1
|
Zhou P, Wu M, Ma L, Li Y, Liu X, Chen Z, Zhao Y, Li Z, Zheng L, Sun Y, Xu Y, Liu Y, Li H. Engineering Alcohol Dehydrogenase for Efficient Catalytic Synthesis of Ethyl ( R)-4-Chloro-3-hydroxybutyrate. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:11146-11156. [PMID: 40266245 DOI: 10.1021/acs.jafc.5c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Ethyl (R)-4-chloro-3-hydroxybutyrate [(R)-CHBE] is an intermediate with high value in medicine and pesticide applications. Alcohol dehydrogenase serves as an excellent biocatalyst during the synthesis of (R)-CHBE. However, the lack of effective engineering methods limits its wider application. In this study, the sequence-modeling-docking-principle (SMDP) method was used to screen enzymes with catalytic activity. Three protein modification strategies were established for the active center, substrate channel, and distal hotspot to enhance the catalytic efficiency of alcohol dehydrogenase LCRIII. Substrate batch replenishment was used to alleviate substrate inhibition. Subsequently, optimal mutant M3 (W151F-S167A-F215Y) was successfully obtained with a specific enzyme activity of 23.00 U/mg and kcat/Km of 11.22 (mM-1·min-1), which were 4.55- and 3.98-fold higher than those of the wild type, respectively. (R)-CHBE was prepared using M3 and GDH at 298.21 g/L (>99% e.e.). This study provides a promising approach for the protein engineering modification of alcohol dehydrogenase and industrial-scale production of (R)-CHBE.
Collapse
Affiliation(s)
- Pei Zhou
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Mengxue Wu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Lan Ma
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yi Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Xiaotong Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Zongda Chen
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yifan Zhao
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zisen Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Luxi Zheng
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yang Sun
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yinbiao Xu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Yupeng Liu
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| | - Hua Li
- School of Life Sciences, Henan University, Kaifeng 475004, China
- Henan Key Laboratory of Synthetic Biology and Biomanufacturing, Kaifeng 475004, China
- Engineering Research Center for Applied Microbiology of Henan Province, Kaifeng 475004, China
| |
Collapse
|
2
|
Gu J, Mu W, Xu Y, Nie Y. From discovery to application: Enabling technology-based optimizing carbonyl reductases biocatalysis for active pharmaceutical ingredient synthesis. Biotechnol Adv 2025; 79:108496. [PMID: 39647674 DOI: 10.1016/j.biotechadv.2024.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/04/2024] [Accepted: 11/30/2024] [Indexed: 12/10/2024]
Abstract
The catalytic conversion of chiral alcohols and corresponding carbonyl compounds by carbonyl reductases (alcohol dehydrogenases), which are NAD(P) or NAD(P)H-dependent oxidoreductases, has attracted considerable attention. However, existing carbonyl reductases are insufficient to meet the demands of diverse industrial applications; hence, new enzymes with functions that can expand the toolbox of biocatalysts are urgently required. Developing precisely controlled chiral biocatalysts is of great significance for the efficient development of a broad spectrum of active pharmaceutical ingredients via biosynthesis. In this review, we summarized methods for discovering novel natural carbonyl reductases from various perspectives. Furthermore, advances in protein engineering, utilizing known sequence and structural information as well as catalytic dynamics mechanisms to improve potential functions, are also addressed. The exponential growth in data-driven tools over the past decade has made it possible to de novo design carbonyl reductases. Additionally, various applications of these high-performance carbonyl reductases and different strategies for coenzyme regeneration involving photocatalysis during the reaction process were reviewed. These advancements will bring new opportunities and challenges to the fields of green chemistry and biosynthesis in the future.
