Tian Y, Jiang L. Rational ion transport management mediated through membrane structures. EXPLORATION (BEIJING, CHINA) 2021; 1:20210101. [PMID: 37323215 PMCID: PMC10190948 DOI: 10.1002/exp.20210101] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/13/2021] [Indexed: 06/14/2023]
Abstract
Unique membrane structures endow membranes with controlled ion transport properties in both biological and artificial systems, and they have shown broad application prospects from industrial production to biological interfaces. Herein, current advances in nanochannel-structured membranes for manipulating ion transport are reviewed from the perspective of membrane structures. First, the controllability of ion transport through ion selectivity, ion gating, ion rectification, and ion storage is introduced. Second, nanochannel-structured membranes are highlighted according to the nanochannel dimensions, including single-dimensional nanochannels (i.e., 1D, 2D, and 3D) functioning by the controllable geometrical parameters of 1D nanochannels, the adjustable interlayer spacing of 2D nanochannels, and the interconnected ion diffusion pathways of 3D nanochannels, and mixed-dimensional nanochannels (i.e., 1D/1D, 1D/2D, 1D/3D, 2D/2D, 2D/3D, and 3D/3D) tuned through asymmetric factors (e.g., components, geometric parameters, and interface properties). Then, ultrathin membranes with short ion transport distances and sandwich-like membranes with more delicate nanochannels and combination structures are reviewed, and stimulus-responsive nanochannels are discussed. Construction methods for nanochannel-structured membranes are briefly introduced, and a variety of applications of these membranes are summarized. Finally, future perspectives to developing nanochannel-structured membranes with unique structures (e.g., combinations of external macro/micro/nanostructures and the internal nanochannel arrangement) for mediating ion transport are presented.
Collapse
Affiliation(s)
- Yupeng Chen
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Zhongpeng Zhu
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
| | - Ye Tian
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
| | - Lei Jiang
- Key Laboratory of Bio‐Inspired Smart Interfacial Science and Technology of Ministry of Education, School of ChemistryBeihang UniversityBeijingP. R. China
- CAS Key Laboratory of Bio‐Inspired Materials and Interfacial ScienceCAS Center for Excellence in NanoscienceTechnical Institute of Physics and Chemistry, Chinese Academy of SciencesBeijingP. R. China
- University of Chinese Academy of SciencesBeijingP. R. China
- School of Future TechnologyUniversity of Chinese Academy of SciencesBeijingP. R. China
| |
Collapse
|
12
|
|
13
|
Abstract
Nanoconfined fluids (NCFs), which are confined in nanospaces, exhibit distinctive nanoscale effects, including surface effects, small-size effects, quantum effects, and others. The continuous medium hypothesis in fluid mechanics is not valid in this context because of the comparable characteristic length of spaces and molecular mean free path, and accordingly, the classical continuum theories developed for the bulk fluids usually cannot describe the mass and energy transport of NCFs. In this Perspective, we summarize the nanoscale effects on the thermodynamics, mass transport, flow dynamics, heat transfer, phase change, and energy transport of NCFs and highlight the related representative works. The applications of NCFs in the fields of membrane separation, oil and gas production, energy harvesting and storage, and biological engineering are especially indicated. Currently, the theoretical description framework of NCFs is still missing, and it is expected that this framework can be established by adopting the classical continuum theories with the consideration of nanoscale effects.
Collapse
Affiliation(s)
- Chengzhen Sun
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Runfeng Zhou
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
| | - Zhixiang Zhao
- School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Shaanxi 710048, China
| | - Bofeng Bai
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi'an Jiaotong University, Shaanxi 710049, China
| |
Collapse
|