1
|
Li H, Zhao J, Wang Y, Liu H, Chen Q, Bao Y, Zhou M, Li Y, Sang Y, Yang F, Nie Z. Scalable Manufacturing of Low-Symmetry Plasmonic Nanospindle Arrays with Tunable Surface Lattice Resonance. ACS NANO 2025; 19:7391-7400. [PMID: 39951562 DOI: 10.1021/acsnano.4c18423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2025]
Abstract
Geometry-dependent plasmonic surface lattice resonances (SLRs) have garnered great interest across a range of applications, including nanolasers, sensors, photocatalysis, and nonlinear optics. However, the rational fabrication of high-quality, low-symmetry, plasmonic nanoparticle arrays over large areas remains challenging. Herein, we report a versatile strategy for the scalable fabrication of centimeter-scale plasmonic nanospindle (NS) arrays with high positional and orientational precision. Our approach combines solvent-assisted soft lithography with in situ reduction of metal precursors, enabling the cost-effective production of large-area and well-ordered NS arrays without the need of specialized equipment. The Au NS arrays exhibit superior SLRs with a ultranarrow line width of 3.9 nm and a quality factor (Q-factor) of 309. The aspect ratio and lattice geometry of the NSs can be precisely tuned by applying mechanical strain to the stretchable elastomeric template, thus, allowing us to customize the SLR performance across the near-infrared spectrum. This technique enables the precise engineering of anisotropic nanoparticle arrays in a standard chemistry laboratory, opening new possibilities for advanced plasmonic devices.
Collapse
Affiliation(s)
- Hongyan Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| | - Jingyi Zhao
- Department of Physics, Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and State Key Laboratory of Surface Physics, Fudan University, 200433 Shanghai, China
| | - Yazi Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| | - Haitao Liu
- School of Physical Science and Technology, Tiangong University, 300387 Tianjin, China
| | - Qianyun Chen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| | - Yilin Bao
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| | - Miaoen Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| | - Yue Li
- School of Physical Science and Technology, Tiangong University, 300387 Tianjin, China
| | - Yutao Sang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| | - Fan Yang
- School of Physical Science and Technology, Tiangong University, 300387 Tianjin, China
| | - Zhihong Nie
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, 200433 Shanghai, China
| |
Collapse
|
2
|
Aigner A, Weber T, Wester A, Maier SA, Tittl A. Continuous spectral and coupling-strength encoding with dual-gradient metasurfaces. NATURE NANOTECHNOLOGY 2024; 19:1804-1812. [PMID: 39187580 PMCID: PMC11638065 DOI: 10.1038/s41565-024-01767-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024]
Abstract
To control and enhance light-matter interactions at the nanoscale, two parameters are central: the spectral overlap between an optical cavity mode and the material's spectral features (for example, excitonic or molecular absorption lines), and the quality factor of the cavity. Controlling both parameters simultaneously would enable the investigation of systems with complex spectral features, such as multicomponent molecular mixtures or heterogeneous solid-state materials. So far, it has been possible only to sample a limited set of data points within this two-dimensional parameter space. Here we introduce a nanophotonic approach that can simultaneously and continuously encode the spectral and quality-factor parameter space within a compact spatial area. We use a dual-gradient metasurface design composed of a two-dimensional array of smoothly varying subwavelength nanoresonators, each supporting a unique mode based on symmetry-protected bound states in the continuum. This results in 27,500 distinct modes and a mode density approaching the theoretical upper limit for metasurfaces. By applying our platform to surface-enhanced molecular spectroscopy, we find that the optimal quality factor for maximum sensitivity depends on the amount of analyte, enabling effective molecular detection regardless of analyte concentration within a single dual-gradient metasurface. Our design provides a method to analyse the complete spectral and coupling-strength parameter space of complex material systems for applications such as photocatalysis, chemical sensing and entangled photon generation.
Collapse
Affiliation(s)
- Andreas Aigner
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Thomas Weber
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Alwin Wester
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany
| | - Stefan A Maier
- School of Physics and Astronomy, Monash University, Clayton, Victoria, Australia.
- The Blackett Laboratory, Department of Physics, Imperial College London, London, UK.
| | - Andreas Tittl
- Chair in Hybrid Nanosystems, Nano-Institute Munich, Faculty of Physics, Ludwig-Maximilians-Universtität München, Munich, Germany.
| |
Collapse
|
3
|
Huang SH, Su HP, Chen CY, Lin YC, Yang Z, Shi Y, Song Q, Wu PC. Microcavity-assisted multi-resonant metasurfaces enabling versatile wavefront engineering. Nat Commun 2024; 15:9658. [PMID: 39511215 PMCID: PMC11543841 DOI: 10.1038/s41467-024-54057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 10/30/2024] [Indexed: 11/15/2024] Open
Abstract
Metasurfaces have exhibited exceptional proficiency in precisely modulating light properties within narrow wavelength spectra. However, there is a growing demand for multi-resonant metasurfaces capable of wavefront engineering across broad spectral ranges. In this study, we introduce a microcavity-assisted multi-resonant metasurface platform that integrates subwavelength meta-atoms with a specially designed distributed Bragg reflector (DBR) substrate. This platform enables the simultaneous excitation of various resonant modes within the metasurface, resulting in multiple high-Q resonances spanning from the visible to the near-infrared (NIR) regions. The developed metasurface generates up to 15 high-Q resonant peaks across the visible-NIR spectrum, achieving a maximum efficiency of 81% (70.7%) in simulation (experiment) with an average efficiency of 76.6% (54.5%) and a standard deviation of 4.1% (11.1%). Additionally, we demonstrate the versatility of the multi-resonant metasurface in amplitude, phase, and wavefront modulations at peak wavelengths. By integrating structural color printing and vectorial holographic imaging, our proposed metasurface platform shows potential for applications in optical displays and encryption. This work paves the way for the development of next-generation multi-resonant metasurfaces with broad-ranging applications in photonics and beyond.
