1
|
Tacsi K, Galata DL, Domokos A, Pusztai É, Nagy B, Stoffán GN, Nagy ZK, Pataki H. Development and integration of a continuous horizontal belt filter into drug production procedure. Int J Pharm 2024; 666:124729. [PMID: 39306206 DOI: 10.1016/j.ijpharm.2024.124729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/03/2024]
Abstract
In the pharmaceutical industry, filtration is traditionally carried out in batch mode. However, with the spread of continuous technologies, there is an increasing demand for robust continuous filtration strategies suitable for processing suspensions produced in continuous crystallizers. Accordingly, this study aimed to investigate a lab-scale horizontal conveyor belt filtration approach for pharmaceutical separation purposes for the first time. The newly developed continuous horizontal belt filter (CHBF) was tested under different systems (microcrystalline cellulose (MCC)/water, lactose/ethanol and acetylsalicylic acid (ASA)/water) and diverse conditions. Filtration was robust using a well-defined unimodal particle size distribution MCC in water system, where the residual moisture content varied within narrow limits of 45-52% independently from the process conditions. Besides, the residual moisture content highly depended on the applied solvent and particle size. It could be reduced to below 2% by processing the suspensions of either a volatile solvent (lactose in ethanol) or an aqueous slurry of a large particle size ASA. Finally, the CHBF was connected to a mixed suspension mixed product removal (MSMPR) or a plug flow crystallizer (PFC). The residual moisture content of the CHBF-filtered ASA product and operation characteristics (onset of steady-state) were evaluated in both continuous crystallizer-filter systems. The MSMPR-CHBF system operated with a longer startup period. The size of the in situ-produced crystals was of a similar order magnitude in both systems, resulting in a similar residual moisture content (around 20%). Overall, the tested continuous filter was robust, did not modify the crystal morphology in the examined experimental range, and could be effectively integrated with continuous crystallizers.
Collapse
Affiliation(s)
- Kornélia Tacsi
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| | - Dorián László Galata
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - András Domokos
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Éva Pusztai
- Department of Chemical and Environmental Process Engineering, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Brigitta Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - György Nimród Stoffán
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Zsombor Kristóf Nagy
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Hajnalka Pataki
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary.
| |
Collapse
|
2
|
Sonnenschein J, Hermes M, Höving S, Kockmann N, Wohlgemuth K. Population balance modeling of unstirred cooling crystallization on an integrated belt filter. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Continuous Isolation of Particles with Varying Aspect Ratios up to Thin Needles Achieving Free-Flowing Products. CRYSTALS 2022. [DOI: 10.3390/cryst12020137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The continuous vacuum screw filter (CVSF) for small-scale continuous product isolation of suspensions was operated for the first time with cuboid-shaped and needle-shaped particles. These high aspect ratio particles are very common in pharmaceutical manufacturing processes and provide challenges in filtration, washing, and drying processes. Moreover, the flowability decreases and undesired secondary processes of attrition, breakage, and agglomeration may occur intensively. Nevertheless, in this study, it is shown that even cuboid and needle-shaped particles (l-alanine) can be processed within the CVSF preserving the product quality in terms of particle size distribution (PSD) and preventing breakage or attrition effects. A dynamic image analysis-based approach combining axis length distributions (ALDs) with a kernel-density estimator was used for evaluation. This approach was extended with a quantification of the center of mass of the density-weighted ALDs, providing a measure to analyze the preservation of the inlet PSD statistically. Moreover, a targeted residual moisture below 1% could be achieved by adding a drying module (Tdry = 60 °C) to the modular setup of the CVSF.
Collapse
|
4
|
Schmalenberg M, Krell T, Mathias C, Kockmann N. Continuous Miniaturized Draft Tube Baffle Crystallizer with Particle Screw for Supportive Suspension Discharge. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mira Schmalenberg
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Tobias Krell
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Christopher Mathias
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Norbert Kockmann
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| |
Collapse
|
5
|
Towards Continuous Primary Manufacturing Processes—Particle Design through Combined Crystallization and Particle Isolation. Processes (Basel) 2021. [DOI: 10.3390/pr9122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Integrated continuous manufacturing processes of active pharmaceutical ingredients (API) provide key benefits concerning product quality control, scale-up capability, and a reduced time-to-market. Thereby, the crystallization step, which is used in approximately 90% of API productions, mainly defines the final API properties. This study focuses on the design and operation of an integrated small-scale process combining a continuous slug flow crystallizer (SFC) with continuous particle isolation using the modular continuous vacuum screw filter (CVSF). By selective adjustment of supersaturation and undersaturation, the otherwise usual blocking could be successfully avoided in both apparatuses. It was shown that, during crystallization in an SFC, a significant crystal growth of particles (Δd50,3≈ 220 µm) is achieved, and that, during product isolation in the CVSF, the overall particle size distribution (PSD) is maintained. The residual moistures for the integrated process ranged around 2% during all experiments performed, ensuring free-flowing particles at the CVSF outlet. In summary, the integrated setup offers unique features, such as its enhanced product quality control and fast start-up behavior, providing a promising concept for integrated continuous primary manufacturing processes of APIs.
Collapse
|
6
|
Steenweg C, Seifert AI, Böttger N, Wohlgemuth K. Process Intensification Enabling Continuous Manufacturing Processes Using Modular Continuous Vacuum Screw Filter. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claas Steenweg
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Astrid Ina Seifert
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Nils Böttger
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Kerstin Wohlgemuth
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
7
|
Continuous Cooling Crystallization in a Coiled Flow Inverter Crystallizer Technology—Design, Characterization, and Hurdles. Processes (Basel) 2021. [DOI: 10.3390/pr9091537] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Continuous small-scale production is currently of utmost interest for fine chemicals and pharmaceuticals. For this purpose, equipment and process concepts in consideration of the hurdles for solids handling are required to transfer conventional batch processing to continuous operation. Based on empirical equations, pressure loss constraints, and an expandable modular system, a coiled flow inverter (CFI) crystallizer with an inner diameter of 1.6 mm was designed. It was characterized concerning its residence time behavior, tested for operation with seed crystals or an ultrasonic seed crystal unit, and evaluated for different purging mechanisms for stable operation. The residence time behavior in the CFI corresponds to ideal plug flow behavior. Crystal growth using seed crystals was demonstrated in the CFI for two amino acids. For fewer seed crystals, higher crystal growth rates were determined, while at the same time, secondary nucleation was observed. Feasibility for the interconnection of a sonicated seeding crystal unit could be shown. However, the hurdles are also identified and discussed. Prophylactic flushing combined with a photosensor for distinguishing between solvent and suspension phase can lead to stable and resource-efficient operation. The small-scale CFI technology was investigated in detail, and the limits and opportunities of the technology are presented here.
Collapse
|