1
|
Sim J, K P S, Lee A. Visible Light-Mediated Selective Synthesis of β-Amino Sulfide Scaffolds via Dual Role of N-Iodosuccinimide. Org Lett 2025; 27:2687-2692. [PMID: 40047582 DOI: 10.1021/acs.orglett.5c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The synthesis of β-amino sulfides is significant in organic chemistry. However, challenges such as achieving regioselectivity and the limited availability of starting materials remain unresolved. In this study, we present a visible light-mediated method for the selective synthesis of β-amino sulfide scaffolds. Remarkably, two distinct types of β-amino sulfides were selectively synthesized through the dual role of N-iodosuccinimide, which functions as either a reactant or an activator in the construction of the target scaffolds.
Collapse
|
2
|
Breitschaft F, Saak AL, Krumbiegel C, Bartolomeu ADA, Weyhermüller T, Waldvogel SR. Multicomponent Electrosynthesis of Enaminyl Sulfonates Starting from Alkylamines, SO 2, and Alcohols. Org Lett 2025; 27:1210-1215. [PMID: 39869543 PMCID: PMC11812012 DOI: 10.1021/acs.orglett.4c04746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/09/2025] [Accepted: 01/17/2025] [Indexed: 01/29/2025]
Abstract
An electrochemical one-pot synthesis of enaminyl sulfonate esters was established, featuring a quasidivided cell under constant current conditions. The multicomponent reaction utilizes simple and readily available alkylamines and an easy-to-use stock solution of SO2 and alcohols. Omission of additional supporting electrolyte through in-situ-generated monoalkylsulfite facilitates the downstream processing. A diverse scope with more than 28 examples and yields up to 85% as well as a 20-fold scale-up reaction prove the feasibility of this novel protocol.
Collapse
Affiliation(s)
- Florian
A. Breitschaft
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Alicia L. Saak
- Department
of Chemistry, Johannes Gutenberg University, Duesbergweg 10−14, 55218 Mainz, Germany
| | - Christian Krumbiegel
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Aloisio de A. Bartolomeu
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Siegfried R. Waldvogel
- Max-Planck-Institute
for Chemical Energy Conversion, Stiftstraße 34−36, 45470 Mülheim an der Ruhr, Germany
- Karlsruhe
Institute of Technology, Institute of Biological
and Chemical Systems − Functional Molecular Systems (IBCS FMS), Kaiserstraße 12, 76131 Karlsruhe, Germany
| |
Collapse
|
3
|
Zhang Q, Feng Y, Liang X, Wu S, He F, Guan Y, Wang Z. Efficient bio-reduction of 3-nitro phthalic acid using engineered nitroreductase and V2O5. Process Biochem 2025; 148:157-167. [DOI: 10.1016/j.procbio.2024.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
4
|
Pu T, Wu SH, Cai L, Pu W, Yuan Y, Zhuang Z, Yang S, Wang L. Regio- and Stereoselective β-Sulfonylamination of Alkynes via Photosensitized Bifunctional N-S Bond Homolysis. Org Lett 2024; 26:10604-10610. [PMID: 39629853 DOI: 10.1021/acs.orglett.4c04091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Nitrogen central radicals (NCRs) are versatile synthetic intermediates for creating functional nitrogen-containing molecules. Herein, a photosensitized β-sulfonylamination of terminal alkynes as well as acetylene has been established by employing N-sulfonyl heteroaromatics as bifunctional reagents (BFRs) to efficiently deliver versatile (E)-β-sulfonylvinylamines with excellent regio- and stereoselectivities. Mechanistic studies suggest a base-accelerated energy transfer (EnT) photocatalysis involving aromatic NCR formation, radical addition to alkynes, and sulfonylation processes.