Collapse
Affiliation(s)
- Shih-Hsiu Huang
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Hsiu-Ping Su
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Yun Chen
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chun Lin
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan
| | - Zijin Yang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yuzhi Shi
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China.
| | - Qinghua Song
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China.
| | - Pin Chieh Wu
- Department of Photonics, National Cheng Kung University, Tainan, Taiwan.
- Center for Quantum Frontiers of Research & Technology (QFort), National Cheng Kung University, Tainan, Taiwan.
- Meta-nanoPhotonics Center, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
4
|
Shin DI, Kim J, Im SG, Kang T, Wang K, Lee G, Kwon SJ, Park S, Yi GR. Proximal High-Index Metamaterials based on a Superlattice of Gold Nanohexagons Targeting the Near-Infrared Band. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405650. [PMID: 39169743 DOI: 10.1002/adma.202405650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 07/28/2024] [Indexed: 08/23/2024]
Abstract
Plasmonic nanoparticles can be assembled into a superlattice, to form optical metamaterials, particularly targeting precise control of optical properties such as refractive index (RI). The superlattices exhibit enhanced near-field, given the sufficiently narrow gap between nanoparticles supporting multiple plasmonic resonance modes only realized in proximal environments. Herein, the planar superlattice of plasmonic Au nanohexagons (AuNHs) with precisely controlled geometries such as size, shape, and edge-gaps is reported. The proximal AuNHs superlattice realized over a large area with selective edge-to-edge assembly exhibited the highest-ever-recorded RI values in the near-infrared (NIR) band, surpassing the upper limit of the RI of the natural intrinsic materials (up to 10.04 at λ = 1.5 µm). The exceptionally enhanced RI is derived from intensified in-plane surface plasmon coupling across the superlattices. Precise control of the edge-gap of neighboring AuNHs systematically tuned the RI as confirmed by numerical analysis based on the plasmonic percolation model. Furthermore, a 1D photonic crystal, composed of alternating layers of AuNHs superlattices and low-index polymers, is constructed to enhance the selectivity of the reflectivity operating in the NIR band. It is expected that the proximal AuNHs superlattices can be used as new optical metamaterials that can be extended to the NIR range.
Collapse
Affiliation(s)
- Dong-In Shin
- SKKU Advanced Institute of Nanotechnology (SAINT), Suwon, 16419, Republic of Korea
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Jeongwon Kim
- Department of Chemistry, Sungkyunkwan University College of Natural Science, Suwon, 16419, Republic of Korea
| | - Seong-Gyun Im
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taewoo Kang
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ke Wang
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea
- School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430000, China
| | - Gaehang Lee
- Korea Basic Science Institute, Daejeon, 34133, Republic of Korea
| | - Seok Joon Kwon
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- SKKU Institute of Energy Science & Technology (SIEST), Department of Semiconductor Convergence Engineering and Department of Future Energy Engineering, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Sungho Park
- Department of Chemistry, Yonsei University, Seoul, 03722, Republic of Korea
| | - Gi-Ra Yi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Nam-Gu, Pohang, 37673, Republic of Korea
| |
Collapse
|
5
|
Richter FU, Sinev I, Zhou S, Leitis A, Oh SH, Tseng ML, Kivshar Y, Altug H. Gradient High-Q Dielectric Metasurfaces for Broadband Sensing and Control of Vibrational Light-Matter Coupling. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314279. [PMID: 38511549 DOI: 10.1002/adma.202314279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/13/2024] [Indexed: 03/22/2024]
Abstract
Surface-enhanced infrared absorption spectroscopy (SEIRA) has emerged as a powerful technique for ultrasensitive chemical-specific analysis. SEIRA can be realized by employing metasurfaces that can enhance light-matter interactions in the spectral bands of molecular vibrations. Increasing sample complexity emphasizes the need for metasurfaces that can operate simultaneously at different spectral bands, both accessing rich spectral information over a broad band, and resolving subtle differences in the absorption fingerprints through narrow-band resonances. Here, a novel concept of resonance-gradient metasurfaces is introduced, where the required spectral selectivity is achieved via local high-quality-factor (high-Q) resonances, while the continuous coverage of a broad band is enabled by the gradual adjustment of the unit-cell dimensions along the planar structure. The highly tailorable design of the gradient metasurfaces provides flexibility for shaping the spectral sampling density to match the relevant bands of target analytes while keeping a compact device footprint. The versatility of the gradient metasurfaces is demonstrated through several sensing scenarios, including polymer mixture deconvolution, detecting a multistep bioassay, and identification of the onset of vibrational strong coupling regime. The proposed gradient-resonance platform significantly contributes to the rapidly evolving landscape of nonlocal metasurfaces, enabling applications in molecular detection and analysis of fundamental light-matter interaction phenomena.