Collapse
Affiliation(s)
- Jie Gu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Wanmeng Mu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China; State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yao Nie
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Guo YY, Tian ZH, Zhang L, Han YC, Zhang BB, Xing Q, Shao T, Liu Y, Jiang Z. Photobiocatalytic Platform for the Efficient Enantio-Divergent Synthesis of β-Fluoromethylated Ketones. J Am Chem Soc 2024; 146:31012-31020. [PMID: 39473165 DOI: 10.1021/jacs.4c10441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
β-Fluoromethyl (CH2F, CHF2, and CF3)-substituted chiral ketones are essential moieties and are vital building blocks in pharmaceutical and agrochemistry. However, general and convenient methods for enantio-diverse access to diverse β-fluoromethylated ketones are lacking, hindering the further development of these functional moieties. In this study, we developed an ene-reductase-based photobiocatalytic platform for efficient synthesis of enantio-divergent β-fluoromethylated chiral ketones. Our method highlights substrate-type diversity, excellent enantioselectivity, enzymatic enantio-divergent synthesis, as well as a dicyanopyrazine (DPZ)-type photosensitizer for biocompatible olefin E/Z isomerization in enzymatic stereoconvergent olefin asymmetric reduction, thereby providing a general photobiocatalytic solution to diverse β-fluoromethylated chiral ketones.
Collapse
Affiliation(s)
- Yuan-Yang Guo
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ze-Hua Tian
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Linghong Zhang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yu-Chen Han
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Bei-Bei Zhang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qing Xing
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Tianju Shao
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yang Liu
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiyong Jiang
- State Key Laboratory of Antiviral Drugs; Collaborative Innovation Centre of Henan Province for Green Manufacturing of Fine Chemicals; Key Laboratory of Green Chemical Media and Reactions, Ministry of Education; NMPA Key Laboratory for Research and Evaluation of Innovative Drug; Henan Key Laboratory of Organic Functional Molecule and Drug Innovation; School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Zhang L, Sun Z, Xu G, Ni Y. Classification and functional origins of stereocomplementary alcohol dehydrogenases for asymmetric synthesis of chiral secondary alcohols: A review. Int J Biol Macromol 2024; 270:132238. [PMID: 38729463 DOI: 10.1016/j.ijbiomac.2024.132238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
Alcohol dehydrogenases (ADHs) mediated biocatalytic asymmetric reduction of ketones have been widely applied in the synthesis of optically active secondary alcohols with highly reactive hydroxyl groups ligated to the stereogenic carbon and divided into (R)- and (S)-configurations. Stereocomplementary ADHs could be applied in the synthesis of both enantiomers and are increasingly accepted as the "first of choice" in green chemistry due to the high atomic economy, low environmental factor, 100 % theoretical yield, and high environmentally friendliness. Due to the equal importance of complementary alcohols, development of stereocomplementary ADHs draws increasing attention. This review is committed to summarize recent advance in discovery of naturally evolved and tailor-made stereocomplementary ADHs, unveil the molecular mechanism of stereoselective catalysis in views of classification and functional basis, and provide guidance for further engineering the stereoselectivity of ADHs for the industrial biosynthesis of chiral secondary alcohol of industrial relevance.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Zewen Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, Jiangsu, China.
