1
|
Tom G, Schmid SP, Baird SG, Cao Y, Darvish K, Hao H, Lo S, Pablo-García S, Rajaonson EM, Skreta M, Yoshikawa N, Corapi S, Akkoc GD, Strieth-Kalthoff F, Seifrid M, Aspuru-Guzik A. Self-Driving Laboratories for Chemistry and Materials Science. Chem Rev 2024; 124:9633-9732. [PMID: 39137296 PMCID: PMC11363023 DOI: 10.1021/acs.chemrev.4c00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Self-driving laboratories (SDLs) promise an accelerated application of the scientific method. Through the automation of experimental workflows, along with autonomous experimental planning, SDLs hold the potential to greatly accelerate research in chemistry and materials discovery. This review provides an in-depth analysis of the state-of-the-art in SDL technology, its applications across various scientific disciplines, and the potential implications for research and industry. This review additionally provides an overview of the enabling technologies for SDLs, including their hardware, software, and integration with laboratory infrastructure. Most importantly, this review explores the diverse range of scientific domains where SDLs have made significant contributions, from drug discovery and materials science to genomics and chemistry. We provide a comprehensive review of existing real-world examples of SDLs, their different levels of automation, and the challenges and limitations associated with each domain.
Collapse
Affiliation(s)
- Gary Tom
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Stefan P. Schmid
- Department
of Chemistry and Applied Biosciences, ETH
Zurich, Vladimir-Prelog-Weg 1, CH-8093 Zurich, Switzerland
| | - Sterling G. Baird
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Yang Cao
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Kourosh Darvish
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Han Hao
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
| | - Stanley Lo
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
| | - Sergio Pablo-García
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
| | - Ella M. Rajaonson
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Marta Skreta
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Naruki Yoshikawa
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
| | - Samantha Corapi
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
| | - Gun Deniz Akkoc
- Forschungszentrum
Jülich GmbH, Helmholtz Institute
for Renewable Energy Erlangen-Nürnberg, Cauerstr. 1, 91058 Erlangen, Germany
- Department
of Chemical and Biological Engineering, Friedrich-Alexander Universität Erlangen-Nürnberg, Egerlandstr. 3, 91058 Erlangen, Germany
| | - Felix Strieth-Kalthoff
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- School of
Mathematics and Natural Sciences, University
of Wuppertal, Gaußstraße
20, 42119 Wuppertal, Germany
| | - Martin Seifrid
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Department
of Materials Science and Engineering, North
Carolina State University, Raleigh, North Carolina 27695, United States of America
| | - Alán Aspuru-Guzik
- Department
of Chemistry, University of Toronto, 80 St. George St, Toronto, Ontario M5S 3H6, Canada
- Department
of Computer Science, University of Toronto, 40 St. George St, Toronto, Ontario M5S 2E4, Canada
- Vector Institute
for Artificial Intelligence, 661 University Ave Suite 710, Toronto, Ontario M5G 1M1, Canada
- Acceleration
Consortium, 80 St. George
St, Toronto, Ontario M5S 3H6, Canada
- Department
of Chemical Engineering & Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
- Department
of Materials Science & Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Lebovic
Fellow, Canadian Institute for Advanced
Research (CIFAR), 661
University Ave, Toronto, Ontario M5G 1M1, Canada
| |
Collapse
|
2
|
Martina K, Moran MJ, Manzoli M, Trukhan MV, Kuhn S, Van Gerven T, Cravotto G. Copper-Catalyzed Continuous-Flow Transfer Hydrogenation of Nitroarenes to Anilines: A Scalable and Reliable Protocol. Org Process Res Dev 2024; 28:1515-1528. [PMID: 38783856 PMCID: PMC11110069 DOI: 10.1021/acs.oprd.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 11/16/2023] [Accepted: 11/29/2023] [Indexed: 05/25/2024]
Abstract
A robust supported catalyst that is made up of copper nanoparticles on Celite has been successfully prepared for the selective transfer hydrogenation of aromatic nitrobenzenes to anilines under continuous flow. The method is efficient and environmentally benign thanks to the absence of hydrogen gas and precious metals. Long-term stability studies show that the catalytic system is able to achieve very high nitrobenzene conversion (>99%) when working for up to 145 h. The versatility of the transfer hydrogenation system has been tested using representative examples of nitroarenes, with moderate-to-excellent yields being obtained. The packed bed reactor (PBR) permits the use of a setup that can provide products via simple isolation by SPE without the need for further purification. The recovery and reuse of either EG or the ion-exchange resin leads to consistent waste reduction; therefore, E-factor distribution analysis has highlighted the environmental efficiency of this synthetic protocol.
