1
|
Alshammari OAO, Alhar MSO, Elsayed NH, Monier M, Youssef I. Synthesis of furan-modified cationic cellulose for stereo-specific imprinting and separation of S-indacrinone via Diels-Alder reaction. Int J Biol Macromol 2024; 275:133384. [PMID: 38917927 DOI: 10.1016/j.ijbiomac.2024.133384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
This study introduces a novel approach for the separation of indacrinone (IC) enantiomers, crucial in treating edema, hypertension, and hyperuricemia. A cationic biopolymer from furan-2-ylmethylhydrazine-cellulose (FUH-CE), derived from cyanoethyl cellulose (CEC), serving as a substrate in molecular imprinting. A key innovation is the use of the Diels-Alder reaction for efficient cross-linking with bis(maleimido)ethane (BME). This chemical strategy resulted in molecularly imprinted microparticles with high selectivity for the S-IC enantiomer, which can be eluted by adjusting the solution's pH. Extensive characterization confirmed the chemical modifications and selective binding efficacy of these biopolymers. Utilizing separation columns, our method achieved an impressive chiral resolution of (±)-IC, with an enantiomeric excess (ee) of 95 % for R-IC during the loading phase and 97 % for S-IC during elution. Under optimized conditions, the biopolymer demonstrated a maximum binding capacity of 131 mg/g at pH 6. This advanced approach represents a significant advancement in chiral separation technology, offering a robust and efficient technique for the selective isolation of enantiomers. This method not only enhances potential targeted therapeutic applications but also provides a scalable solution for industrial chiral separations.
Collapse
Affiliation(s)
- Odeh A O Alshammari
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Munirah S O Alhar
- Department of Chemistry, College of Science, University of Ha'il, Ha'il 81451, Saudi Arabia
| | - Nadia H Elsayed
- Organic Chemistry Research Laboratory, Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - M Monier
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt.
| | - Ibrahim Youssef
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt; Neuroradiation and Neuro-intervention Section, Department of Radiology, UTSW Medical Center, Dallas, TX 75390. USA
| |
Collapse
|
2
|
Recycling of resolving agent and solvent by water-based reactions and phase diagrams: Chiral resolution study of racemic ibuprofen. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
3
|
Pashenko AE, Gaidai A, Hryhoriev N, Volovenko O, Levandovskiy I, Maksymenko O, Volochnyuk DM, Ryabukhin SV. Scale-Up Synthesis of 1-Methyladamantane and Its Functionalization as a Key Point for Promising Antiviral Agents. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Affiliation(s)
- Alexander E. Pashenko
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02660 Kyiv, Ukraine
| | - Alexandr Gaidai
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02660 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Avenue, 03056 Kyiv, Ukraine
| | - Nazar Hryhoriev
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Avenue, 03056 Kyiv, Ukraine
| | | | - Igor Levandovskiy
- National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, 37 Peremohy Avenue, 03056 Kyiv, Ukraine
| | - Olga Maksymenko
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
| | - Dmitriy M. Volochnyuk
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02660 Kyiv, Ukraine
| | - Sergey V. Ryabukhin
- Enamine Ltd., 78 Chervonotkatska Street, 02660 Kyiv, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska Street, 01033 Kyiv, Ukraine
- Institute of Organic Chemistry, National Academy of Sciences of Ukraine, 5 Murmanska Street, 02660 Kyiv, Ukraine
| |
Collapse
|
4
|
Lee HL, Hung YL, Amin A, Pratama DE, Lee T. Green and Strategic Approach for Chiral Resolution by Diastereomeric Salt Formation: The Study of Racemic Ibuprofen. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c04290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Hung Lin Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Ying Lun Hung
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Ahmed Amin
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Dhanang Edy Pratama
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| | - Tu Lee
- Department of Chemical and Materials Engineering, National Central University, 300 Zhongda Road, Zhongli District, Taoyuan City 320317, Taiwan
| |
Collapse
|
5
|
Yamamoto Y, Yaji K, Ito T. Practical Isolation of tert-Butyl [(1 S,2 R)-2-Aminocyclohexyl]carbamate ( R)-Mandelate through Diastereomeric Salt Formation under Thermodynamic Control. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuhei Yamamoto
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Kentaro Yaji
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| | - Tatsuya Ito
- Process Chemistry, Pharmaceutical Sciences, Takeda Pharmaceutical Company Limited, 17-85 Jusohonmachi 2-chome, Yodogawa-ku, Osaka 532-8686, Japan
| |
Collapse
|
6
|