| |
Collapse
|
5
|
Yang Z, Paes BCMF, Fulber JPC, Tran MY, Farnós O, Kamen AA. Development of an Integrated Continuous Manufacturing Process for the rVSV-Vectored SARS-CoV-2 Candidate Vaccine. Vaccines (Basel) 2023; 11:vaccines11040841. [PMID: 37112753 PMCID: PMC10143285 DOI: 10.3390/vaccines11040841] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
The administration of viral vectored vaccines remains one of the most effective ways to respond to the ongoing novel coronavirus disease 2019 (COVID-19) pandemic. However, pre-existing immunity to the viral vector hinders its potency, resulting in a limited choice of viral vectors. Moreover, the basic batch mode of manufacturing vectored vaccines does not allow one to cost-effectively meet the global demand for billions of doses per year. To date, the exposure of humans to VSV infection has been limited. Therefore, a recombinant vesicular stomatitis virus (rVSV), which expresses the spike protein of SARS-CoV-2, was selected as the vector. To determine the operating upstream process conditions for the most effective production of an rVSV-SARS-CoV-2 candidate vaccine, a set of critical process parameters was evaluated in an Ambr 250 modular system, whereas in the downstream process, a streamlined process that included DNase treatment, clarification, and a membrane-based anion exchange chromatography was developed. The design of the experiment was performed with the aim to obtain the optimal conditions for the chromatography step. Additionally, a continuous mode manufacturing process integrating upstream and downstream steps was evaluated. rVSV-SARS-CoV-2 was continuously harvested from the perfusion bioreactor and purified by membrane chromatography in three columns that were operated sequentially under a counter-current mode. Compared with the batch mode, the continuous mode of operation had a 2.55-fold increase in space-time yield and a reduction in the processing time by half. The integrated continuous manufacturing process provides a reference for the efficient production of other viral vectored vaccines.
Collapse
Affiliation(s)
- Zeyu Yang
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | | | - Julia Puppin Chaves Fulber
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Michelle Yen Tran
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Omar Farnós
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| | - Amine A Kamen
- Viral Vectors and Vaccines Bioprocessing Group, Department of Bioengineering, McGill University, Montreal, QC H3A 0G4, Canada
| |
Collapse
|
6
|
Shanbhag AP. Stairway to Stereoisomers: Engineering Short- and Medium-Chain Ketoreductases To Produce Chiral Alcohols. Chembiochem 2023; 24:e202200687. [PMID: 36640298 DOI: 10.1002/cbic.202200687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/14/2023] [Accepted: 01/14/2023] [Indexed: 01/15/2023]
Abstract
The short- and medium-chain dehydrogenase/reductase superfamilies are responsible for most chiral alcohol production in laboratories and industries. In nature, they participate in diverse roles such as detoxification, housekeeping, secondary metabolite production, and catalysis of several chemicals with commercial and environmental significance. As a result, they are used in industries to create biopolymers, active pharmaceutical intermediates (APIs), and are also used as components of modular enzymes like polyketide synthases for fabricating bioactive molecules. Consequently, random, semi-rational and rational engineering have helped transform these enzymes into product-oriented efficient catalysts. The rise of newer synthetic chemicals and their enantiopure counterparts has proved challenging, and engineering them has been the subject of numerous studies. However, they are frequently limited to the synthesis of a single chiral alcohol. The study attempts to defragment and describe hotspots of engineering short- and medium-chain dehydrogenases/reductases for the production of chiral synthons.
Collapse
Affiliation(s)
- Anirudh P Shanbhag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, Kolkata, 700009, India.,Bugworks Research India Pvt. Ltd., C-CAMP, National Centre for Biological Sciences (NCBS-TIFR), Bellary Road, Bangalore, 560003, India
| |
Collapse
|
7
|
Ye WJ, Xie JW, Liu Y, Wang YL, Zhang YX, Yang XY, Yang L, Wang HL, Wei DZ. Enhancing the Activity of an Alcohol Dehydrogenase by Using "Aromatic Residue Scanning" at Potential Plasticity Sites. Chemistry 2023; 29:e202203530. [PMID: 36790363 DOI: 10.1002/chem.202203530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/30/2023] [Accepted: 02/13/2023] [Indexed: 02/16/2023]
Abstract
An alcohol dehydrogenase LkADH was successfully engineered to exhibit improved activity and substrate tolerance for the production of (S)-2-chloro-1-(3,4-difluorophenyl)ethanol, an important precursor of ticagrelor. Five potential hotspots were identified for enzyme mutagenesis by using natural residue abundance as an indicator to evaluate their potential plasticity. A semi-rational strategy named "aromatic residue scanning" was applied to randomly mutate these five sites simultaneously by using tyrosine, tryptophan, and phenylalanine as "exploratory residues" to introduce steric hindrance or potential π-π interactions. The best variant Lk-S96Y/L199W identified with 17.2-fold improvement in catalytic efficiency could completely reduce up to 600 g/L (3.1 M) 2-chloro-1-(3,4-difluorophenyl)ethenone in 12 h with >99.5 % ee, giving the highest space-time yield ever reported. This study, therefore, offers a strategy for mutating alcohol dehydrogenase to reduce aromatic substrates and provides an efficient variant for the efficient synthesis of (S)-2-chloro-1-(3,4-difluorophenyl)ethanol.