Collapse
Affiliation(s)
- Felix Ulrich Richter
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Ivan Sinev
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Senlu Zhou
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Aleksandrs Leitis
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| | - Sang-Hyun Oh
- Department of Electrical and Computer Engineering, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Ming Lun Tseng
- Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, 300, Taiwan
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
| | - Hatice Altug
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015, Switzerland
| |
Collapse
|
6
|
Allayarov I, Evlyukhin AB, Calà Lesina A. Multiresonant all-dielectric metasurfaces based on high-order multipole coupling in the visible. OPTICS EXPRESS 2024; 32:5641-5658. [PMID: 38439285 DOI: 10.1364/oe.511172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/16/2024] [Indexed: 03/06/2024]
Abstract
In many cases, optical metasurfaces are studied in the single-resonant regime. However, a multiresonant behavior can enable multiband devices with reduced footprint, and is desired for applications such as display pixels, multispectral imaging and sensing. Multiresonances are typically achieved by engineering the array lattice (e.g., to obtain several surface lattice resonances), or by adopting a unit cell hosting one (or more than one) nanostructure with some optimized geometry to support multiple resonances. Here, we present a study on how to achieve multiresonant metasurfaces in the visible spectral range by exploiting high-order multipoles in dielectric (e.g., diamond or titanium dioxide) nanostructures. We show that in a simple metasurface (for a fixed particle and lattice geometry) one can achieve triple resonance occurring nearly at RGB (red, green, and blue) wavelengths. Based on analytical and numerical analysis, we demonstrate that the physical mechanism enabling the multiresonance behavior is the lattice induced coupling (energy exchange) between high-order Mie-type multipoles moments of the metasurface's particles. We discuss the influence on the resonances of the metasurface's finite size, surrounding material, polarization, and lattice shape, and suggest control strategies to enable the optical tunability of these resonances.
Collapse
|
7
|
Qi X, Pérez LA, Alonso MI, Mihi A. High Q-Factor Plasmonic Surface Lattice Resonances in Colloidal Nanoparticle Arrays. ACS APPLIED MATERIALS & INTERFACES 2024; 16:1259-1267. [PMID: 38011896 PMCID: PMC10788823 DOI: 10.1021/acsami.3c08617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/29/2023]
Abstract
Surface lattice resonances (SLRs) sustained by ordered metal arrays are characterized by their narrow spectral features, remarkable quality factors, and the ability to tune their spectral properties based on the periodicity of the array. However, the majority of these structures are fabricated using classical lithographic processes or require postannealing steps at high temperatures to enhance the quality of the metal. These limitations hinder the widespread utilization of these periodic metal arrays in various applications. In this work, we use the scalable technique of template-assisted assembly of metal colloids to produce plasmonic supercrystals over centimeter areas capable of sustaining SLRs with high Q factors reaching up to 270. Our approach obviates the need for any postprocessing, offering a streamlined and efficient fabrication route. Furthermore, our method enables extensive tunability across the entire visible and near-infrared spectral ranges, empowering the design of tailored plasmonic resonant structures for a wide range of applications.
Collapse
Affiliation(s)
| | | | - Maria Isabel Alonso
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| | - Agustín Mihi
- Institute of Materials Science
of Barcelona, ICMAB-CSIC, Campus de la UAB, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
8
|
Bai Y, Zheng H, Zhang Q, Yu Y, Liu SD. Perfect absorption and phase singularities induced by surface lattice resonances for plasmonic nanoparticle array on a metallic film. OPTICS EXPRESS 2022; 30:45400-45412. [PMID: 36522946 DOI: 10.1364/oe.475248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The formation of pairs of perfect absorption associated with phase singularities in the parameter space using the hybridized structure constructed with a metallic nanoparticle array and a metallic film is promising to enhance light-mater interactions. However, the localized plasmon resonances of the array possess strong radiative losses, which is an obstacle to improve the performances for many applications. On the contrary with the subwavelength array hybridized structure, this study shows that by enlarging the lattice spacing, the oscillator strength of the nanoparticles can be enhanced with the formation of surface lattice resonance, thereby leading to similar but much narrower pairs of perfect absorption due to the interactions with the Fabry-Pérot cavity modes. Furthermore, when the surface plasmon polariton mode shift to the same spectral range associated with the enlarged lattice spacing, the coupling and mode hybridization with the surface lattice resonance result in an anticrossing in the spectra. Although the resonance coupling does not enter the strong coupling regime, the quality factors (∼ 134) and near-field enhancements (∼ 44) are strongly enhanced for the hybridized resonance modes due to the effectively suppressed radiative losses compared with that of the localized plasmon resonances, which make the hybridized structure useful for the design of functional nanophotonic device such as biosensing, multi-model nanolasing, and high-quality imaging.
Collapse
|
9
|
Li F, Yang ZY, Shi JJ, He XB. Subwavelength dichroic demultiplexer based on double Fabry-Perot cavities. OPTICS EXPRESS 2022; 30:37753-37759. [PMID: 36258357 DOI: 10.1364/oe.472582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Plasmonic demultiplexers hold promise for the realization of the subwavelength and high-splitting ratio dichroic splitter and have a wide range of applications from optical communication, and manipulation to ultrafast data treatment. However, this vision has not been realized for a long time due to lacking the suitable splitting structure design, which limits its further development of integrated photonic circuits. Here, we demonstrate a plasmonic demultiplexer with subwavelength feature size (0.54 µm) and broadband spectral (620-870 nm) range, and high-splitting ratio (17 dB in experiments and 20 dB in calculations). It consists of two adjacent Fabry-Perot cavities (covered by PMMA polymer) and coupling gratings, which are integrated with the Au waveguide. The relatively simple double cavities design of our device has a simple theoretical analysis and fabrication process. Our work has relevance for various optical applications, such as multiple wavelength photodetectors and optical multichannel interconnects.