Collapse
Affiliation(s)
- Katia Martina
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maria Jesus Moran
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Maela Manzoli
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Mikhail V. Trukhan
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| | - Simon Kuhn
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Giancarlo Cravotto
- Drug
Science and Technology Department and NIS−Interdepartmental
Centre for Nanomaterials for Industry and Sustainability, University of Turin, via Pietro Giuria 9, 10125 Turin, Italy
| |
Collapse
|
3
|
Laporte AAH, Masson TM, Zondag SDA, Noël T. Multiphasic Continuous-Flow Reactors for Handling Gaseous Reagents in Organic Synthesis: Enhancing Efficiency and Safety in Chemical Processes. Angew Chem Int Ed Engl 2024; 63:e202316108. [PMID: 38095968 DOI: 10.1002/anie.202316108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 12/29/2023]
Abstract
The use of reactive gaseous reagents for the production of active pharmaceutical ingredients (APIs) remains a scientific challenge due to safety and efficiency limitations. The implementation of continuous-flow reactors has resulted in rapid development of gas-handling technology because of several advantages such as increased interfacial area, improved mass- and heat transfer, and seamless scale-up. This technology enables shorter and more atom-economic synthesis routes for the production of pharmaceutical compounds. Herein, we provide an overview of literature from 2016 onwards in the development of gas-handling continuous-flow technology as well as the use of gases in functionalization of APIs.
Collapse
Affiliation(s)
- Annechien A H Laporte
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Tom M Masson
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D A Zondag
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, van't Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Yang H, Yu H, Stolarzewicz IA, Tang W. Enantioselective Transformations in the Synthesis of Therapeutic Agents. Chem Rev 2023; 123:9397-9446. [PMID: 37417731 DOI: 10.1021/acs.chemrev.3c00010] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
The proportion of approved chiral drugs and drug candidates under medical studies has surged dramatically over the past two decades. As a consequence, the efficient synthesis of enantiopure pharmaceuticals or their synthetic intermediates poses a profound challenge to medicinal and process chemists. The significant advancement in asymmetric catalysis has provided an effective and reliable solution to this challenge. The successful application of transition metal catalysis, organocatalysis, and biocatalysis to the medicinal and pharmaceutical industries has promoted drug discovery by efficient and precise preparation of enantio-enriched therapeutic agents, and facilitated the industrial production of active pharmaceutical ingredient in an economic and environmentally friendly fashion. The present review summarizes the most recent applications (2008-2022) of asymmetric catalysis in the pharmaceutical industry ranging from process scales to pilot and industrial levels. It also showcases the latest achievements and trends in the asymmetric synthesis of therapeutic agents with state of the art technologies of asymmetric catalysis.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Hanxiao Yu
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Izabela A Stolarzewicz
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Material Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
5
|
Schnierle M, Klostermann S, Kaya E, Li Z, Dittmann D, Rieg C, Estes DP, Kästner J, Ringenberg MR, Dyballa M. How Solid Surfaces Control Stability and Interactions of Supported Cationic Cu I(dppf) Complexes─A Solid-State NMR Study. Inorg Chem 2023; 62:7283-7295. [PMID: 37133820 DOI: 10.1021/acs.inorgchem.3c00351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Organometallic complexes are frequently deposited on solid surfaces, but little is known about how the resulting complex-solid interactions alter their properties. Here, a series of complexes of the type Cu(dppf)(Lx)+ (dppf = 1,1'-bis(diphenylphosphino)ferrocene, Lx = mono- and bidentate ligands) were synthesized, physisorbed, ion-exchanged, or covalently immobilized on solid surfaces and investigated by 31P MAS NMR spectroscopy. Complexes adsorbed on silica interacted weakly and were stable, while adsorption on acidic γ-Al2O3 resulted in slow complex decomposition. Ion exchange into mesoporous Na-[Al]SBA-15 resulted in magnetic inequivalence of 31P nuclei verified by 31P-31P RFDR and 1H-31P FSLG HETCOR. DFT calculations verified that a MeCN ligand dissociates upon ion exchange. Covalent immobilization via organic linkers as well as ion exchange with bidentate ligands both lead to rigidly bound complexes that cause broad 31P CSA tensors. We thus demonstrate how the interactions between complexes and functional surfaces determine and alter the stability of complexes. The applied Cu(dppf)(Lx)+ complex family members are identified as suitable solid-state NMR probes for investigating the influence of support surfaces on deposited inorganic complexes.