Collapse
Affiliation(s)
- Wen-Jie Ye
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Jing-Wen Xie
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yan Liu
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Yi-Lin Wang
- Georgetown Preparatory School, North Bethesda, Maryland, 20852, USA
| | - Yu-Xin Zhang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Xiao-Ying Yang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Lin Yang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Hua-Lei Wang
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| | - Dong-Zhi Wei
- State Key Laboratory of, Bioreactor Engineering New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China
| |
Collapse
|
8
|
Woodley JM. Ensuring the Sustainability of Biocatalysis. CHEMSUSCHEM 2022; 15:e202102683. [PMID: 35084801 DOI: 10.1002/cssc.202102683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Biocatalysis offers many attractive features for the synthetic chemist. In many cases, the high selectivity and ability to tailor specific enzyme features via protein engineering already make it the catalyst of choice. From the perspective of sustainability, several features such as catalysis under mild conditions and use of a renewable and biodegradable catalyst also look attractive. Nevertheless, to be sustainable at a larger scale it will be essential to develop processes operating at far higher concentrations of product, and which make better use of the enzyme via improved stability. In this Concept, it is argued that a particular emphasis on these specific metrics is of particular importance for the future implementation of biocatalysis in industry, at a level that fulfills its true potential.
Collapse
Affiliation(s)
- John M Woodley
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs Lyngby, Denmark
| |
Collapse
|
9
|
He L, Ye W, Xie Y, Liu Q, Wang H, Wei D. Efficient Biocatalytic Synthesis of (R)-2-Chloro-1-(3,4-difluorophenyl)ethanol by the Short-Chain Dehydrogenase PpKR8 from Paraburkholderia phymatum STM815. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ling He
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Wenjie Ye
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Youyu Xie
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Qinghai Liu
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Hualei Wang
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
10
|
Highly efficient synthesis of pharmaceutically relevant chiral 3-N-substituted-azacyclic alcohols using two enantiocomplementary short chain dehydrogenases. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
11
|
Wang T, Yang K, Tian Q, Han R, Zhang X, Li A, Zhang L. Acetoacetyl-CoA reductase PhaB as an excellent anti-Prelog biocatalyst for the synthesis of chiral β-hydroxyl ester and the molecular basis of its catalytic performance. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2021.111854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Hao YC, Zong MH, Wang ZL, Li N. Chemoenzymatic access to enantiopure N-containing furfuryl alcohol from chitin-derived N-acetyl-D-glucosamine. BIORESOUR BIOPROCESS 2021; 8:80. [PMID: 38650256 PMCID: PMC10992857 DOI: 10.1186/s40643-021-00435-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/18/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Chiral furfuryl alcohols are important precursors for the synthesis of valuable functionalized pyranones such as the rare sugar L-rednose. However, the synthesis of enantiopure chiral biobased furfuryl alcohols remains scarce. In this work, we present a chemoenzymatic route toward enantiopure nitrogen-containing (R)- and (S)-3-acetamido-5-(1-hydroxylethyl)furan (3A5HEF) from chitin-derived N-acetyl-D-glucosamine (NAG). FINDINGS 3-Acetamido-5-acetylfuran (3A5AF) was obtained from NAG via ionic liquid/boric acid-catalyzed dehydration, in an isolated yield of approximately 31%. Carbonyl reductases from Streptomyces coelicolor (ScCR) and Bacillus sp. ECU0013 (YueD) were found to be good catalysts for asymmetric reduction of 3A5AF. Enantiocomplementary synthesis of (R)- and (S)-3A5HEF was implemented with the yields of up to > 99% and the enantiomeric excess (ee) values of > 99%. Besides, biocatalytic synthesis of (R)-3A5HEF was demonstrated on a preparative scale, with an isolated yield of 65%. CONCLUSIONS A two-step process toward the chiral furfuryl alcohol was successfully developed by integrating chemical catalysis with enzyme catalysis, with excellent enantioselectivities. This work demonstrates the power of the combination of chemo- and biocatalysis for selective valorization of biobased furans.
