1
|
Gallart-Mateu D, Dualde P, Coscollà C, Soriano JM, Garrigues S, de la Guardia M. Biomarkers of exposure in urine of active smokers, non-smokers, and vapers. Anal Bioanal Chem 2023; 415:6677-6688. [PMID: 37743413 PMCID: PMC10598069 DOI: 10.1007/s00216-023-04943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/26/2023]
Abstract
The exposure to smoking related products has been evaluated through urine illness risk marker determination through the analysis of urine samples of smokers and vapers. Biomarkers and their metabolites such as N-acetyl-S-(2-cyanoethyl)-L-cysteine (CEMA), N-acetyl-S-(3,4-dihydroxybutyl)-L-cysteine (DHBMA), N-acetyl-S-[1-(hydroxymethyl)-2-propen-1-yl)-L-cysteine (MHBMA), N-acetyl-S-(3-hydroxypropyl)-L-cysteine (3HPMA), 2R-N-acetyl-S-(4-hydroxybutan-2-yl)-L-cysteine (HMPMA), and N-acetyl-S-(3-carboxy-2-propyl)-L-cysteine (CMEMA) together with nicotine and cotinine were identified and quantified by LC-HRMS and LC-MS/MS, and data found normalized to the creatinine level. One hundred two urine samples were collected from smokers, non-smokers, and vapers, spanning an age range from 16 to 79 years. Results obtained showed that CEMA was only detected in urine samples from smokers and MHBMA was in the same order of magnitude in all the urine samples analyzed. HMPMA was found in the urine of vapers at the same order of concentration as in non-smokers. 3HPMA in vapers was lower than in the urine of smokers, presenting an intermediate situation between smokers and non-smokers. On the other hand, DHBMA in vapers can reach similar values to those found for smokers, while CMEMA shows concentrations in the urine of vapers higher than in the case of non-smokers and traditional smokers, requiring new research to link this metabolite to the use of electronic cigarettes and possible alternative metabolomic routes. In general, this study seems to verify that traditional smoking practice constitutes a major source of carcinogenic chemicals compared with substitutive practices, although those practices are not free of potential harm.
Collapse
Affiliation(s)
- D Gallart-Mateu
- Department of Analytical Chemistry, University of Valencia, Research Building, 50 Dr. Moliner Street, 16100-Burjassot, Valencia, Spain
| | - P Dualde
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - C Coscollà
- Foundation for the Promotion of Health and Biomedical Research in the Valencian Region, FISABIO-Public Health, Av. Catalunya, 21, 46020, Valencia, Spain
| | - J M Soriano
- GISP Grup d'Investigació en Salut Pública, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - S Garrigues
- Department of Analytical Chemistry, University of Valencia, Research Building, 50 Dr. Moliner Street, 16100-Burjassot, Valencia, Spain
| | - M de la Guardia
- Department of Analytical Chemistry, University of Valencia, Research Building, 50 Dr. Moliner Street, 16100-Burjassot, Valencia, Spain.
| |
Collapse
|
2
|
Fillon YA, Akhtar N, Andrews BI, Benstead D, Breitler S, Gronke RS, Olbrich M, Stolee JA, Vandermeersch T. Determination of Purge Factors for Use in Oligonucleotide Control Strategies. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.1c00398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yannick A. Fillon
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | | - Benjamin I. Andrews
- GlaxoSmithKline Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, U.K
| | | | - Simon Breitler
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Robert S. Gronke
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin Olbrich
- F. Hoffmann-La Roche Ltd., Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Jessica A. Stolee
- Biogen Inc., 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | | |
Collapse
|
3
|
Knouse KW, Flood DT, Vantourout JC, Schmidt MA, Mcdonald IM, Eastgate MD, Baran PS. Nature Chose Phosphates and Chemists Should Too: How Emerging P(V) Methods Can Augment Existing Strategies. ACS CENTRAL SCIENCE 2021; 7:1473-1485. [PMID: 34584948 PMCID: PMC8461637 DOI: 10.1021/acscentsci.1c00487] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Indexed: 05/27/2023]
Abstract
Phosphate linkages govern life as we know it. Their unique properties provide the foundation for many natural systems from cell biology and biosynthesis to the backbone of nucleic acids. Phosphates are ideal natural moieties; existing as ionized species in a stable P(V)-oxidation state, they are endowed with high stability but exhibit enzymatically unlockable potential. Despite intense interest in phosphorus catalysis and condensation chemistry, organic chemistry has not fully embraced the potential of P(V) reagents. To be sure, within the world of chemical oligonucleotide synthesis, modern approaches utilize P(III) reagent systems to create phosphate linkages and their analogs. In this Outlook, we present recent studies from our laboratories suggesting that numerous exciting opportunities for P(V) chemistry exist at the nexus of organic synthesis and biochemistry. Applications to the synthesis of stereopure antisense oligonucleotides, cyclic dinucleotides, methylphosphonates, and phosphines are reviewed as well as chemoselective modification to peptides, proteins, and nucleic acids. Finally, an outlook into what may be possible in the future with P(V) chemistry is previewed, suggesting these examples represent just the tip of the iceberg.