Collapse
Affiliation(s)
- Marc Schnierle
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Sina Klostermann
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Elif Kaya
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Zheng Li
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Daniel Dittmann
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Carolin Rieg
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Deven P Estes
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Johannes Kästner
- Institute of Theoretical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Mark R Ringenberg
- Institute of Inorganic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Michael Dyballa
- Institute of Technical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| |
Collapse
|
6
|
Ralbovsky NM, Smith JP. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022; 252:123787. [DOI: 10.1016/j.talanta.2022.123787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/25/2022] [Indexed: 11/27/2022]
|
7
|
Luo Z, Xie J, Kaylor N, Dickie DA, Ketcham HE, Davis RJ, Gunnoe TB. Catalytic Hydrogenolysis of the Pt−OPh Bond of a Molecular Pt(II) Complex using Silica Supported Pd, Rh and Pt Nanoparticles. ChemCatChem 2022. [DOI: 10.1002/cctc.202200582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zhongwen Luo
- Department of Chemistry University of Virginia Charlottesville VA-22904 USA
| | - Jiahan Xie
- Department of Chemical Engineering University of Virginia Charlottesville VA-22904 USA
| | - Nicholas Kaylor
- Department of Chemical Engineering University of Virginia Charlottesville VA-22904 USA
| | - Diane A. Dickie
- Department of Chemistry University of Virginia Charlottesville VA-22904 USA
| | - Hannah E. Ketcham
- Department of Chemistry University of Virginia Charlottesville VA-22904 USA
| | - Robert J. Davis
- Department of Chemical Engineering University of Virginia Charlottesville VA-22904 USA
| | - T. Brent Gunnoe
- Department of Chemistry University of Virginia Charlottesville VA-22904 USA
| |
Collapse
|
8
|
Masson E, Maciejewski EM, Wheelhouse KMP, Edwards LJ. Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Edward Masson
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | - Erin M. Maciejewski
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| | | | - Lee J. Edwards
- Chemical Development, GlaxoSmithKline, Gunnels Wood Road, Stevenage, SG1 2NY, U.K
| |
Collapse
|
9
|
Nepal P, Kalapugama S, Shevlin M, Naber JR, Campeau LC, Pezzetta C, Carlone A, Cobley CJ, Bergens SH. Polycationic Rh–JosiPhos Polymers Supported on Phosphotungstic Acid/Al2O3 by Multiple Electrostatic Attractions. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Prabin Nepal
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| | - Suneth Kalapugama
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| | - Michael Shevlin
- Process Research and Development, MRL, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - John R. Naber
- JRN - Process Research and Development, MRL, Merck & Co., Inc., 2000 Galloping Hill Rd, Kenilworth, New Jersey 07033, United States
| | - Louis-Charles Campeau
- Process Research and Development, MRL, Merck & Co., Inc., 126 East Lincoln Avenue, Rahway, New Jersey 07065, United States
| | - Cristofer Pezzetta
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| | - Armando Carlone
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
- Department of Physical and Chemical Sciences, Università degli Studi dell’Aquila, Via Vetoio, 67100 L’Aquila, Italy
| | - Christopher J. Cobley
- Dr. Reddy’s Laboratories (EU), 410 Science Park, Milton Road, Cambridge CB4 0PE, United Kingdom
| | - Steven H. Bergens
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton T6G 2G2, Alberta, Canada
| |
Collapse
|
10
|
Kowalewski E, Śrębowata A. Catalytic hydrogenation of nitrocyclohexane as an alternative pathway for the synthesis of value-added products. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00790h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic hydrogenation of nitrocyclohexane could be an alternative source of various useful chemicals: cyclohexanone oxime, cyclohexanone, cyclohexanol, cyclohexylamine and dicyclohexylamine. Each one of these compounds found application in the modern...
Collapse
|
11
|
Zhang B, Reek JNH. Supramolecular Strategies for the Recycling of Homogeneous Catalysts. Chem Asian J 2021; 16:3851-3863. [PMID: 34606169 PMCID: PMC9297887 DOI: 10.1002/asia.202100968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Supramolecular approaches are increasingly used in the development of homogeneous catalysts and they also provide interesting new tools for the recycling of metal-based catalysts. Various non-covalent interactions have been utilized for the immobilization homogeneous catalysts on soluble and insoluble support. By non-covalent anchoring the supported catalysts obtained can be recovered via (nano-) filtration or such catalytic materials can be used in continuous flow reactors. Specific benefits from the reversibility of catalyst immobilization by non-covalent interactions include the possibility to re-functionalize the support material and the use as "boomerang" type catalyst systems in which the catalyst is captured after a homogeneous reaction. In addition, new reactor design with implemented recycling strategies becomes possible, such as a reverse-flow adsorption reactor (RFA) that combines a homogeneous reactor with selective catalyst adsorption/desorpion. Next to these non-covalent immobilization strategies, supramolecular chemistry can also be used to generate the support, for example by generation of self-assembled gels with catalytic function. Although the stability is a challenging issue, some self-assembled gel materials have been successfully utilized as reusable heterogeneous catalysts. In addition, catalytically active coordination cages, which are frequently used to achieve specific activity or selectivity, can be bound to support by ionic interactions or can be prepared in structured solid materials. These new heterogenized cage materials also have been used successfully as recyclable catalysts.