Collapse
Affiliation(s)
- Ya-Cheng Hao
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China
| | - Zhi-Lin Wang
- Agro-Biological Gene Research Center, Guangdong Academy of Agricultural Sciences, 20 Jinying Road, Guangzhou, 510640, China.
| | - Ning Li
- School of Food Science and Engineering, South China University of Technology, 381 Wushan Road, Guangzhou, 510640, China.
| |
Collapse
|
13
|
Li Z, Yang H, Liu J, Huang Z, Chen F. Application of Ketoreductase in Asymmetric Synthesis of Pharmaceuticals and Bioactive Molecules: An Update (2018-2020). CHEM REC 2021; 21:1611-1630. [PMID: 33835705 DOI: 10.1002/tcr.202100062] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 02/05/2023]
Abstract
With the rapid development of genomic DNA sequencing, recombinant DNA expression, and protein engineering, biocatalysis has been increasingly and widely adopted in the synthesis of pharmaceuticals, bioactive molecules, fine chemicals, and agrochemicals. In this review, we have summarized the most recent advances achieved (2018-2020) in the research area of ketoreductase (KRED)-catalyzed asymmetric synthesis of chiral secondary alcohol intermediates to pharmaceuticals and bioactive molecules. In the first part, synthesis of chiral alcohols with one stereocenter through the bioreduction of four different ketone classes, namely acyclic aliphatic ketones, benzyl or phenylethyl ketones, cyclic aliphatic ketones, and aryl ketones, is discussed. In the second part, KRED-catalyzed dynamic reductive kinetic resolution and reductive desymmetrization are presented for the synthesis of chiral alcohols with two contiguous stereocenters.
Collapse
Affiliation(s)
- Zhining Li
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Haidi Yang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Jinyao Liu
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Zedu Huang
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| | - Fener Chen
- Department of Chemistry, Engineering Center of Catalysis and Synthesis for Chiral Molecules, Fudan University, Shanghai Engineering Research Center of Industrial Asymmetric Catalysis of Chiral Drugs, 220 Handan Road, Shanghai, 200433, P. R. China
| |
Collapse
|
14
|
Li A, Wang T, Tian Q, Yang X, Yin D, Qin Y, Zhang L. Single-Point Mutant Inverts the Stereoselectivity of a Carbonyl Reductase toward β-Ketoesters with Enhanced Activity. Chemistry 2021; 27:6283-6294. [PMID: 33475219 DOI: 10.1002/chem.202005195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/29/2020] [Indexed: 01/06/2023]
Abstract
Enzyme stereoselectivity control is still a major challenge. To gain insight into the molecular basis of enzyme stereo-recognition and expand the source of antiPrelog carbonyl reductase toward β-ketoesters, rational enzyme design aiming at stereoselectivity inversion was performed. The designed variant Q139G switched the enzyme stereoselectivity toward β-ketoesters from Prelog to antiPrelog, providing corresponding alcohols in high enantiomeric purity (89.1-99.1 % ee). More importantly, the well-known trade-off between stereoselectivity and activity was not found. Q139G exhibited higher catalytic activity than the wildtype enzyme, the enhancement of the catalytic efficiency (kcat /Km ) varied from 1.1- to 27.1-fold. Interestingly, the mutant Q139G did not lead to reversed stereoselectivity toward aromatic ketones. Analysis of enzyme-substrate complexes showed that the structural flexibility of β-ketoesters and a newly formed cave together facilitated the formation of the antiPrelog-preferred conformation. In contrast, the relatively large and rigid structure of the aromatic ketones prevents them from forming the antiPrelog-preferred conformation.