Collapse
Affiliation(s)
- Tonglv Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Si-Hai Wu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Liuyan Cai
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Wenjia Pu
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Yilong Yuan
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Zhenjing Zhuang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Shumin Yang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| | - Lianhui Wang
- School of Medicine, Huaqiao University, Quanzhou 362021, P. R. China
| |
Collapse
|
5
|
Staller DW, Bennett RG, Mahato RI. Therapeutic perspectives on PDE4B inhibition in adipose tissue dysfunction and chronic liver injury. Expert Opin Ther Targets 2024; 28:545-573. [PMID: 38878273 PMCID: PMC11305103 DOI: 10.1080/14728222.2024.2369590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
INTRODUCTION Chronic liver disease (CLD) is a complex disease associated with profound dysfunction. Despite an incredible burden, the first and only pharmacotherapy for metabolic-associated steatohepatitis was only approved in March of this year, indicating a gap in the translation of preclinical studies. There is a body of preclinical work on the application of phosphodiesterase 4 inhibitors in CLD, none of these molecules have been successfully translated into clinical use. AREAS COVERED To design therapies to combat CLD, it is essential to consider the dysregulation of other tissues that contribute to its development and progression. As such, proper therapies must combat this throughout the body rather than focusing only on the liver. To detail this, literature characterizing the pathogenesis of CLD was pulled from PubMed, with a particular focus placed on the role of PDE4 in inflammation and metabolism. Then, the focus is shifted to detailing the available information on existing PDE4 inhibitors. EXPERT OPINION This review gives a brief overview of some of the pathologies of organ systems that are distinct from the liver but contribute to disease progression. The demonstrated efficacy of PDE4 inhibitors in other human inflammatory diseases should earn them further examination for the treatment of CLD.
Collapse
Affiliation(s)
- Dalton W. Staller
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Robert G. Bennett
- Department of Internal Medicine, Division of Diabetes Endocrinology and Metabolism, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Ram I. Mahato
- Department of Cellular & Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
6
|
Kumar R, Bhadoria D, Kant R, Kumar A. Regio- and Stereoselective Intermolecular 1,2-Difunctionalization of Terminal Alkynes: An Approach to Access ( Z)-β-Amidovinylsulfones. J Org Chem 2024; 89:2873-2884. [PMID: 38354303 DOI: 10.1021/acs.joc.3c02155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
We have developed the first I2/base-catalyzed regio- and stereoselective intermolecular β-amidosulfonylation of terminal alkynes using sodium sulfinates and quinoxalinone derivatives. The present methodology is compatible with a broad spectrum of various heterocyclic amides, terminal alkynes, and sodium sulfinates. It provides rapid access to valuable (Z)-β-amidovinyl sulfones at mild conditions. Moreover, the synthetic application of this methodology was demonstrated by the late-stage functionalization of numerous bioactive molecules.
Collapse
Affiliation(s)
- Rajesh Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Deepak Bhadoria
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ruchir Kant
- Molecular and Structural Biology, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Atul Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, P.O. Box 173, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
7
|
Zhu XX, Liu WQ, Shi ZX, Zhu HY, Fan SQ, Zhang J, Liu WY, Xu LJ, Ren QJ, Feng F, Xu J. Meroterpenoids with divers' rings systems from Phyllosticta capitalensis and their anti-inflammatory activity. PHYTOCHEMISTRY 2024; 217:113918. [PMID: 37952710 DOI: 10.1016/j.phytochem.2023.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/30/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Four undescribed sesquiterpene-shikimates (1-4), eight undescribed monoterpene-shikimates (5-12), together with two known ones were isolated and identified from the 95% ethanol extract of the plant endophytic fungus Phyllosticta capitalensis cultured in rice medium. Capitalensis A (1) was identified as the first sesquiterpene-shikimate-conjugated spirocyclic meroterpenoid degradation product, while capitalensis B (2) is a sesquiterpene-shikimate-conjugated spirocyclic meroterpenoid with a unique D-ring formed by a C-2-O-C-9' connection. The structures of these previously undescribed compounds were elucidated by multiple techniques, including IR, HR-ESI-MS, and NMR analysis. Furthermore, their absolute configurations were established through the comprehensive approach that involved the calculations of ECD spectra, optical rotation values, and single-crystal X-ray analysis. Moreover, the anti-inflammatory activity of all isolated compounds was evaluated using a lipopolysaccharide (LPS)-induced inflammation model in BV2 microglial cells. Meanwhile, these compounds exhibited activity in inhibiting NO production. Four compounds, capitalensis C (3), capitalensis D (4), 15-hydroxyl tricycloalternarene 5b (13) and guignarenone A (14) showed strong inhibitory effects with IC50 values of 21.6 ± 1.33, 12.2 ± 1.08, 18.6 ± 1.27, and 15.8 ± 1.20 μM, respectively. In addition, the structure-activity relationship of the anti-inflammatory activity of the compounds was discussed.