Collapse
Affiliation(s)
- Bo Zhang
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
12
|
Morin MA, Zhang W(P, Mallik D, Organ MG. Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine‐Chemical Manufacturing. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202102009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Mathieu A. Morin
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation (CCRI) University of Ottawa 10 Marie Curie Ottawa ON K1N 6N5 Canada
- Department of Chemistry Carleton University 203 Steacie Building, 1125 Colonel By Drive Ottawa ON K1S 5B6 Canada
| | - Wenyao (Peter) Zhang
- Department of Chemistry York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| | - Debasis Mallik
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation (CCRI) University of Ottawa 10 Marie Curie Ottawa ON K1N 6N5 Canada
| | - Michael G. Organ
- Department of Chemistry and Biomolecular Sciences Centre for Catalysis Research and Innovation (CCRI) University of Ottawa 10 Marie Curie Ottawa ON K1N 6N5 Canada
- Department of Chemistry York University 4700 Keele Street Toronto ON M3J 1P3 Canada
| |
Collapse
|
13
|
Morin MA, Zhang WP, Mallik D, Organ MG. Sampling and Analysis in Flow: The Keys to Smarter, More Controllable, and Sustainable Fine-Chemical Manufacturing. Angew Chem Int Ed Engl 2021; 60:20606-20626. [PMID: 33811800 DOI: 10.1002/anie.202102009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/23/2021] [Indexed: 11/08/2022]
Abstract
Process analytical technology (PAT) is a system designed to help chemists better understand and control manufacturing processes. PAT systems operate through the combination of analytical devices, reactor control elements, and mathematical models to ensure the quality of the final product through a quality by design (QbD) approach. The expansion of continuous manufacturing in the pharmaceutical and fine-chemical industry requires the development of PAT tools suitable for continuous operation in the environment of flow reactors. This requires innovative approaches to sampling and analysis from flowing media to maintain the integrity of the reactor content and the analyte of interest. The following Review discusses examples of PAT tools implemented in flow chemistry for the preparation of small organic molecules, and applications of self-optimization tools.
Collapse
Affiliation(s)
- Mathieu A Morin
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.,Department of Chemistry, Carleton University, 203 Steacie Building, 1125 Colonel By Drive, Ottawa, ON, K1S 5B6, Canada
| | - Wenyao Peter Zhang
- Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| | - Debasis Mallik
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Michael G Organ
- Department of Chemistry and Biomolecular Sciences, Centre for Catalysis Research and Innovation (CCRI), University of Ottawa, 10 Marie Curie, Ottawa, ON, K1N 6N5, Canada.,Department of Chemistry, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada
| |
Collapse
|
14
|
Schörner M, Rothgängel P, Mitländer K, Wisser D, Thommes M, Haumann M. Gas‐Phase Hydroformylation Using Supported Ionic Liquid Phase (SILP) Catalysts – Influence of Support Texture on Effective Kinetics. ChemCatChem 2021. [DOI: 10.1002/cctc.202100743] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Markus Schörner
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| | - Philipp Rothgängel
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| | - Kerstin Mitländer
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| | - Dorothea Wisser
- Erlangen Center for Interface Research and Catalysis (ECRC) Egerlandstr. 3 91058 Erlangen Germany
| | - Matthias Thommes
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Thermische Verfahrenstechnik (TVT) Egerlandstr. 3 91058 Erlangen Germany
| | - Marco Haumann
- Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) Lehrstuhl für Chemische Reaktionstechnik (CRT) Egerlandstr. 3 91058 Erlangen Germany
| |
Collapse
|
15
|
Parker PD, Hou X, Dong VM. Reducing Challenges in Organic Synthesis with Stereoselective Hydrogenation and Tandem Catalysis. J Am Chem Soc 2021; 143:6724-6745. [PMID: 33891819 DOI: 10.1021/jacs.1c00750] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tandem catalysis enables the rapid construction of complex architectures from simple building blocks. This Perspective shares our interest in combining stereoselective hydrogenation with transformations such as isomerization, oxidation, and epimerization to solve diverse challenges. We highlight the use of tandem hydrogenation for preparing complex natural products from simple prochiral building blocks and present tandem catalysis involving transfer hydrogenation and dynamic kinetic resolution. Finally, we underline recent breakthroughs and opportunities for asymmetric hydrogenation.
