1
|
Açıkgöz H, Shin DH, van der Knijff IC, Katan AJ, Yang X, Steeneken PG, Verbiest GJ, Caneva S. Actuation and Mapping of Surface Acoustic Wave Induced High-Frequency Wavefields on Suspended Graphene Membranes. ACS NANO 2025; 19:14044-14052. [PMID: 40165743 PMCID: PMC12004930 DOI: 10.1021/acsnano.4c18508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
High-frequency acoustic devices based on two-dimensional (2D) materials are emerging platforms to design and manipulate the spatiotemporal response of acoustic waves for next-generation sensing and contactless actuation applications. Conventional actuation methods, however, cannot be applied to all 2D materials, are frequency-limited or influenced by substrate interactions. Therefore, a universal, high-frequency, on-chip actuation technique is needed. Here, we demonstrate that surface acoustic waves (SAWs) can efficiently actuate suspended 2D materials by exciting suspended graphene membranes with high-frequency (375 MHz) Rayleigh waves and mapping the resulting vibration field with atomic force acoustic microscopy (AFAM), enabling direct visualization of wave propagation without substrate interference. Acoustic waves traveling from supported to suspended graphene experience a reduction in acoustic wavelength from 10 μm to ∼2 μm due to the decrease in effective bending rigidity, leading to a decrease in wave velocity on suspended graphene. By varying the excitation frequency through laser photothermal actuation (0-100 MHz) and SAW excitation (375 MHz), we observed a phase velocity change from ∼160 m/s to ∼700 m/s. This behavior is consistent with the nonlinear dispersion of acoustic waves, as predicted by plate theory, in suspended graphene membranes. The geometry and bending rigidity of the membrane thus play key roles in modulating the acoustic wave pattern and wavelength. This combined SAW actuation and AFAM visualization scheme advances the understanding of acoustic transport at the nanoscale limit and provides a route toward the manipulation of localized wavefields for on-chip patterning and transport over 2D materials surfaces.
Collapse
Affiliation(s)
- Hande
N. Açıkgöz
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| | - Dong Hoon Shin
- Department
of Electronics and Information Engineering, Korea University, Sejong 30019, Republic
of Korea
| | - Inge C. van der Knijff
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| | - Allard J. Katan
- Kavli
Institute of Nanoscience Delft, Lorentzweg 1, 2628 CJ Delft, The Netherlands
| | - Xiliang Yang
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| | - Peter G. Steeneken
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| | - Gerard J. Verbiest
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| | - Sabina Caneva
- Department
of Precision and Microsystems Engineering, Delft University of Technology, Mekelweg 2, 2628 CD Delft, The
Netherlands
| |
Collapse
|
2
|
Zhou T, Reinhardt A, Bousquet M, Eymery J, Leake S, Holt MV, Evans PG, Schülli T. High-resolution high-throughput spatiotemporal strain imaging reveals loss mechanisms in a surface acoustic wave device. Nat Commun 2025; 16:2822. [PMID: 40121198 PMCID: PMC11929839 DOI: 10.1038/s41467-025-57814-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Surface acoustic wave devices are key components for processing radio frequency signals in wireless communication because these devices offer simultaneously high performance, compact size and low cost. The optimization of the device structure requires a quantitative understanding of energy conversion and loss mechanisms. Here we use stroboscopic full-field diffraction x-ray microscopy to reveal an unanticipated acoustic loss in a prototypical one-port resonator device. A non-uniform acoustic excitation in the active area was responsible for the substantial end and side leakages observed at the design frequency. Quantitative analysis of the strain amplitude using a wave decomposition method allowed the determination of several key device parameters. This high-resolution high-throughput spatiotemporal strain imaging technique is more generally applicable to the study of dynamic strain modulation in nanoscale acoustic, electronic, optical and quantum devices. The high sensitivity allows precise measurement of the strain modulation with picometer-scale amplitude.
Collapse
Affiliation(s)
- Tao Zhou
- ESRF - The European Synchrotron, Grenoble, France.