Collapse
Affiliation(s)
- Xiao-Xia Zhu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wan-Qiu Liu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Zhao-Xia Shi
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Huang-Yao Zhu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Si-Qi Fan
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Jie Zhang
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Wen-Yuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Li-Jun Xu
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, PR China
| | - Qing-Jia Ren
- Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, PR China
| | - Feng Feng
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China; School of Pharmacy, Nanjing Medical University, Nanjing, 211166, PR China; Jiangsu Food and Pharmaceutical Science College, Huaian, 223003, PR China.
| | - Jian Xu
- School of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China; Tibetan Medicine Institute, Tibetan University of Tibetan Medicine, Lhasa, 850007, PR China.
| |
Collapse
|
8
|
Sang JW, Du P, Xia D, Zhang Y, Wang J, Zhang WD. EnT-Mediated Amino-Sulfonylation of Alkenes with Bifunctional Sulfonamides: Access to β-Amino Sulfone Derivatives. Chemistry 2023; 29:e202301392. [PMID: 37218305 DOI: 10.1002/chem.202301392] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
β-Amino sulfones are commonly found structural motifs in biologically active compounds. Herein, we report a direct photocatalyzed amino-sulfonylation reaction of alkenes for the efficicient production of important compounds by simple hydrolysis without the need for additional oxidants and reductants. In this transformation, the sulfonamides worked as bifunctional reagents, simultaneously generating sulfonyl radicals and N-centered radicals which were added to alkene in a highly atom-economical fashion with high regioselectivity and diastereoselectivity. This approach showed high functional group tolerance and compatibility, facilitating the late-stage modification of some bioactive alkenes and sulfonamide molecules, thereby expanding the biologically relevant chemical space. Scaling up this reaction led to an efficient green synthesis of apremilast, one of the best-selling pharmceuticals, demonstrating the synthetic utility of the applied method. Moreover, mechanistic investigations suggest that an energy transfer (EnT) process was in operation.
Collapse
Affiliation(s)
- Ji-Wei Sang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Peiyu Du
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Dingding Xia
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Yu Zhang
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
- Department School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
- Shanghai Frontiers Science Center for Chinese Medicine Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai, University of Traditional Chinese Medicine, No. 1200, Cailun Road, Shanghai, 201203, China
| |
Collapse
|
9
|
Zhang Y, Wu J, Qiu W, Liao L, Wang B, Zhao X. Lewis Acid-Mediated Electrophilic Thiolative Difunctionalization of Enimides: Rapid Access to β-Amino Sulfides. Org Lett 2023. [PMID: 37384740 DOI: 10.1021/acs.orglett.3c01999] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
An efficient and practical route for the synthesis of β-amino sulfides by Lewis acid-mediated electrophilic thiolative difunctionalization of enimides is disclosed. A series of free phenols, electron-rich arene, alcohol, azide, and hydride, are successfully incorporated into the substrates in high regio- and stereoselectivities under mild conditions. The obtained products possess multiple functional groups and can be easily transformed to other valuable molecules.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Jiaping Wu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Wangzhen Qiu
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Lihao Liao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Bo Wang
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaodan Zhao
- Institute of Organic Chemistry & MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
10
|
Szabó ZI, Benkő BM, Bartalis-Fábián Á, Iványi R, Varga E, Szőcs L, Tóth G. Chiral Separation of Apremilast by Capillary Electrophoresis Using Succinyl-β-Cyclodextrin-Reversal of Enantiomer Elution Order by Cationic Capillary Coating. Molecules 2023; 28:molecules28083310. [PMID: 37110544 PMCID: PMC10143784 DOI: 10.3390/molecules28083310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
A stereospecific capillary electrophoresis method was developed for the separation of the novel, antipsoriatic agent, apremilast (APR). Six anionic cyclodextrin (CD) derivatives were screened for their ability to discriminate between the uncharged enantiomers. Only succinyl-β-CD (Succ-β-CD) presented chiral interactions; however, the enantiomer migration order (EMO) was unfavorable, and the eutomer, S-APR, migrated faster. Despite the optimization of all possible parameters (pH, cyclodextrin concentration, temperature, and degree of substitution of CD), the method was unsuccessful for purity control due to the low resolution and the unfavorable enantiomer migration order. Changing the direction of electroosmotic flow (EOF) by the dynamic coating of the inner surface of the capillary with poly(diallyldimethylammonium) chloride or polybrene resulted in EMO reversal, and the developed method could be applied for the determination of R-APR as the enantiomeric purity. Thus, the application of the dynamic capillary coating offers a general opportunity for enantiomeric migration order reversal in particular cases when the chiral selector is a weak acid.