Collapse
Affiliation(s)
- Aipeng Li
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Ting Wang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Qing Tian
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Xiaohong Yang
- Department of Chemistry, University of California, One Shields Avenue, Davis, California, 95616, United States
| | - Dongming Yin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| | - Yong Qin
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China
| | - Lianbing Zhang
- School of Life Sciences, Northwestern Polytechnical University, 710072, Xi'an, China.,Research & Development Institute in Shenzhen, Northwestern Polytechnical University, 518057, Shenzhen, China
| |
Collapse
|
15
|
Li Y, Zhang R, Xu Y. Structure-based mechanisms: On the way to apply alcohol dehydrogenases/reductases to organic-aqueous systems. Int J Biol Macromol 2020; 168:412-427. [PMID: 33316337 DOI: 10.1016/j.ijbiomac.2020.12.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/20/2022]
Abstract
Alcohol dehydrogenases/reductases catalyze enantioselective syntheses of versatile chiral compounds relying on direct hydride transfer from cofactor to substrates, or to an intermediate and then to substrates. Since most of the substrates catalyzed by alcohol dehydrogenases/reductases are insoluble in aqueous solutions, increasing interest has been turning to organic-aqueous systems. However, alcohol dehydrogenases/reductases are normally instable in organic solvents, leading to the unsatisfied enantioselective synthesis efficiency. The behaviors of these enzymes in organic solvents at an atomic level are unclear, thus it is of great importance to understand its structure-based mechanisms in organic-aqueous systems to improve their relative stability. Here, we summarized the accessible structures of alcohol dehydrogenases/reductases in Protein Data Bank crystallized in organic-aqueous systems, and compared the structures of alcohol dehydrogenases/reductases which have different tolerance towards organic solvents. By understanding the catalytic behaviors and mechanisms of these enzymes in organic-aqueous systems, the efficient enantioselective syntheses mediated by alcohol dehydrogenases/reductases and further challenges are also discussed through solvent engineering and enzyme-immobilization in the last decade.
Collapse
Affiliation(s)
- Yaohui Li
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Department of Biological Science, Columbia University, New York, NY 10025, United States
| | - Rongzhen Zhang
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| | - Yan Xu
- Key Laboratory of Industrial Biotechnology of Ministry of Education & School of Biotechnology, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
16
|
Expanding the Application Range of Microbial Oxidoreductases by an Alcohol Dehydrogenase from Comamonas testosteroni with a Broad Substrate Spectrum and pH Profile. Catalysts 2020. [DOI: 10.3390/catal10111281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Alcohol dehydrogenases catalyse the conversion of a large variety of ketone substrates to the corresponding chiral products. Due to their high regio- and stereospecificity, they are key components in a wide range of industrial applications. A novel alcohol dehydrogenase from Comamonas testosteroni (CtADH) was identified in silico, recombinantly expressed and purified, enzymatically and biochemically investigated as well as structurally characterized. These studies revealed a broad pH profile and an extended substrate spectrum with the highest activity for compounds containing halogens as substituents and a moderate activity for bulky–bulky ketones. Biotransformations with selected ketones—performed with a coupled regeneration system for the co-substrate NADPH—resulted in conversions of more than 99% with all tested substrates and with excellent enantioselectivity for the corresponding S-alcohol products. CtADH/NADPH/substrate complexes modelled on the basis of crystal structures of CtADH and its closest homologue suggested preliminary hints to rationalize the enzyme’s substrate preferences
Collapse
|