Collapse
Affiliation(s)
- Patrick D Parker
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, California 92697, United States
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, California 92697, United States
| |
Collapse
|
16
|
High-pressure asymmetric hydrogenation in a customized flow reactor and its application in multi-step flow synthesis of chiral drugs. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00143-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
17
|
Biosca M, Diéguez M, Zanotti-Gerosa A. Asymmetric hydrogenation in industry. ADVANCES IN CATALYSIS 2021. [DOI: 10.1016/bs.acat.2021.08.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Miyamura H, Bergman RG, Raymond KN, Toste FD. Heterogeneous Supramolecular Catalysis through Immobilization of Anionic M4L6 Assemblies on Cationic Polymers. J Am Chem Soc 2020; 142:19327-19338. [DOI: 10.1021/jacs.0c09556] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hiroyuki Miyamura
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Robert G. Bergman
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - Kenneth N. Raymond
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| | - F. Dean Toste
- Chemical Sciences Division, Lawrence Berkeley National Laboratory and Department of Chemistry, University of California—Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Liao J, Zhang S, Wang Z, Song X, Zhang D, Kumar R, Jin J, Ren P, You H, Chen FE. Transition-metal catalyzed asymmetric reactions under continuous flow from 2015 to early 2020. GREEN SYNTHESIS AND CATALYSIS 2020. [DOI: 10.1016/j.gresc.2020.08.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
20
|
Phansavath P, Ratovelomanana-Vidal V, Ponra S, Boudet B. Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThe catalytic asymmetric hydrogenation of prochiral olefins is one of the most widely studied and utilized transformations in asymmetric synthesis. This straightforward, atom economical, inherently direct and sustainable strategy induces chirality in a broad range of substrates and is widely relevant for both industrial applications and academic research. In addition, the asymmetric hydrogenation of enamides has been widely used for the synthesis of chiral amines and their derivatives. In this review, we summarize the recent work in this field, focusing on the development of new catalytic systems and on the extension of these asymmetric reductions to new classes of enamides.1 Introduction2 Asymmetric Hydrogenation of Trisubstituted Enamides2.1 Ruthenium Catalysts2.2 Rhodium Catalysts2.3 Iridium Catalysts2.4 Nickel Catalysts2.5 Cobalt Catalysts3 Asymmetric Hydrogenation of Tetrasubstituted Enamides3.1 Ruthenium Catalysts3.2 Rhodium Catalysts3.3 Nickel Catalysts4 Asymmetric Hydrogenation of Terminal Enamides4.1 Rhodium Catalysts4.2 Cobalt Catalysts5 Rhodium-Catalyzed Asymmetric Hydrogenation of Miscellaneous Enamides6 Conclusions
Collapse
Affiliation(s)
- Phannarath Phansavath
- PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team
| | | | - Sudipta Ponra
- PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team
| | | |
Collapse
|
21
|
Saito Y, Kobayashi S. Development of Robust Heterogeneous Chiral Rhodium Catalysts Utilizing Acid-Base and Electrostatic Interactions for Efficient Continuous-Flow Asymmetric Hydrogenations. J Am Chem Soc 2020; 142:16546-16551. [PMID: 32902272 DOI: 10.1021/jacs.0c08109] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Heterogeneous chiral Rh catalysts based on acid-base and electrostatic interactions have been developed. The robust catalysts demonstrate high activity and selectivity in the continuous-flow asymmetric hydrogenation of a wide variety of enamides and dehydroamino acids, providing optically active amides without leaching of metal species. The chiral environments can be easily tuned by changing the chiral ligands, demonstrating the high versatility of the heterogeneous catalysts. By applying these efficient catalysts, continuous synthesis of several active pharmaceutical ingredient intermediates was achieved.
Collapse
Affiliation(s)
- Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
22
|
Yu T, Jiao J, Song P, Nie W, Yi C, Zhang Q, Li P. Recent Progress in Continuous-Flow Hydrogenation. CHEMSUSCHEM 2020; 13:2876-2893. [PMID: 32301233 DOI: 10.1002/cssc.202000778] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Indexed: 06/11/2023]
Abstract
To achieve a safe, efficient, and sustainable (even fully automated) production for the continuous-flow hydrogenation reactions, which is among the most often used reactions in chemical synthesis, new catalyst types and immobilization methods as well as flow reactors and technologies have been developed over the last years; in addition, these approaches have been combined with new and transformational technologies in other fields such as artificial intelligence. Thus, attention from academic and industry practitioners has increasingly focused on improving the performance of hydrogenation in flow mode by reducing the reaction times, increasing selectivities, and achieve safe operation. This Minireview aims to summarize the most recent research results on this topic with focus on the advantages, current limitations, and future directions of flow chemistry.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Jiao Jiao
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Peidong Song
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
| | - Wenzheng Nie
- Departement of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Chunhai Yi
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Pengfei Li
- Frontier Institute of Science and Technology (FIST), Xi'an Jiaotong University, Xi'an, 710049, P.R. China
- Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
23
|
Pirmoradi M, Janulaitis N, Gulotty RJ, Kastner JR. Continuous Hydrogenation of Aqueous Furfural Using a Metal-Supported Activated Carbon Monolith. ACS OMEGA 2020; 5:7836-7849. [PMID: 32309693 PMCID: PMC7160850 DOI: 10.1021/acsomega.9b04010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 03/19/2020] [Indexed: 06/11/2023]
Abstract
Continuous hydrogenation of aqueous furfural (4.5%) was studied using a monolith form (ACM) of an activated carbon Pd catalyst (∼1.2% Pd). A sequential reaction pathway was observed, with ACM achieving high selectivity and space time yields (STYs) for furfuryl alcohol (∼25%, 60-70 g/L-cat/h, 7-15 1/h liquid hourly space velocity, LHSV), 2-methylfuran (∼25%, 45-50 g/L-cat/h, 7-15 1/h LHSV), and tetrahydrofurfuryl alcohol (∼20-60%, 10-50 g/L-cat/h, <7 1/h LHSV). ACM showed a low loss of activity and metal leaching over the course of the reactions and was not limited by H2 external mass transfer resistance. Acetic acid (1%) did not significantly affect furfural conversion and product yields using ACM, suggesting Pd/ACM's potential for conversion of crude furfural. Limited metal leaching combined with high metal dispersion and H2 mass transfer rates in the composite carbon catalyst (ACM) provides possible advantages over granular and powdered forms in continuous processing.