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA.
| | | | | | - Joel Eymery
- Université Grenoble Alpes, CEA-IRIG-MEM-NRX, Grenoble, France
| | - Steven Leake
- ESRF - The European Synchrotron, Grenoble, France
| | - Martin V Holt
- Center for Nanoscale Materials, Argonne National Laboratory, Lemont, IL, USA
| | - Paul G Evans
- University of Wisconsin-Madison, Madison, WI, USA.
| | | |
Collapse
|
3
|
Gomes MF, Matrone PW, Cadore AR, Santos PV, Couto ODD. Acoustic Modulation of Excitonic Complexes in hBN/WSe 2/hBN Heterostructures. NANO LETTERS 2024; 24:15517-15524. [PMID: 39586771 PMCID: PMC11638947 DOI: 10.1021/acs.nanolett.4c03301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
The interaction of high-frequency surface acoustic waves (SAWs) and excitons in van der Waals heterostructures (vdWHs) offers challenging opportunities to explore novel quantum effects and functionalities. We probe the interaction of neutral excitons, trions, and biexcitons with SAWs in a hBN/WSe2/hBN vdWH. We show that neutral excitons respond weakly to the SAW stimulus at 5 K. The remaining excitonic complexes, because of their lower binding energy or charged character, interact much more efficiently with the SAW piezoelectric field, particularly intra- and intervalley trions. At room temperature, the SAW can play a dual role (sometimes dissociating excitons and sometimes increasing the vdWH local doping density) which depends of the laser-induced photodoping of the vdWH prior to the SAW generation and the role of metastable energy states in the SAW-induced carrier dynamics. Our results shed light in the unexplored biexciton modulation with SAWs, important for 2D materials-based optoelectronic and energy harvesting devices.
Collapse
Affiliation(s)
- Marcos
L. F. Gomes
- Universidade
Estadual de Campinas, Instituto de Física Gleb Wataghin, 13083-859 Campinas, Brazil
| | - Pedro W. Matrone
- Universidade
Estadual de Campinas, Instituto de Física Gleb Wataghin, 13083-859 Campinas, Brazil
| | - Alisson R. Cadore
- Laboratório
Nacional de Nanotecnologia, Centro Nacional de Pesquisa em Energia
e Materiais, 13083-100 Campinas, Brazil
| | - Paulo V. Santos
- Paul-Drude-Institut
für Festkörperelektronik, Leibniz-Institut im Forschungsverbund
Berlin e.V., Hausvogteiplatz 5-7, 10117 Berlin, Germany
| | - Odilon D. D. Couto
- Universidade
Estadual de Campinas, Instituto de Física Gleb Wataghin, 13083-859 Campinas, Brazil
| |
Collapse
|
4
|
Iyer A, Kandel YP, Xu W, Nichol JM, Renninger WH. Coherent optical coupling to surface acoustic wave devices. Nat Commun 2024; 15:3993. [PMID: 38734759 PMCID: PMC11088653 DOI: 10.1038/s41467-024-48167-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Surface acoustic waves (SAW) and associated devices are ideal for sensing, metrology, and hybrid quantum devices. While the advances demonstrated to date are largely based on electromechanical coupling, a robust and customizable coherent optical coupling would unlock mature and powerful cavity optomechanical control techniques and an efficient optical pathway for long-distance quantum links. Here we demonstrate direct and robust coherent optical coupling to Gaussian surface acoustic wave cavities with small mode volumes and high quality factors (>105 measured here) through a Brillouin-like optomechanical interaction. High-frequency SAW cavities designed with curved metallic acoustic reflectors deposited on crystalline substrates are efficiently optically accessed along piezo-active directions, as well as non-piezo-active (electromechanically inaccessible) directions. The precise optical technique uniquely enables controlled analysis of dissipation mechanisms as well as detailed transverse spatial mode spectroscopy. These advantages combined with simple fabrication, large power handling, and strong coupling to quantum systems make SAW optomechanical platforms particularly attractive for sensing, material science, and hybrid quantum systems.