Collapse
|
10
|
Daryakar N, David C. Thin Films of Nonlinear Metallic Amorphous Composites. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3359. [PMID: 36234485 PMCID: PMC9565391 DOI: 10.3390/nano12193359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/21/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
We studied the nonlinear optical response of metallic amorphous composite layers in terms of a self-phase-modulated, third-order Kerr nonlinearity. A nonlinear effective medium theory was used to describe low densities of gold and iridium nanoparticles embedded in an equally nonlinear host material. The fill fraction strongly influences the effective nonlinear susceptibility of the materials, increasing it by orders of magnitude in the case of gold due to localized surface plasmonic resonances. The enhancement of the nonlinear strength in amorphous composites with respect to the bulk material has an upper limit in metallic composites as dominating absorption effects take over at higher fill factors. Both saturated and induced absorption in the thin films of amorphous composites were observed depending on the selected frequency and relative position to the resonant frequency of electron excitation in the metallic inclusions. We demonstrated the depths to which thin films are affected by nonlinear enhancement effects.
Collapse
Affiliation(s)
- Navid Daryakar
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
| | - Christin David
- Institute of Condensed Matter Theory and Optics, Friedrich-Schiller-Universität Jena, Max-Wien-Platz 1, 07743 Jena, Germany
- Abbe Center of Photonics, Albert-Einstein-Straße 6, 07745 Jena, Germany
| |
Collapse
|
11
|
Kelavuori J, Vanyukov V, Stolt T, Karvinen P, Rekola H, Hakala TK, Huttunen MJ. Thermal Control of Plasmonic Surface Lattice Resonances. NANO LETTERS 2022; 22:3879-3883. [PMID: 35506595 PMCID: PMC9136927 DOI: 10.1021/acs.nanolett.1c04898] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Plasmonic metasurfaces exhibiting collective responses known as surface lattice resonances (SLRs) show potential for realizing flat photonic components for wavelength-selective processes, including lasing and optical nonlinearities. However, postfabrication tuning of SLRs remains challenging, limiting the applicability of SLR-based components. Here, we demonstrate how the properties of high quality factor SLRs are easily modified by breaking the symmetry of the nanoparticle surroundings. We break the symmetry by changing the refractive index of the overlying immersion oil by controlling the ambient temperature of the device. We show that a modest temperature change of 10 °C can increase the quality factor of the SLR from 400 to 750. Our results demonstrate accurate and reversible modification of the properties of the investigated SLRs, paving the way toward tunable SLR-based photonic devices. More generally, we show how symmetry breaking of the environment can be utilized for efficient and potentially ultrafast modification of the SLR properties.
Collapse
Affiliation(s)
- Jussi Kelavuori
- Photonics
Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland
| | - Viatcheslav Vanyukov
- Faculty
of Science and Forestry, Department of Physics and Mathematics, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Timo Stolt
- Photonics
Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland
| | - Petri Karvinen
- Faculty
of Science and Forestry, Department of Physics and Mathematics, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Heikki Rekola
- Faculty
of Science and Forestry, Department of Physics and Mathematics, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Tommi K. Hakala
- Faculty
of Science and Forestry, Department of Physics and Mathematics, University of Eastern Finland, FI-80101 Joensuu, Finland
| | - Mikko J. Huttunen
- Photonics
Laboratory, Physics Unit, Tampere University, FI-33014 Tampere, Finland
| |
Collapse
|
12
|
Lim TL, Vaddi Y, Bin-Alam MS, Cheng L, Alaee R, Upham J, Huttunen MJ, Dolgaleva K, Reshef O, Boyd RW. Fourier-Engineered Plasmonic Lattice Resonances. ACS NANO 2022; 16:5696-5703. [PMID: 35357153 DOI: 10.1021/acsnano.1c10710] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resonances in optical systems are useful for many applications, such as frequency comb generation, optical filtering, and biosensing. However, many of these applications are difficult to implement in optical metasurfaces because traditional approaches for designing multiresonant nanostructures require significant computational and fabrication efforts. To address this challenge, we introduce the concept of Fourier lattice resonances (FLRs) in which multiple desired resonances can be chosen a priori and used to dictate the metasurface design. Because each resonance is supported by a distinct surface lattice mode, each can have a high quality factor. Here, we experimentally demonstrate several metasurfaces with flexibly placed resonances (e.g., at 1310 and 1550 nm) and Q-factors as high as 800 in a plasmonic platform. This flexible procedure requires only the computation of a single Fourier transform for its design, and is based on standard lithographic fabrication methods, allowing one to design and fabricate a metasurface to fit any specific, optical-cavity-based application. This work represents a step toward the complete control over the transmission spectrum of a metasurface.
