1
|
Sun Q, Gao R, Lin Y, Zhou X, Wang T, He J. Leveraging single-cell RNA-seq for uncovering naïve B cells associated with better prognosis of hepatocellular carcinoma. MedComm (Beijing) 2024; 5:e563. [PMID: 39252823 PMCID: PMC11381656 DOI: 10.1002/mco2.563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 02/22/2024] [Accepted: 02/28/2024] [Indexed: 09/11/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a typical highly heterogeneous solid tumor with high morbidity and mortality worldwide, especially in China; however, the immune microenvironment of HCC has not been clarified so far. Here, we employed single-cell RNA sequencing (scRNA-seq) on diethylnitrosamine (DEN)-induced mouse HCC model to dissect the immune cell dynamics during tumorigenesis. Our findings reveal distinct immune profiles in both precancerous and cancerous lesions, indicating early tumor-associated immunological alterations. Notably, specific T and B cell subpopulations are preferentially enriched in the HCC tumor microenvironment (TME). Furthermore, we identified a subpopulation of naïve B cells with high CD83 expression, correlating with improved prognosis in human HCC. These signature genes were validated in The Cancer Genome Atlas HCC RNA-seq dataset. Moreover, cell interaction analysis revealed that subpopulations of B cells in both mouse and human samples are activated and may potentially contribute to oncogenic processes. In summary, our study provides insights into the dynamic immune microenvironment and cellular networks in HCC pathogenesis, with a specific emphasis on naïve B cells. These findings emphasize the significance of targeting TME in HCC patients to prevent HCC pathological progression, which may give a new perspective on the therapeutics for HCC.
Collapse
Affiliation(s)
- Qingjia Sun
- Department of Otorhinolaryngology Head and Neck Surgery The China-Japan Union Hospital of Jilin University Changchun China
| | - Rui Gao
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Yingxin Lin
- School of Mathematics and Statistics The University of Sydney Sydney Australia
| | - Xianchao Zhou
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Tao Wang
- Univ Lyon, Univ Jean Monnet Saint-Etienne, INSA Lyon, Univ Lyon 2 Université Claude Roanne France
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer Center for Single-Cell Omics School of Public Health Shanghai Jiao Tong University School of Medicine Shanghai China
- Key Laboratory of Systems Biomedicine Ministry of Education and Collaborative Innovation Center of Systems Biomedicine Shanghai Center for Systems Biomedicine Shanghai Jiao Tong University Shanghai China
| |
Collapse
|
2
|
Gao R, Liu Z, Meng M, Song X, He J. Neurogenesis-Associated Protein, a Potential Prognostic Biomarker in Anti-PD-1 Based Kidney Renal Clear Cell Carcinoma Patient Therapeutics. Pharmaceuticals (Basel) 2024; 17:451. [PMID: 38675412 PMCID: PMC11053496 DOI: 10.3390/ph17040451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/17/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The transketolase 1 gene (TKTL1) is an essential factor that contributes to brain development. Some studies have shown the influence of TKTL1 in cancers, but it has been rarely reported in kidney cancer. Furthermore, the role of TKTL1 in the prognosis and tumor infiltration of immune cells in various cancers, particularly kidney cancer, remains unknown. In this study, TKTL1 expression and its clinical characteristics were investigated using a variety of databases. TIMER was used to investigate the relationship between TKTL1 and immune infiltrates in various types of cancer. We also studied the relationship between TKTL1 expression and response to PD-1 blocker immunotherapy in renal cancer. We conducted TKTL1 agonists virtual screening from 13,633 natural compounds (L6020), implemented secondary library construction according to the types of top results, and then conducted secondary virtual screening for 367 alkaloids. Finally, in vitro assays of cell viability assays and colony formation assays were performed to demonstrate the pharmacological potency of the screening of TKTL1 agonists. Using these methods, we determined that TKTL1 significantly affects the prognostic potential in different types of kidney cancer patients. The underlying mechanism might be that the TKTL1 expression level was positively associated with devious immunocytes in kidney renal clear cell carcinoma (KIRC) rather than in kidney renal papillary cell carcinoma (KIRP) and kidney chromophobe (KICH). This recruitment may result from the up-regulation of the mTOR signaling pathway affecting T cell metabolism. We also found that TKTL1 may act as an immunomodulator in KIRC patients' response to anti-PD-1 therapy. Moreover, we also found that piperine and glibenclamide are potent agonists of TKTL1. We have demonstrated, in vitro, that piperine and glibenclamide can inhibit the proliferation and clone formation of Caki-2 cell lines by agonizing the expression of TKTL1. In summary, our discovery implies that TKTL1 may be a promising prognostic biomarker for KIRC patients who respond to anti-PD-1 therapy. Piperine and glibenclamide may be effective therapeutic TKTL1 agonists, providing a theoretical basis for the clinical treatment of kidney cancer.