Collapse
Affiliation(s)
- Arjun Iyer
- Institute of Optics, University of Rochester, Rochester, NY, USA.
| | - Yadav P Kandel
- Departament of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Wendao Xu
- Institute of Optics, University of Rochester, Rochester, NY, USA
| | - John M Nichol
- Departament of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - William H Renninger
- Institute of Optics, University of Rochester, Rochester, NY, USA
- Departament of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| |
Collapse
|
5
|
Izquierdo-López R, Fandan R, Boscá A, Calle F, Pedrós J. Surface-acoustic-wave-driven graphene plasmonic sensor for fingerprinting ultrathin biolayers down to the monolayer limit. Biosens Bioelectron 2023; 237:115498. [PMID: 37423065 DOI: 10.1016/j.bios.2023.115498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/14/2023] [Accepted: 06/23/2023] [Indexed: 07/11/2023]
Abstract
Surface plasmon polaritons in graphene can enhance the performance of mid-infrared spectroscopy, which is key for the study of both the composition and the conformation of organic molecules via their vibrational resonances. In this paper, a plasmonic biosensor using a graphene-based van der Waals heterostructure on a piezoelectric substrate is theoretically demonstrated, where far-field light is coupled to surface plasmon-phonon polaritons (SPPPs) through a surface acoustic wave (SAW). The SAW creates an electrically-controlled virtual diffraction grating, suppressing the need for patterning the 2D materials, that limits the polariton lifetime, and enabling differential measurement schemes, which increase the signal-to-noise ratio and allow a quick commutation between reference and sample signals. A transfer matrix method has been used for simulating the SPPPs propagating in the system, which are electrically tuned to interact with the vibrational resonances of the analytes. Furthermore, the analysis of the sensor response with a coupled oscillators model has proven its capability of fingerprinting ultrathin biolayers, even when the interaction is too weak to induce a Fano interference pattern, with a sensitivity down to the monolayer limit, as tested with a protein bilayer or a peptide monolayer. The proposed device paves the way for the development of advanced SAW-assisted lab-on-chip systems combining the existing SAW-mediated physical sensing and microfluidic functionalities with the chemical fingerprinting capability of this novel SAW-driven plasmonic approach.
Collapse
Affiliation(s)
- Raúl Izquierdo-López
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
| | - Rajveer Fandan
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Alberto Boscá
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Fernando Calle
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain
| | - Jorge Pedrós
- Instituto de Sistemas Optoelectrónicos y Microtecnología, Departamento de Ingeniería Electrónica, E.T.S.I. de Telecomunicación, Universidad Politécnica de Madrid, Av. Complutense 30, Madrid, 28040, Spain.
| |
Collapse
|
6
|
Zhang J, Wu C, Zhang Q, Liu J. Mechano/acousto-electric coupling between ReS 2and surface acoustic wave. NANOTECHNOLOGY 2023; 34:155501. [PMID: 36652706 DOI: 10.1088/1361-6528/acb447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Two-dimensional (2D) materials are promising candidates for developing next generation electronic/optoelectronic devices with programmable multi functions, due to their widely tunable properties by various physical stimuli. Mechanical strain is one of the most promising means to effectively modulate the physical properties of 2D materials. Nevertheless, few studies reported micro/nano scale controllable strain application platforms, limiting the development of novel mechano-electrical/optoelectrical devices based on 2D materials. This work proposes surface acoustic wave (SAW) device as a controllable strain modulation platform for 2D materials with sub-micro scale resolution. The platform uses the piezoelectric material (LiNbO3) as the substrate, which is deposited with interdigitated transducers (IDT) to generate SAW on the surface. The propagation of SAW causes surface deformation, which is then transferred to the 2D materials on the substrate. The period of the surface deformation/strain is related with that of SAW, which is determined by the period of IDT with nano meter scale. It is demonstrated that the photo luminescence spectrum of a 2D ReS2flake on this platform gradually shifts with the SAW excitation power, which reaches a shift of 3 nm as the SAW excitation power achieves 26 dBm, corresponding to a band gap increase of 5 meV. Meanwhile, the platform is also capable to provide acousto-electric coupling between SAW and 2D materials, which is demonstrated by the shift of the SAW resonant frequency due to the re-distribution of photo-generated carriers in ReS2upon light illumination.