Collapse
Affiliation(s)
- Maryam Pirmoradi
- Biochemical
Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Nida Janulaitis
- Biochemical
Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| | - Robert J. Gulotty
- Applied
Catalysts/Applied Ceramics Inc., 2 Technology Place, Laurens, South Carolina 29360, United States
| | - James R. Kastner
- Biochemical
Engineering, College of Engineering Driftmier Engineering Center, The University of Georgia, 597 D.W. Brooks Drive, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Yu T, Ding Z, Nie W, Jiao J, Zhang H, Zhang Q, Xue C, Duan X, Yamada YMA, Li P. Recent Advances in Continuous-Flow Enantioselective Catalysis. Chemistry 2020; 26:5729-5747. [PMID: 31916323 DOI: 10.1002/chem.201905151] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/18/2019] [Indexed: 11/05/2022]
Abstract
The increased demand for more efficient, safe, and green production in fine chemical and pharmaceutical industry calls for the development of continuous-flow manufacturing, and for chiral chemicals in particular, enantioselective catalytic processes. In recent years, this emerging direction has received considerable attention and has seen rapid progress. In most cases, catalytic enantioselective flow processes using homogeneous, heterogeneous, or enzymatic catalysts have shown significant advantages over the conventional batch mode, such as shortened reaction times, lower catalysts loadings, and higher selectivities in addition to the normal merits of non-enantioselective flow operations. In this Minireview, the advancements, key strategies, methods, and technologies developed the last six years as well as remaining challenges are summarized.
Collapse
Affiliation(s)
- Tao Yu
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zhengwei Ding
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Wenzheng Nie
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Jiao Jiao
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Hailong Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, P. R. China
| | - Qian Zhang
- Department of Applied Chemistry, Xi'an University of Technology, Xi'an, 710048, P. R. China
| | - Chao Xue
- State Key Laboratory for Efficient Development and, Utilization of Fluorine and Nitrogen Chemicals, Xi'an Modern Chemistry Research Institute, Xi'an, 710065, P. R. China
| | - Xinhua Duan
- Department of Chemistry, School of Science, Xi'an Jiaotong University, Xi'an, 710061, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yoichi M A Yamada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, 3510198, Japan
| | - Pengfei Li
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.,Xian Key Laboratory of Sustainable Energy Materials Chemistry, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
25
|
Yoo WJ, Ishitani H, Saito Y, Laroche B, Kobayashi S. Reworking Organic Synthesis for the Modern Age: Synthetic Strategies Based on Continuous-Flow Addition and Condensation Reactions with Heterogeneous Catalysts. J Org Chem 2020; 85:5132-5145. [PMID: 32069417 DOI: 10.1021/acs.joc.9b03416] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
While organic synthesis carried out in most laboratories uses batch methods, there is growing interest in modernizing fine chemical synthesis through continuous-flow processes. As a synthetic method, flow processes have several advantages over batch systems in terms of environmental compatibility, efficiency, and safety, and recent advances have allowed for the synthesis of several complex molecules, including active pharmaceutical ingredients (APIs). Nevertheless, due to several reasons related to the difficulties arising from byproduct formation during the flow process, such as lower yields, poor selectivities, clogging of columns due to poor solubility, catalyst poisoning, etc., successful examples of continuous-flow synthesis of complex organic molecules are still limited. In order to solve this bottleneck, the development of selective and atom-economical continuous-flow organic transformations are needed. This perspective highlights examples of atom-economical addition and condensation reactions with heterogeneous catalysts under continuous-flow conditions and their applications for the synthesis of complex organic molecules such as natural products and APIs. In order to realize new continuous-flow methodologies, based on addition and condensation reactions, in place of substitution reactions, the development of novel reactions and heterogeneous catalysts is required.