Collapse
Affiliation(s)
- Theng-Loo Lim
- Department of Physics, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - Yaswant Vaddi
- Department of Physics, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - M Saad Bin-Alam
- School of Electrical Engineering and Computer Science, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - Lin Cheng
- School of Instrument and Electronics, North University of China, Taiyuan, 030000, China
| | - Rasoul Alaee
- Department of Physics, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - Jeremy Upham
- Department of Physics, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - Mikko J Huttunen
- Photonics Laboratory, Physics Unit, Tampere University, Korkeakoulunkatu 3, Tampere, FI-33014, Finland
| | - Ksenia Dolgaleva
- School of Electrical Engineering and Computer Science, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - Orad Reshef
- Department of Physics, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
| | - Robert W Boyd
- Department of Physics, University of Ottawa, 25 Templeton St, Ottawa, Ontario K1N 6N5, Canada
- Institute of Optics and Department of Physics and Astronomy, University of Rochester, 500 Wilson Blvd., Rochester, New York 14627, United States
| |
Collapse
|
13
|
Saad Bin-Alam M, Reshef O, Naeem Ahmad R, Upham J, Huttunen MJ, Dolgaleva K, Boyd RW. Cross-polarized surface lattice resonances in a rectangular lattice plasmonic metasurface. OPTICS LETTERS 2022; 47:2105-2108. [PMID: 35427348 DOI: 10.1364/ol.448813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Multiresonant metasurfaces could enable many applications in filtering, sensing, and nonlinear optics. However, developing a metasurface with more than one high-quality-factor or high-Q resonance at designated resonant wavelengths is challenging. Here, we experimentally demonstrate a plasmonic metasurface exhibiting different, narrow surface lattice resonances by exploiting the polarization degree of freedom where different lattice modes propagate along different dimensions of the lattice. The surface consists of aluminum nanostructures in a rectangular periodic lattice. The resulting surface lattice resonances were measured around 640 nm and 1160 nm with Q factors of ∼50 and ∼800, respectively. The latter is a record-high plasmonic Q factor within the near-infrared type-II window. Such metasurfaces could benefit such applications as frequency conversion and all-optical switching.
Collapse
|
14
|
Garg A, Mejia E, Nam W, Nie M, Wang W, Vikesland P, Zhou W. Microporous Multiresonant Plasmonic Meshes by Hierarchical Micro-Nanoimprinting for Bio-Interfaced SERS Imaging and Nonlinear Nano-Optics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106887. [PMID: 35224852 DOI: 10.1002/smll.202106887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Microporous mesh plasmonic devices have the potential to combine the biocompatibility of microporous polymeric meshes with the capabilities of plasmonic nanostructures to enhance nanoscale light-matter interactions for bio-interfaced optical sensing and actuation. However, scalable integration of dense and uniformly structured plasmonic hotspot arrays with microporous polymeric meshes remains challenging due to the processing incompatibility of conventional nanofabrication methods with flexible microporous substrates. Here, scalable nanofabrication of microporous multiresonant plasmonic meshes (MMPMs) is achieved via a hierarchical micro-/nanoimprint lithography approach using dissolvable polymeric templates. It is demonstrated that MMPMs can serve as broadband nonlinear nanoplasmonic devices to generate second-harmonic generation, third-harmonic generation, and upconversion photoluminescence signals with multiresonant plasmonic enhancement under fs pulse excitation. Moreover, MMPMs are employed and explored as bio-interfaced surface-enhanced Raman spectroscopy mesh sensors to enable in situ spatiotemporal molecular profiling of bacterial biofilm activity. Microporous mesh plasmonic devices open exciting avenues for bio-interfaced optical sensing and actuation applications, such as inflammation-free epidermal sensors in conformal contact with skin, combined tissue-engineering and biosensing scaffolds for in vitro 3D cell culture models, and minimally invasive implantable probes for long-term disease diagnostics and therapeutics.
Collapse
Affiliation(s)
- Aditya Garg
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Elieser Mejia
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wonil Nam
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Meitong Nie
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Wang
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Peter Vikesland
- Department of Civil and Environmental Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Wei Zhou
- Department of Electrical and Computer Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
15
|
Liu J, Zeng H, Cheng M, Wang Z, Wang J, Cen M, Luo D, Priimagi A, Liu YJ. Photoelastic plasmonic metasurfaces with ultra-large near infrared spectral tuning. MATERIALS HORIZONS 2022; 9:942-951. [PMID: 34942638 PMCID: PMC8900491 DOI: 10.1039/d1mh01377g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/14/2021] [Indexed: 05/20/2023]
Abstract
Metasurfaces, consisting of artificially fabricated sub-wavelength meta-atoms with pre-designable electromagnetic properties, provide novel opportunities to a variety of applications such as light detectors/sensors, local field imaging and optical displays. Currently, the tuning of most metasurfaces requires redesigning and reproducing the entire structure, rendering them ineligible for post-fabrication shape-morphing or spectral reconfigurability. Here, we report a photoelastic metasurface with an all-optical and reversible resonance tuning in the near infrared range. The photoelastic metasurface consists of hexagonal gold nanoarrays deposited on a deformable substrate made of a liquid crystalline network. Upon photo-actuation, the substrate deforms, causing the lattice to change and, as a result, the plasmon resonance to shift. The centre wavelength of the plasmon resonance exhibits an ultra-large spectral tuning of over 245 nm, from 1490 to 1245 nm, while the anisotropic deformability also endows light-switchable sensitivity in probing polarization. The proposed concept establishes a light-controlled soft platform that is of great potential for tunable/reconfigurable photonic devices, such as nano-filters, -couplers, -holograms, and displays with structural colors.