Collapse
Affiliation(s)
- Jinxi Zhang
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, People's Republic of China
| | - Chen Wu
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, People's Republic of China
| | - Qiankun Zhang
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instruments, Beijing Information Science and Technology University, Beijing 100192, People's Republic of China
| | - Jing Liu
- State Key Laboratory of Precision Measurement Technology and Instrument, School of Precision Instruments and Opto-electronics Engineering, Tianjin University, No. 92 Weijin Road, Tianjin, 300072, People's Republic of China
| |
Collapse
|
7
|
Nie X, Wu X, Wang Y, Ban S, Lei Z, Yi J, Liu Y, Liu Y. Surface acoustic wave induced phenomena in two-dimensional materials. NANOSCALE HORIZONS 2023; 8:158-175. [PMID: 36448884 DOI: 10.1039/d2nh00458e] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Surface acoustic wave (SAW)-matter interaction provides a fascinating key for inducing and manipulating novel phenomena and functionalities in two-dimensional (2D) materials. The dynamic strain field and piezo-electric field associated with propagating SAWs determine the coherent manipulation and transduction between 2D excitons and phonons. Over the past decade, many intriguing acoustic-induced effects, including the acousto-electric effect, acousto-galvanic effect, acoustic Stark effect, acoustic Hall effect and acoustic exciton transport, have been reported experimentally. However, many more phenomena, such as the valley acousto-electric effect, valley acousto-electric Hall effect and acoustic spin Hall effect, were only theoretically proposed, the experimental verification of which are yet to be achieved. In this minireview, we attempt to overview the recent breakthrough of SAW-induced phenomena covering acoustic charge transport, acoustic exciton transport and modulation, and coherent acoustic phonons. Perspectives on the opportunities of the proposed SAW-induced phenomena, as well as open experimental challenges, are also discussed, attempting to offer some guidelines for experimentalists and theorists to explore the desired exotic properties and boost practical applications of 2D materials.
Collapse
Affiliation(s)
- Xuchen Nie
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Xiaoyue Wu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Yang Wang
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Siyuan Ban
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, College of Engineering, Science and Environment, The University of Newcastle, NSW, 2308, Australia
| | - Ying Liu
- College of Jincheng, Nanjing University of Aeronautics and Astronautics, Nanjing 211156, China.
| | - Yanpeng Liu
- Key Laboratory for Intelligent Nano Materials and Devices of Ministry of Education, State Key Laboratory of Mechanics and Control of Mechanical Structures, and Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, China.
| |
Collapse
|
8
|
Kim JM, Haque MF, Hsieh EY, Nahid SM, Zarin I, Jeong KY, So JP, Park HG, Nam S. Strain Engineering of Low-Dimensional Materials for Emerging Quantum Phenomena and Functionalities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021:e2107362. [PMID: 34866241 DOI: 10.1002/adma.202107362] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Recent discoveries of exotic physical phenomena, such as unconventional superconductivity in magic-angle twisted bilayer graphene, dissipationless Dirac fermions in topological insulators, and quantum spin liquids, have triggered tremendous interest in quantum materials. The macroscopic revelation of quantum mechanical effects in quantum materials is associated with strong electron-electron correlations in the lattice, particularly where materials have reduced dimensionality. Owing to the strong correlations and confined geometry, altering atomic spacing and crystal symmetry via strain has emerged as an effective and versatile pathway for perturbing the subtle equilibrium of quantum states. This review highlights recent advances in strain-tunable quantum phenomena and functionalities, with particular focus on low-dimensional quantum materials. Experimental strategies for strain engineering are first discussed in terms of heterogeneity and elastic reconfigurability of strain distribution. The nontrivial quantum properties of several strain-quantum coupled platforms, including 2D van der Waals materials and heterostructures, topological insulators, superconducting oxides, and metal halide perovskites, are next outlined, with current challenges and future opportunities in quantum straintronics followed. Overall, strain engineering of quantum phenomena and functionalities is a rich field for fundamental research of many-body interactions and holds substantial promise for next-generation electronics capable of ultrafast, dissipationless, and secure information processing and communications.