Collapse
Affiliation(s)
- Woo-Jin Yoo
- Green & Sustainable Chemistry Cooperation Laboratory, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Haruro Ishitani
- Green & Sustainable Chemistry Cooperation Laboratory, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Saito
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Benjamin Laroche
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan.,Green & Sustainable Chemistry Cooperation Laboratory, Graduate School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
26
|
Scaling continuous API synthesis from milligram to kilogram: extending the enabling benefits of micro to the plant. J Flow Chem 2020. [DOI: 10.1007/s41981-019-00060-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Blanchard V, Asbai Z, Cottet K, Boissonnat G, Port M, Amara Z. Continuous Flow Photo-oxidations Using Supported Photocatalysts on Silica. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00420] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
| | - Zakariae Asbai
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris Cedex 03, France
| | | | | | - Marc Port
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris Cedex 03, France
| | - Zacharias Amara
- Equipe Chimie Moléculaire, Laboratoire de Génomique, Bioinformatique et Chimie Moléculaire (GBCM), EA 7528, Conservatoire national des arts et métiers, HESAM Université, 2 rue Conté, 75003 Paris Cedex 03, France
| |
Collapse
|
28
|
De Risi C, Bortolini O, Brandolese A, Di Carmine G, Ragno D, Massi A. Recent advances in continuous-flow organocatalysis for process intensification. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00076k] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The progresses on continuous-flow organocatalysis from 2016 to early 2020 are reviewed with focus on transition from batch to flow.
Collapse
Affiliation(s)
- Carmela De Risi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Olga Bortolini
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | | | | | - Daniele Ragno
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| | - Alessandro Massi
- Dipartimento di Scienze Chimiche e Farmaceutiche
- I-44121 Ferrara
- Italy
| |
Collapse
|
29
|
Development of heterogeneous catalyst systems for the continuous synthesis of chiral amines via asymmetric hydrogenation. Nat Catal 2019. [DOI: 10.1038/s41929-019-0371-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
30
|
Bogdan AR, Dombrowski AW. Emerging Trends in Flow Chemistry and Applications to the Pharmaceutical Industry. J Med Chem 2019; 62:6422-6468. [DOI: 10.1021/acs.jmedchem.8b01760] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Andrew R. Bogdan
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Amanda W. Dombrowski
- Discovery Chemistry and Technology, AbbVie, Inc. 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|
31
|
Seo CSG, Morris RH. Catalytic Homogeneous Asymmetric Hydrogenation: Successes and Opportunities. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00774] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Chris S. G. Seo
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| | - Robert H. Morris
- Department of Chemistry, University of Toronto, M5S3H6 Toronto, Ontario, Canada
| |
Collapse
|
32
|
Akwi FM, Watts P. Continuous flow chemistry: where are we now? Recent applications, challenges and limitations. Chem Commun (Camb) 2018; 54:13894-13928. [PMID: 30483683 DOI: 10.1039/c8cc07427e] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A general outlook of the changing face of chemical synthesis is provided in this article through recent applications of continuous flow processing in both industry and academia. The benefits, major challenges and limitations associated with the use of this mode of processing are also given due attention as an attempt to put into perspective the current position of continuous flow processing, either as an alternative or potential combinatory technology for batch processing.
Collapse
Affiliation(s)
- Faith M Akwi
- Nelson Mandela University, University Way, Port Elizabeth, 6031, South Africa.
| | | |
Collapse
|
33
|
Hayler JD, Leahy DK, Simmons EM. A Pharmaceutical Industry Perspective on Sustainable Metal Catalysis. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00566] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- John D. Hayler
- API Chemistry, GlaxoSmithKline Medicines Research Centre, Stevenage, Hertfordshire SG1 2NY, United Kingdom
| | - David K. Leahy
- Process Chemistry, Takeda Pharmaceuticals International, Cambridge, Massachusetts 02139, United States
| | - Eric M. Simmons
- Chemical & Synthetic Development, Bristol-Myers Squibb Company, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
34
|
McWilliams JC, Allian AD, Opalka SM, May SA, Journet M, Braden TM. The Evolving State of Continuous Processing in Pharmaceutical API Manufacturing: A Survey of Pharmaceutical Companies and Contract Manufacturing Organizations. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00160] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- J. Christopher McWilliams
- Chemical Research and Development, Pfizer Worldwide Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ayman D. Allian
- Department of Pivotal Drug Substance Technologies, Amgen Inc., One Amgen Center Drive, Thousand Oaks, California 91320, United States
| | - Suzanne M. Opalka
- Chemical Process Development, Biogen Idec, 115 Broadway, Cambridge, Massachusetts 02142, United States
| | - Scott A. May
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Michel Journet
- API Chemistry, GSK, 709 Swedeland Road, UW2810, P.O. Box 1539, King of Prussia, Pennsylvania 19406, United States
| | - Timothy M. Braden
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| |
Collapse
|
35
|
|
36
|
Wu L, Lee DS, Boufroura H, Poliakoff M, George MW. Photooxidation of Fulvenes in a Continuous Flow Photoreactor using Carbon Dioxide as a Solvent. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Lingqiao Wu