Collapse
Affiliation(s)
- Jianxun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Hao Zeng
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere FI-33101, Finland.
| | - Ming Cheng
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Zhenming Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiawei Wang
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Mengjia Cen
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Dan Luo
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Arri Priimagi
- Smart Photonic Materials, Faculty of Engineering and Natural Sciences, Tampere University, P.O. Box 541, Tampere FI-33101, Finland.
| | - Yan Jun Liu
- Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
- Key Laboratory of Energy Conversion and Storage Technologies (Southern University of Science and Technology), Ministry of Education, Shenzhen 518055, China
| |
Collapse
|
16
|
Tuning Collective Plasmon Resonances of Femtosecond Laser-Printed Metasurface. MATERIALS 2022; 15:ma15051834. [PMID: 35269065 PMCID: PMC8911911 DOI: 10.3390/ma15051834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/04/2023]
Abstract
The optical response of properly excited periodically arranged plasmonic nanostructures is known to demonstrate sharp resonance features associated with high-Q collective modes demanding for various applications in light-matter interaction, filtering and sensing. Meanwhile, practical realization and replication of plasmonic platforms supporting high-Q modes via scalable inexpensive lithography-free approach is still challenging. Here, we justify direct ablation-free irradiation of Si-supported thin Au film by nanojoule-energy femtosecond laser pulses as a single-step and scalable technology for realization of plasmonic metasurfaces supporting collective plasmonic response. Using an adjustable aperture to control and upscale the size of the fabricated nanostructures, nanobumps and nanojets, we demonstrated plasmonic metasurface supporting collective resonances with a moderately high Q-factor (up to 17) and amplitude (up to 45%) within expanded spectral range (1.4-4.5 µm). Vacuum deposition of thin films above the as-fabricated nanostructure arrays was demonstrated to provide fine tuning of the resonance position, also expanding the choice of available materials for realization of plasmonic designs with extended functionality.
Collapse
|
17
|
Shi J, He X, Chen W, Li Y, Kang M, Cai Y, Xu H. Remote Dual-Cavity Enhanced Second Harmonic Generation in a Hybrid Plasmonic Waveguide. NANO LETTERS 2022; 22:688-694. [PMID: 35025516 DOI: 10.1021/acs.nanolett.1c03824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
On-chip nanoscale optical platforms capable of efficient second harmonic generation (SHG) are highly desired for optical sensing, subwavelength coherent sources, and quantum photonic devices. Here, we develop a remotely excited dual cavity resonance scheme to achieve significantly enhanced SHG in a CdSe nanobelt on Au film hybrid waveguide system. The SHG emission with superior efficiency originates from counter-propagating plasmonic modes interference in a horizontal Fabry-Pérot (FP) cavity enabled by remote excitation of propagating surface plasmons, which is further enhanced through a vertical FP cavity. With this effective cooperation of hybrid plasmon modes and FP cavity modes, 2 orders of magnitude enhancement of the conversion efficiency (3.5 × 10-4 W-1) is achieved compared to the off-resonance case. Our design provides new insight into the development of a multifunctional hybrid plasmonic device toward on-chip nonlinear nanophotonic applications.
Collapse
Affiliation(s)
- Junjun Shi
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xiaobo He
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Wen Chen
- Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH 1015, Lausanne, Switzerland
| | - Yang Li
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Meng Kang
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| | - Yangjian Cai
- Shandong Provincial Engineering and Technical Center of Light Manipulations and Shandong Provincial Key Laboratory of Optics and Photonic Device, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
| | - Hongxing Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
- School of Physics and Technology, Center for Nanoscience and Nanotechnology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
18
|
Verma SK, Srivastava SK. Giant Extra-Ordinary Near Infrared Transmission from Seemingly Opaque Plasmonic Metasurface: Sensing Applications. PLASMONICS (NORWELL, MASS.) 2021; 17:653-663. [PMID: 34690613 PMCID: PMC8526055 DOI: 10.1007/s11468-021-01551-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
In the present study, we report giant extra-ordinary transmission of near infrared (NIR) light, more than 90%, through a seemingly opaque plasmonic metasurface, which consists of two metal nano-slits arrays (MNSAs) with alternate opening arrangements. By using perfect coupling of the plasmonic modes formed between the sharp edges of the upper and lower MNSAs of silver, a giant, wavelength selective transmission could be obtained. The study is accompanied by optimization of electromagnetic (EM) field coupling for different interlayer spacings and lateral overlap between the two MNSAs to understand their significance in light transmission through the metasurface. The interlayer spacing between the MNSAs works as the transmitting channel for light. The optimization of performance with different fill factors and plasmonic metals was performed as well. Because of the excitation of extended surface plasmons (ESPs) generated at both the MNSAs, the metasurface can be used for refractive index (RI) sensing as one of its applications by using a transparent and flexible polymer, such as polydimethylsiloxane (PDMS), as substrate. The maximum sensitivity which could be achieved for the optimal configuration of the metasurface was 1435.71 nm/RIU, with a figure of merit (FOM) of 80 RIU-1 for 90.45% optical transmission of light for the refractive index variation of analyte medium from 1.33 to 1.38 RIU. The present study strengthens the concept of light funneling through subwavelength structures due to plasmons, which are responsible for light transmission through this seemingly opaque metasurface and finds use in highly sensitive, flexible, and cost-effective EOT-based sensors.
Collapse
Affiliation(s)
- Sagar Kumar Verma
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667 India
| | - Sachin K. Srivastava
- Department of Physics, Indian Institute of Technology Roorkee, Roorkee, Haridwar, Uttarakhand 247667 India
| |
Collapse
|
19
|
Abstract
Plasmonic nanostructures hold promise for the realization of ultra-thin sub-wavelength devices, reducing power operating thresholds and enabling nonlinear optical functionality in metasurfaces. However, this promise is substantially undercut by absorption introduced by resistive losses, causing the metasurface community to turn away from plasmonics in favour of alternative material platforms (e.g., dielectrics) that provide weaker field enhancement, but more tolerable losses. Here, we report a plasmonic metasurface with a quality-factor (Q-factor) of 2340 in the telecommunication C band by exploiting surface lattice resonances (SLRs), exceeding the record by an order of magnitude. Additionally, we show that SLRs retain many of the same benefits as localized plasmonic resonances, such as field enhancement and strong confinement of light along the metal surface. Our results demonstrate that SLRs provide an exciting and unexplored method to tailor incident light fields, and could pave the way to flexible wavelength-scale devices for any optical resonating application.