Collapse
Affiliation(s)
- Kyle W. Knouse
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Dillon T. Flood
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Julien C. Vantourout
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Michael A. Schmidt
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Ivar M. Mcdonald
- Small
Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Martin D. Eastgate
- Chemical
and Synthetic Development, Bristol Myers
Squibb, One Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Phil S. Baran
- Elsie
Biotechnologies, 4955
Directors Place, San Diego, California 92121, United States
- Department
of Chemistry, Scripps Research, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| |
Collapse
|
4
|
Huang Y, Knouse KW, Qiu S, Hao W, Padial NM, Vantourout JC, Zheng B, Mercer SE, Lopez-Ogalla J, Narayan R, Olson RE, Blackmond DG, Eastgate MD, Schmidt MA, McDonald IM, Baran PS. A P(V) platform for oligonucleotide synthesis. Science 2021; 373:1265-1270. [PMID: 34516793 PMCID: PMC8579956 DOI: 10.1126/science.abi9727] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The promise of gene-based therapies is being realized at an accelerated pace, with more than 155 active clinical trials and multiple U.S. Food and Drug Administration approvals for therapeutic oligonucleotides, by far most of which contain modified phosphate linkages. These unnatural linkages have desirable biological and physical properties but are often accessed with difficulty using phosphoramidite chemistry. We report a flexible and efficient [P(V)]–based platform that can install a wide variety of phosphate linkages at will into oligonucleotides. This approach uses readily accessible reagents and can install not only stereodefined or racemic thiophosphates but any combination of (S, R or rac)–PS with native phosphodiester (PO2) and phosphorodithioate (PS2) linkages into DNA and other modified nucleotide polymers. This platform easily accesses this diversity under a standardized coupling protocol with sustainably prepared, stable P(V) reagents.
Collapse
Affiliation(s)
- Yazhong Huang
- Small Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney St., Cambridge, MA 02142
| | - Kyle W. Knouse
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
- Elsie Biotechnologies, 4955 Directors Pl, San Diego, CA 92121
| | - Shenjie Qiu
- Chemical Process Development, Bristol Myers Squibb, One Squibb Dr., New Brunswick, NJ 08903
| | - Wei Hao
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Natalia M. Padial
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Julien C. Vantourout
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Bin Zheng
- Chemical Process Development, Bristol Myers Squibb, One Squibb Dr., New Brunswick, NJ 08903
| | - Stephen E. Mercer
- Small Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney St., Cambridge, MA 02142
| | - Javier Lopez-Ogalla
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Rohan Narayan
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Richard E. Olson
- Small Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney St., Cambridge, MA 02142
| | - Donna G. Blackmond
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| | - Martin D. Eastgate
- Chemical Process Development, Bristol Myers Squibb, One Squibb Dr., New Brunswick, NJ 08903
| | - Michael A. Schmidt
- Chemical Process Development, Bristol Myers Squibb, One Squibb Dr., New Brunswick, NJ 08903
| | - Ivar M. McDonald
- Small Molecule Drug Discovery, Bristol Myers Squibb, 100 Binney St., Cambridge, MA 02142
| | - Phil S. Baran
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, CA 92037
| |
Collapse
|