Collapse
Affiliation(s)
- Jin Myung Kim
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Md Farhadul Haque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ezekiel Y Hsieh
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Shahriar Muhammad Nahid
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ishrat Zarin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Kwang-Yong Jeong
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- Department of Physics, Jeju National University, Jeju, 63243, Republic of Korea
| | - Jae-Pil So
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
| | - Hong-Gyu Park
- Department of Physics, Korea University, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
- Center for Molecular Spectroscopy and Dynamics, Institute for Basic Science, Seoul, 02841, Republic of Korea
| | - SungWoo Nam
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
9
|
Sun Y, Kirimoto K, Takase T, Eto D, Yoshimura S, Tsuru S. Possible pair-graphene structures govern the thermodynamic properties of arbitrarily stacked few-layer graphene. Sci Rep 2021; 11:23401. [PMID: 34862468 PMCID: PMC8642524 DOI: 10.1038/s41598-021-02995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 11/24/2021] [Indexed: 11/23/2022] Open
Abstract
The thermodynamic properties of few-layer graphene arbitrarily stacked on LiNbO3 crystal were characterized by measuring the parameters of a surface acoustic wave as it passed through the graphene/LiNbO3 interface. The parameters considered included the propagation velocity, frequency, and attenuation. Mono-, bi-, tri-, tetra-, and penta-layer graphene samples were prepared by transferring individual graphene layers onto LiNbO3 crystal surfaces at room temperature. Intra-layer lattice deformation was observed in all five samples. Further inter-layer lattice deformation was confirmed in samples with odd numbers of layers. The inter-layer lattice deformation caused stick-slip friction at the graphene/LiNbO3 interface near the temperature at which the layers were stacked. The thermal expansion coefficient of the deformed few-layer graphene transitioned from positive to negative as the number of layers increased. To explain the experimental results, we proposed a few-layer graphene even-odd layer number stacking order effect. A stable pair-graphene structure formed preferentially in the few-layer graphene. In even-layer graphene, the pair-graphene structure formed directly on the LiNbO3 substrate. Contrasting phenomena were noted with odd-layer graphene. Single-layer graphene was bound to the substrate after the stable pair-graphene structure was formed. The pair-graphene structure affected the stacking order and inter-layer lattice deformation of few-layer graphene substantially.
Collapse
Affiliation(s)
- Yong Sun
- Department of Applied Science for Integrated System Engineering, Kyushu Institute of Technology, 1-1 Senshuimachi, Tobata, Kitakyushu-City, Fukuoka, 804-8550, Japan.