Collapse
|
20
|
Bin-Alam MS, Baxter J, Awan KM, Kiviniemi A, Mamchur Y, Lesina AC, Tsakmakidis KL, Huttunen MJ, Ramunno L, Dolgaleva K. Hyperpolarizability of Plasmonic Meta-Atoms in Metasurfaces. NANO LETTERS 2021; 21:51-59. [PMID: 33356325 DOI: 10.1021/acs.nanolett.0c02991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Plasmonic metasurfaces are promising as enablers of nanoscale nonlinear optics and flat nonlinear optical components. Nonlinear optical responses of such metasurfaces are determined by the nonlinear optical properties of individual plasmonic meta-atoms. Unfortunately, no simple methods exist to determine the nonlinear optical properties (hyperpolarizabilities) of the meta-atoms hindering the design of nonlinear metasurfaces. Here, we develop the equivalent RLC circuit (resistor, inductor, capacitor) model of such meta-atoms to estimate their second-order nonlinear optical properties, that is, the first-order hyperpolarizability in the optical spectral range. In parallel, we extract from second-harmonic generation experiments the first-order hyperpolarizabilities of individual meta-atoms consisting of asymmetrically shaped (elongated) plasmonic nanoprisms, verified with detailed calculations using both nonlinear hydrodynamic-FDTD and nonlinear scattering theory. All three approaches, analytical, experimental, and computational, yield results that agree very well. Our empirical RLC model can thus be used as a simple tool to enable an efficient design of nonlinear plasmonic metasurfaces.
Collapse
Affiliation(s)
- M Saad Bin-Alam
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontairo K1N 6N5, Canada
| | - Joshua Baxter
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Kashif M Awan
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontairo K1N 6N5, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| | - Antti Kiviniemi
- Laboratory of Photonics, Tampere University, FI-33014 Tampere, Finland
| | - Yaryna Mamchur
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontairo K1N 6N5, Canada
- National Technical University of Ukraine, "Igor Sikorsky Kyiv Polytechnic Institute", 03056 Kyiv, Ukraine
| | - Antonio Calà Lesina
- Hannover Centre for Optical Technologies, Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), and Fakultät für Maschinenbau (Institut für Transport- und Automatisierungstechnik), Leibniz Universität Hannover, 30167, Hannover, Germany
| | - Kosmas L Tsakmakidis
- Section of Condensed Matter Physics, Department of Physics, National and Kapodistrian University of Athens, Panepistimioupolis GR-157 84 Athens, Greece
| | - Mikko J Huttunen
- Laboratory of Photonics, Tampere University, FI-33014 Tampere, Finland
| | - Lora Ramunno
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Ksenia Dolgaleva
- School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Ontairo K1N 6N5, Canada
- Department of Physics, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| |
Collapse
|
21
|
Naya SI, Tada H. Au-Ag alloy nanoparticle-incorporated AgBr plasmonic photocatalyst. Sci Rep 2020; 10:19972. [PMID: 33203927 PMCID: PMC7673129 DOI: 10.1038/s41598-020-77062-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/05/2020] [Indexed: 11/17/2022] Open
Abstract
A solid-phase photochemical method produces Au-Ag alloy nanoparticles (NPs) with a sharp size distribution and varying composition in AgBr crystals (Au-Ag@AgBr). These features render Au-Ag@AgBr promising as a material for the plasmonic photocatalyst further to provide a possibility of elucidating the action mechanism due to the optical tunability. This study shows that the visible-light activity of Au-Ag@AgBr for degradation of model water pollutant is very sensitive to the alloy composition with a maximum at the mole percent of Au to all Ag in AgBr (y) = 0.012 mol%. Clear positive correlation is observed between the photocatalytic activity and the quality factor defined as the ratio of the peak energy to the full width at half maximum of the localized surface plasmon resonance band. This finding indicates that Au-Ag@AgBr works as a local electromagnetic field enhancement-type plasmonic photocatalyst in which the Au-Ag NPs mainly promotes the charge separation. This conclusion was further supported by the kinetic analysis of the light intensity-dependence of external quantum yield.
Collapse
Affiliation(s)
- Shin-Ichi Naya
- Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan
| | - Hiroaki Tada
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka, 577-8502, Japan.
| |
Collapse
|
22
|
Zhou J, Liu Z, Liu X, Pan P, Zhan X, Liu Z. Silicon-Au nanowire resonators for high-Q multiband near-infrared wave absorption. NANOTECHNOLOGY 2020; 31:375201. [PMID: 32485701 DOI: 10.1088/1361-6528/ab98be] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Semiconductors have been widely utilized to fabricate optoelectronic devices. Nevertheless, it is still a challenging task to achieve high-quality (Q) resonant light absorption using the high refractive index semiconductors. In this work, we propose a facile scheme for multi-band perfect absorption in the near-infrared range using an array of core-shell cylinder-shaped resonators which are composed of gold nanowires and thin silicon shells. Based on the cooperative effects between the photonic modes of the semiconductor cavity and the plasmonic resonances of the metal resonator, five sharp absorption peaks are observed with the maximal absorption close to 100% (99.98%) and a high Q factor up to 208. The multi-band sharp absorption is observed to be angle-insensitive and polarization-adjustable. Absorption efficiency can be quantitatively tuned via the polarization states following the classical Malus law. Moreover, different semiconductors such as gallium arsenide, indium arsenide, indium phosphide have been exploited to reproduce the sharp perfect absorption in this core-shell resonators platform. The remarkable features make the proposed system potential for multiple applications such as multispectral filtering, photo-detection and hot electron generation.