Green and efficient enantioseparation of amlodipine using a novel pairwise crystallization-circulating extraction coupling method aimed at in situ reuse of mother liquor. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Parsons AT, Caille S, Caporini MA, Griffin DJ, Lovette MA, Powazinik W, St-Pierre G. Axial Chirality in the Sotorasib Drug Substance, Part 1: Development of a Classical Resolution to Prepare an Atropisomerically Pure Sotorasib Intermediate. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00176] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Andrew T. Parsons
- Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Seb Caille
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Marc A. Caporini
- Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Daniel J. Griffin
- Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael A. Lovette
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - William Powazinik
- Amgen, Inc., 360 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Gabrielle St-Pierre
- Amgen, Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| |
Collapse
|
8
|
Nikam S, S. K A. Enantioselective Separation of Amino Acids Using Chiral Polystyrene Microspheres Synthesized by a Post-Polymer Modification Approach. ACS POLYMERS AU 2022; 2:257-265. [PMID: 36855562 PMCID: PMC9955280 DOI: 10.1021/acspolymersau.2c00004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The enantioselective separation of a racemic mixture of amino acids was achieved by chiral amino acid-modified polystyrene (PS) that was developed by a post-polymer modification approach. Styrene was polymerized using the reversible addition-fragmentation chain-transfer (RAFT) polymerization technique and further post-polymer modification was applied by Friedel-Crafts acylation reaction with chiral N-phthaloyl-l-leucine acid chloride to obtain the protected PS-l-Leu. The chiral PS (protected PS-l-Leu) was assembled into microspheres using a surfactant and was used for carrying out the enantioselective separation of amino acid racemic mixtures by enantioselective adsorption followed by a simple filtration process. Compared to as-precipitated chiral PS (protected PS-l-Leu) powder, the protected PS-l-Leu microspheres exhibited a better enantioselective separation efficiency (ee %). Furthermore, the protected PS-l-Leu was deprotected to obtain the amine-functionalized deprotected PS-l-Leu chiral PS, which was also assembled into microspheres and used for carrying out enantioselective separation. Deprotected PS-l-Leu-functionalized chiral PS microspheres could achieve up to 81.6 ee % for the enantioselective separation of a racemic mixture of leucine. This is one of the first reports of the synthesis of amino acid-modified chiral PS microspheres and their application to the simple filtration-based enantioselective separation of native amino acids from their racemic mixtures.
Collapse
Affiliation(s)
- Shrikant
B. Nikam
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India
| | - Asha S. K
- Polymer
Science and Engineering Division, CSIR-National
Chemical Laboratory, Dr. Homi Bhabha Road, Pashan, Pune 411008, India,Academy
of Scientific and Innovative Research, Sector 19, Kamla Nehru Nagar, Ghaziabad, 201002 Uttar
Pradesh, India,. Fax: 0091-20-25902615
| |
Collapse
|
9
|
Losacco GL, Wang H, Haidar Ahmad IA, DaSilva J, Makarov AA, Mangion I, Gasparrini F, Lämmerhofer M, Armstrong DW, Regalado EL. Enantioselective UHPLC Screening Combined with In Silico Modeling for Streamlined Development of Ultrafast Enantiopurity Assays. Anal Chem 2021; 94:1804-1812. [PMID: 34931812 DOI: 10.1021/acs.analchem.1c04585] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enantioselective chromatography has been the preferred technique for the determination of enantiomeric excess across academia and industry. Although sequential multicolumn enantioselective supercritical fluid chromatography screenings are widespread, access to automated ultra-high-performance liquid chromatography (UHPLC) platforms using state-of-the-art small particle size chiral stationary phases (CSPs) is an underdeveloped area. Herein, we introduce a multicolumn UHPLC screening workflow capable of combining 14 columns (packed with sub-2 μm fully porous and sub-3 μm superficially porous particles) with nine mobile phase eluent choices. This automated setup operates under a vast selection of reversed-phase liquid chromatography, hydrophilic interaction liquid chromatography, polar-organic mode, and polar-ionic mode conditions with minimal manual intervention and high success rate. Examples of highly efficient enantioseparations are illustrated from the integration of chiral screening conditions and computer-assisted modeling. Furthermore, we describe the nuances of in silico method development for chiral separations via second-degree polynomial regression fit using LC simulator (ACD/Labs) software. The retention models were found to be very accurate for chiral resolution of single and multicomponent mixtures of enantiomeric species across different types of CSPs, with differences between experimental and simulated retention times of less than 0.5%. Finally, we illustrate how this approach lays the foundation for a streamlined development of ultrafast enantioseparations applied to high-throughput enantiopurity analysis and its use in the second dimension of two-dimensional liquid chromatography experiments.