| | - Kenta Kirimoto
- Department of Electrical and Electronic Engineering, Kitakyushu National College of Technology, 5-20-1 shii, Kokuraminami, Kitakyushu-City, Fukuoka, 802-0985, Japan
| | - Tsuyoshi Takase
- Department of Humanities, Baiko Gakuin University, 1-1-1 Koyocho, Shimonoseki-City, Yamaguchi, 750-8511, Japan
| | - Daichi Eto
- Department of Applied Science for Integrated System Engineering, Kyushu Institute of Technology, 1-1 Senshuimachi, Tobata, Kitakyushu-City, Fukuoka, 804-8550, Japan
| | - Shohei Yoshimura
- Department of Applied Science for Integrated System Engineering, Kyushu Institute of Technology, 1-1 Senshuimachi, Tobata, Kitakyushu-City, Fukuoka, 804-8550, Japan
| | - Shota Tsuru
- Department of Applied Science for Integrated System Engineering, Kyushu Institute of Technology, 1-1 Senshuimachi, Tobata, Kitakyushu-City, Fukuoka, 804-8550, Japan
| |
Collapse
|
10
|
Peng Z, Chen X, Fan Y, Srolovitz DJ, Lei D. Strain engineering of 2D semiconductors and graphene: from strain fields to band-structure tuning and photonic applications. LIGHT, SCIENCE & APPLICATIONS 2020; 9:190. [PMID: 33298826 PMCID: PMC7680797 DOI: 10.1038/s41377-020-00421-5] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 05/05/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDCs) and graphene compose a new family of crystalline materials with atomic thicknesses and exotic mechanical, electronic, and optical properties. Due to their inherent exceptional mechanical flexibility and strength, these 2D materials provide an ideal platform for strain engineering, enabling versatile modulation and significant enhancement of their optical properties. For instance, recent theoretical and experimental investigations have demonstrated flexible control over their electronic states via application of external strains, such as uniaxial strain and biaxial strain. Meanwhile, many nondestructive optical measurement methods, typically including absorption, reflectance, photoluminescence, and Raman spectroscopies, can be readily exploited to quantitatively determine strain-engineered optical properties. This review begins with an introduction to the macroscopic theory of crystal elasticity and microscopic effective low-energy Hamiltonians coupled with strain fields, and then summarizes recent advances in strain-induced optical responses of 2D TMDCs and graphene, followed by the strain engineering techniques. It concludes with exciting applications associated with strained 2D materials, discussions on existing open questions, and an outlook on this intriguing emerging field.
Collapse
Affiliation(s)
- Zhiwei Peng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiaolin Chen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, China
| | - Yulong Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - David J Srolovitz
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Dangyuan Lei
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China.
| |
Collapse
|
11
|
Zhang X, Makles K, Colombier L, Metten D, Majjad H, Verlot P, Berciaud S. Dynamically-enhanced strain in atomically thin resonators. Nat Commun 2020; 11:5526. [PMID: 33139724 PMCID: PMC7608634 DOI: 10.1038/s41467-020-19261-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 10/01/2020] [Indexed: 11/13/2022] Open
Abstract
Graphene and related two-dimensional (2D) materials associate remarkable mechanical, electronic, optical and phononic properties. As such, 2D materials are promising for hybrid systems that couple their elementary excitations (excitons, phonons) to their macroscopic mechanical modes. These built-in systems may yield enhanced strain-mediated coupling compared to bulkier architectures, e.g., comprising a single quantum emitter coupled to a nano-mechanical resonator. Here, using micro-Raman spectroscopy on pristine monolayer graphene drums, we demonstrate that the macroscopic flexural vibrations of graphene induce dynamical optical phonon softening. This softening is an unambiguous fingerprint of dynamically-induced tensile strain that reaches values up to ≈4 × 10−4 under strong non-linear driving. Such non-linearly enhanced strain exceeds the values predicted for harmonic vibrations with the same root mean square (RMS) amplitude by more than one order of magnitude. Our work holds promise for dynamical strain engineering and dynamical strain-mediated control of light-matter interactions in 2D materials and related heterostructures. Here, the authors use Raman spectroscopy on circular graphene drums to demonstrate dynamical softening of optical phonons induced by the macroscopic flexural motion of graphene, and find evidence that the strain in graphene is enhanced under non-linear driving.
Collapse
Affiliation(s)
- Xin Zhang
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France.
| | - Kevin Makles
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Léo Colombier
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Dominik Metten
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Hicham Majjad
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France
| | - Pierre Verlot
- School of Physics and Astronomy, University of Nottingham, Nottingham, NG7 2RD, United Kingdom.,Institut Universitaire de France, 1 rue Descartes, 05 75231, Paris Cedex, France
| | - Stéphane Berciaud
- Université de Strasbourg, CNRS, Institut de Physique et Chimie des Matériaux de Strasbourg, UMR 7504, F-67000, Strasbourg, France. .,Institut Universitaire de France, 1 rue Descartes, 05 75231, Paris Cedex, France.
| |
Collapse
|