Collapse
Affiliation(s)
- Jin Zhou
- Jiangxi Key Laboratory of Nanomaterials and Sensors College of Physics and Communication Electronics, Jiangxi Normal University, Nanchang 330022, Jiangxi, People's Republic of China
| | | | | | | | | | | |
Collapse
|
23
|
Liang Y, Koshelev K, Zhang F, Lin H, Lin S, Wu J, Jia B, Kivshar Y. Bound States in the Continuum in Anisotropic Plasmonic Metasurfaces. NANO LETTERS 2020; 20:6351-6356. [PMID: 32479094 DOI: 10.1021/acs.nanolett.0c01752] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The concept of optical bound states in the continuum (BICs) currently drives the field of dielectric resonant nanophotonics, providing an important physical mechanism for engineering high-quality (high-Q) optical resonances in high-index dielectric nanoparticles and structured dielectric metasurfaces. For structured metallic metasurfaces, realization of BICs remains a challenge associated with strong dissipative losses of plasmonic materials. Here, we suggest and realize experimentally anisotropic plasmonic metasurfaces supporting high-Q resonances governed by quasi-BIC collective resonant modes. Our metasurfaces are composed of arrays of vertically oriented double-pillar meta-molecules covered by a thin layer of gold. We engineer quasi-BIC modes and observe experimentally sharp resonances in mid-IR reflectance spectra. Our work suggests a direct route to boost the resonant field enhancement in plasmonic metasurfaces via combining a small effective mode volume of plasmonic systems with engineered high-Q resonances provided by the BIC physics, with multiple applications to enhance light-matter interaction for nano-optics and quantum photonics.
Collapse
Affiliation(s)
- Yao Liang
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Kirill Koshelev
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| | - Fengchun Zhang
- Institute of Semiconductor Science and Technology, South China Normal University, Guangzhou 510631, China
| | - Han Lin
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Shirong Lin
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Jiayang Wu
- Optical Sciences Centre, Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Baohua Jia
- Centre of Translational Atomaterials (CTAM), Faculty of Science, Engineering and Technology, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Yuri Kivshar
- Nonlinear Physics Center, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia
- Department of Physics and Engineering, ITMO University, St. Petersburg 197101, Russia
| |
Collapse
|
24
|
Haim DB, Michaeli L, Avayu O, Ellenbogen T. Tuning the phase and amplitude response of plasmonic metasurface etalons. OPTICS EXPRESS 2020; 28:17923-17933. [PMID: 32679994 DOI: 10.1364/oe.392520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
We study the optical response of plasmonic metasurface etalons in reflection. The etalons consist of a metallic mirror and a plasmonic metasurface separated by wavelength-scale dielectric spacer. We show that tuning the localized surface plasmon resonance and spacer thickness can be used to achieve both enhanced reflectivity and perfect absorption, in addition to full 2π range phase control, and tunable regions of normal and anomalous dispersion. We validate our claims by measuring the spectral reflection and phase response of metasurface etalons consisting aluminum nanodisks of different radii separated from an aluminum reflector by a SiO2 spacer. In addition, we use this approach to demonstrate a simple Hermite-Gaussian (HG) wavelength selective beam-shaping reflective mask. The concept can be further extended by using multilayers to obtain multi-functional elements.
Collapse
|
25
|
Low-cost flexible plasmonic nanobump metasurfaces for label-free sensing of serum tumor marker. Biosens Bioelectron 2020; 150:111905. [DOI: 10.1016/j.bios.2019.111905] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/09/2019] [Accepted: 11/18/2019] [Indexed: 12/11/2022]
|
26
|
Huttunen MJ, Bin-Alam S, Reshef O, Mamchur Y, Stolt T, Ménard JM, Dolgaleva K, Boyd RW, Kauranen M. Engineering Local Fields in Nonlinear Plasmonic Metasurfaces -INVITED. EPJ WEB OF CONFERENCES 2020. [DOI: 10.1051/epjconf/202023811002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonlinear optical phenomena are paramount in many photonic applications ranging from frequency broadening and generation of ultrashort pulses to frequency comb-based metrology. A recent trend has been to miniaturize photonic components, resulting also in a demand for small scale nonlinear components. This demand is difficult to address by using conventional materials motivating the search for alternative approaches. Nonlinear plasmonic metasurface cavities have recently emerged as a promising platform to enable nanoscale nonlinear optics. Despite steady progress, the so far achieved conversion efficiencies have not yet rivalled conventional materials. Here, we discuss our recent work to develop more efficient nonlinear metamaterials, focusing on plasmonic metasurfaces supporting collective responses known as surface lattice resonances. These resonances can exhibit very narrow spectral features, showing potential to considerably enhance nonlinear processes via resonant interactions. We demonstrate a plasmonic metasurface operating at the telecommunications C band that exhibits a record-high quality factor close to 2400, demonstrating an order-of-magnitude improvement compared to existing metasurface cavities. Motivated by this experimental demonstration, we also present numerical predictions suggesting that such metasurfaces could soon answer the existing demand for miniaturized and/or flat nonlinear components.
Collapse
|