Collapse
Affiliation(s)
- Zoltán-István Szabó
- Faculy of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
- Sz-Imfidum Ltd., nr. 504, 525401 Lunga, Romania
| | - Beáta-Mária Benkő
- University Pharmacy Department of Pharmaceutical Administration, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| | - Ágnes Bartalis-Fábián
- Faculy of Pharmacy, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Targu Mures, Gh. Marinescu 38, 540139 Târgu Mureș, Romania
| | - Róbert Iványi
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | | | - Levente Szőcs
- Cyclolab Ltd., Illatos út 7, H-1097 Budapest, Hungary
| | - Gergő Tóth
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E. 9, H-1085 Budapest, Hungary
| |
Collapse
|
11
|
Jordão AK, Pinheiro TN, Barbosa EG. Sodium Tungstate Dihydrate (Na2WO4·2H2O): A Mild Oxidizing and Efficient Reagent in Organic Synthesis. SYNOPEN 2022. [DOI: 10.1055/a-1924-8008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
12
|
Guo J, Gao X, Qian D, Wang H, Jia X, Zhang W, Qin B, You S. Efficient synthesis of an apremilast precursor and chiral β-hydroxy sulfones via ketoreductase-catalyzed asymmetric reduction. Org Biomol Chem 2022; 20:2081-2085. [PMID: 35179164 DOI: 10.1039/d1ob02485j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ketoreductase (KRED)-catalyzed asymmetric reduction of prochiral ketones is an attractive method to synthesize chiral alcohols. Herein, two KREDs LfSDR1-V186A/E141I and CgKR1-F92I with complementary stereopreference were identified towards reduction of apremilast prochiral ketone intermediate 1a. LfSDR1-V186A/E141I exhibited >99% conversion and 99.2% ee yielding an apremilast chiral alcohol intermediate ((R)-2a) at 50 g L-1 substrate loading. Furthermore, we investigated the substrate scope of β-keto sulfones by using LfSDR1-V186A/E141I and CgKR1-F92I to produce both enantiomers of the corresponding β-hydroxy sulfones, with good-to-excellent conversion (up to >99%) and enantioselectivity (up to 99.9% ee) being obtained in most cases. Finally, the gram-scale synthesis of (R)-2a was performed by employing the crude enzyme of LfSDR1-V186A/E141I and BsGDH to afford the desired enantiomer with >99% conversion, 85.9% isolated yield and 99.2% ee. This study presents a biocatalytic strategy to synthesize chiral β-hydroxy sulfones.
Collapse
Affiliation(s)
- Jiyang Guo
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Xiao Gao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Dong Qian
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Huibin Wang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, Shenyang 110016, P. R. China.
| |
Collapse
|
13
|
Liu Z, Liu M, Cao Z, Qiu P, Song G. Phosphodiesterase‑4 inhibitors: a review of current developments (2013-2021). Expert Opin Ther Pat 2022; 32:261-278. [PMID: 34986723 DOI: 10.1080/13543776.2022.2026328] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Cyclic nucleotide phosphodiesterase 4 (PDE4) is responsible for the hydrolysis of cAMP, which has become an attractive therapeutic target for lung, skin, and severe neurological diseases. Here, we review the current status of development of PDE4 inhibitors since 2013 and discuss the applicability of novel medicinal-chemistry strategies for identifying more efficient and safer inhibitors. AREAS COVERED This review summarizes the clinical development of PDE4 inhibitors from 2013 to 2021, focused on their pharmacophores, the strategies to reduce the side effects of PDE4 inhibitors and the development of subfamily selective PDE4 inhibitors. EXPERT OPINION To date, great efforts have been made in the development of PDE4 inhibitors, and researchers have established a comprehensive preclinical database and collected some promising data from clinical trials. Although four small-molecule PDE4 inhibitors have been approved by FDA for the treatment of human diseases up to now, further development of other reported PDE4 inhibitors with strong potency has been hampered due to the occurrence of severe side effects. There are currently three main strategies for overcoming the dose limitation and systemic side effects, which provide new opportunities for the clinical development of new PDE4 inhibitors.
Collapse
Affiliation(s)
- Zhihao Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Mingjian Liu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Zhenqing Cao
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Pengsen Qiu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| | - Gaopeng Song
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou, China
| |
Collapse
|
14
|
Vanillin containing 9H-fluoren sulfone scaffolds: Synthesis, biological evaluation and molecular docking study. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2021.100269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
15
|
Practical and Asymmetric Synthesis of Apremilast Using Ellman’s Sulfinamide as a Chiral Auxiliary. MOLBANK 2021. [DOI: 10.3390/m1275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Herein, we described a new protocol for the asymmetric synthesis of apremilast using tert-butanesulfinamide as a chiral auxiliary. This synthetic route consisted of four steps starting from the commercially available 3-hydroxy-4-methoxybenzaldehyde, and apremilast was accordingly obtained in an overall 56% yield and with 95.5% ee.
Collapse
|