- School of Chemistry; University of Nottingham; University Park, NG7 2RD UK
| | - Darren S. Lee
- School of Chemistry; University of Nottingham; University Park, NG7 2RD UK
| | - Hamza Boufroura
- School of Chemistry; University of Nottingham; University Park, NG7 2RD UK
| | - Martyn Poliakoff
- School of Chemistry; University of Nottingham; University Park, NG7 2RD UK
| | - Michael W. George
- School of Chemistry; University of Nottingham; University Park, NG7 2RD UK
- Department of Chemical and Environmental Engineering; University of Nottingham Ningbo China; 199 Taikang East Road Ningbo 315100 China
| |
Collapse
|
37
|
Tambosco B, Segura K, Seyrig C, Cabrera D, Port M, Ferroud C, Amara Z. Outer-Sphere Effects in Visible-Light Photochemical Oxidations with Immobilized and Recyclable Ruthenium Bipyridyl Salts. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00890] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Bryan Tambosco
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Kevin Segura
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Chloé Seyrig
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Damien Cabrera
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Marc Port
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Clotilde Ferroud
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| | - Zacharias Amara
- Equipe de Chimie Moléculaire, EA 7341, Laboratoire de Chimie Moléculaire, Génie des Procédés Chimiques et Energétiques, Conservatoire National des Arts et Métiers, 2 rue Conté, Paris 75003, France
| |
Collapse
|
38
|
|
39
|
Geier D, Schmitz P, Walkowiak J, Leitner W, Franciò G. Continuous Flow Asymmetric Hydrogenation with Supported Ionic Liquid Phase Catalysts Using Modified CO2 as the Mobile Phase: from Model Substrate to an Active Pharmaceutical Ingredient. ACS Catal 2018. [DOI: 10.1021/acscatal.8b00216] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Daniel Geier
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Pascal Schmitz
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Jędrzej Walkowiak
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| | - Walter Leitner
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Giancarlo Franciò
- Institut für Technische und Makromolekulare Chemie, RWTH Aachen University, Worringerweg 2, 52074 Aachen, Germany
| |
Collapse
|
40
|
Altava B, Burguete MI, García-Verdugo E, Luis SV. Chiral catalysts immobilized on achiral polymers: effect of the polymer support on the performance of the catalyst. Chem Soc Rev 2018; 47:2722-2771. [DOI: 10.1039/c7cs00734e] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Achiral polymeric supports can have important positive effects on the activity, stability and selectivity of supported chiral catalysts.
Collapse
Affiliation(s)
- Belén Altava
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | - M. Isabel Burguete
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| | | | - Santiago V. Luis
- Department of Inorganic and Organic Chemistry
- University Jaume I
- Castellón
- Spain
| |
Collapse
|
41
|
Forfar LC, Murray PM. Meeting Metal Limits in Pharmaceutical Processes. TOP ORGANOMETAL CHEM 2018. [DOI: 10.1007/3418_2018_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Said MB, Baramov T, Herrmann T, Gottfried M, Hassfeld J, Roggan S. Continuous Selective Hydrogenation of Refametinib Iodo-nitroaniline Key Intermediate DIM-NA over Raney Cobalt Catalyst at kg/day Scale with Online UV–Visible Conversion Control. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00039] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Mourad Ben Said
- Engineering & Technology, Bayer AG, D-51368 Leverkusen, Germany
| | - Todor Baramov
- Pharmaceuticals
Division, Bayer AG, D-42096 Wuppertal, Germany
- Leibniz-Institut für Katalyse e.V. (LIKAT), Albert-Einstein-Str. 29a, D-18059 Rostock, Germany
| | - Tanja Herrmann
- Engineering & Technology, Bayer AG, D-51368 Leverkusen, Germany
| | | | - Jorma Hassfeld
- Pharmaceuticals
Division, Bayer AG, D-42096 Wuppertal, Germany
| | - Stefan Roggan
- Pharmaceuticals
Division, Bayer AG, D-42096 Wuppertal, Germany
| |
Collapse
|
43
|
Kockmann N, Thenée P, Fleischer-Trebes C, Laudadio G, Noël T. Safety assessment in development and operation of modular continuous-flow processes. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00021a] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Improved safety is one of the main drivers for microreactor application in chemical process development and small-scale production.
Collapse
Affiliation(s)
- Norbert Kockmann
- Laboratory of Equipment Design
- Department of Biochemical and Chemical Engineering
- TU Dortmund
- Germany
| | | | | | - Gabriele Laudadio
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry and Process Technology
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | - Timothy Noël
- Department of Chemical Engineering and Chemistry
- Micro Flow Chemistry and Process Technology
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| |
Collapse
|
44
|
Skillinghaug B, Rydfjord J, Sävmarker J, Larhed M. Microwave Heated Continuous Flow Palladium(II)-Catalyzed Desulfitative Synthesis of Aryl Ketones. Org Process Res Dev 2016. [DOI: 10.1021/acs.oprd.6b00306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Bobo Skillinghaug
- Department
of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry,
Uppsala Biomedical Center, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Jonas Rydfjord
- Department
of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry,
Uppsala Biomedical Center, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Jonas Sävmarker
- The
Beijer Laboratory for Drug Discovery, Department of Medicinal Chemistry,
Uppsala Biomedical Center, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| | - Mats Larhed
- Department
of Medicinal Chemistry, Science for Life Laboratory, Uppsala Biomedical
Center, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden
| |
Collapse
|