Collapse
Affiliation(s)
- Gioacchino Luca Losacco
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Heather Wang
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Imad A Haidar Ahmad
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Jimmy DaSilva
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Alexey A Makarov
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Ian Mangion
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Francesco Gasparrini
- Department of Drug Chemistry and Technology, "Sapienza" University of Rome, P.le Aldo Moro 5, 00185 Rome, Italy
| | - Michael Lämmerhofer
- Institute of Pharmaceutical Sciences, Pharmaceutical (Bio-)Analysis, University of Tübingen, Auf der Morgenstelle 8, Tübingen 72076, Germany
| | - Daniel W Armstrong
- Department of Chemistry, University of Texas at Arlington, Arlington, Texas 76019, United States
| | - Erik L Regalado
- Analytical Research and Development, MRL, Merck & Co., Inc., 126 E. Lincoln Avenue, Rahway, New Jersey 07065, United States
| |
Collapse
|
10
|
Wills AG, Charvet S, Battilocchio C, Scarborough CC, Wheelhouse KMP, Poole DL, Carson N, Vantourout JC. High-Throughput Electrochemistry: State of the Art, Challenges, and Perspective. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00167] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Alfie G. Wills
- Medicinal Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
- Department of Pure & Applied Chemistry, University of Strathclyde, Thomas Graham Building, 295 Cathedral Street, Glasgow G1 1XL, United Kingdom
| | - Sylvain Charvet
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| | - Claudio Battilocchio
- Research Chemistry, Syngenta Crop Protection, Schaffhauserstrasse 101, CH-4332 Stein, Switzerland
| | | | - Katherine M. P. Wheelhouse
- Chemical Development, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Darren L. Poole
- Medicinal Chemistry, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Nessa Carson
- Syngenta Jealott’s Hill International Research Centre, Bracknell, Berkshire RG42 6EY, United Kingdom
| | - Julien C. Vantourout
- Univ Lyon, Université Lyon 1, CNRS, INSA, CPE-Lyon, ICBMS, UMR 5246, Bâtiment LEDERER, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France
| |
Collapse
|
11
|
Lin Z, Tai HC, Zhu G, Fabiano A, Borges-Muñoz A, Ye YK, He BL. Evaluation of a polysaccharide-based chiral reversed-phase liquid chromatography screen strategy in pharmaceutical analysis. J Chromatogr A 2021; 1645:462085. [PMID: 33848654 DOI: 10.1016/j.chroma.2021.462085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 11/20/2022]
Abstract
Chirality control plays a critical role in developing stereoisomeric drugs. Due to the complexity and lack of predictability in chiral separations, column screening remains the gold standard to initiate chiral method development for active pharmaceutical ingredients (APIs) and synthetic intermediates. Chiral reversed-phase (RP) liquid chromatography (LC) has gained favor over other modes due to its versatility and compatibility in analyzing a wide range of chiral compounds in various matrices. Herein, we established a tier-based chiral RPLC screen strategy by constructing and analyzing a database of 101 chiral screens with a total of 3,401 entries (unique LC runs) for proprietary APIs or intermediates at Bristol Myers Squibb. Up to 17 polysaccharide-based chiral stationary phases (CSPs) and four mobile phases (MPs) have been screened with gradient elution. A selection of ten CSPs with two MPs was found sufficient to achieve successful separation for 82% of the total screens. Two RPLC screen tiers (Tier 1: AZ, OD, ID, and IG) and (Tier 2: AY, OJ, OZ, IA, IC, and IH) were proposed along with two MPs (acidic and neutral) to target ~70% hit rate for Tier 1, and ~80% for the combined set. We also implemented a user-friendly workflow to enable walk-up chiral RPLC screening with automated reports and system suitability tests.
Collapse
Affiliation(s)
- Ziqing Lin
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Hua-Chia Tai
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Guanghui Zhu
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Abigail Fabiano
- Chemical & Biochemical Engineering, Rutgers University, 98 Brett Rd, Piscataway, NJ 08854, USA
| | - Amaris Borges-Muñoz
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Yun K Ye
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA
| | - Brian Lingfeng He
- Bristol Myers Squibb Company, Chemical Process Development, 1 Squibb Drive, New Brunswick, NJ 08903, USA.
| |
Collapse
|