Collapse
Affiliation(s)
- Rui Gao
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| | - Zixue Liu
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| | - Mei Meng
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| | - Xuefei Song
- Department of Ophthalmology, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian He
- State Key Laboratory of Systems Medicine for Cancer, Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (R.G.); (Z.L.); (M.M.)
| |
Collapse
|
3
|
Yang Y, Li H, Shi Y, Wu Y, Jing X, Duan C. Modifying the Oxidative Potentials of Imines in a Dye Loaded Capsule for Photocatalytic Cyclization with Hydrogen Evolution. Angew Chem Int Ed Engl 2024; 63:e202319605. [PMID: 38217331 DOI: 10.1002/anie.202319605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/09/2024] [Accepted: 01/09/2024] [Indexed: 01/15/2024]
Abstract
Modifying redox potential of substrates and intermediates to balance pairs of redox steps are important stages for multistep photosynthesis but faced marked challenges. Through co-clathration of iridium photosensitizer and imine substrate within one packet of a metal-organic capsule to shift the redox potentials of substrate, herein, we reported a multiphoton enzymatic strategy for the generation of heterocycles by intramolecular C-X hydrogen evolution cross-couplings. The cage facilitated a pre-equilibrium substrate-involving clathrate that cathodic shifts the oxidation potential of the substrate-dye-host ternary complex and configuration inversion of substrate via spatial constraints in the confined space. The new two photon excitation strategy enabled the precise control of the multistep electron transfer between each pair (photosensitizer, substrate and the capsule), endowing the catalytic system proceeding smoothly with an enzymatic fashion. Three kinds of 2-subsituted (-OH, -NH2 , and -SH) imines and N-aryl enamines all give the corresponding cyclization products efficiently under visible light irradiation, demonstrating the promising of the microenvironment driven thermodynamic activation in the host-dye-substrate ternary for synergistic combination of multistep photocatalytic transformations.
Collapse
Affiliation(s)
- Yang Yang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Hanning Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Youpeng Shi
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yuchen Wu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xu Jing
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chunying Duan
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
4
|
Bates JS, Johnson MR, Khamespanah F, Root TW, Stahl SS. Heterogeneous M-N-C Catalysts for Aerobic Oxidation Reactions: Lessons from Oxygen Reduction Electrocatalysts. Chem Rev 2023; 123:6233-6256. [PMID: 36198176 PMCID: PMC10073352 DOI: 10.1021/acs.chemrev.2c00424] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Nonprecious metal heterogeneous catalysts composed of first-row transition metals incorporated into nitrogen-doped carbon matrices (M-N-Cs) have been studied for decades as leading alternatives to Pt for the electrocatalytic O2 reduction reaction (ORR). More recently, similar M-N-C catalysts have been shown to catalyze the aerobic oxidation of organic molecules. This Focus Review highlights mechanistic similarities and distinctions between these two reaction classes and then surveys the aerobic oxidation reactions catalyzed by M-N-Cs. As the active-site structures and kinetic properties of M-N-C aerobic oxidation catalysts have not been extensively studied, the array of tools and methods used to characterize ORR catalysts are presented with the goal of supporting further advances in the field of aerobic oxidation.
Collapse
Affiliation(s)
- Jason S. Bates
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Mathew R. Johnson
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Fatemeh Khamespanah
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Thatcher W. Root
- Department of Chemical and Biological Engineering, University of Wisconsin–Madison, Madison, WI 53706, USA
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI 53706, USA
| |
Collapse
|
5
|
Abstract
Imines, versatile intermediates for organic synthesis, can be exploited for the
preparation of diverse classes of biologically active benzazoles. Because of the special
characteristics of the C=N bond, imines can be simultaneously used in the synthesis of
1,3-benzazoles and 1,2-benzazoles. With the development of imine synthesis, a variety of
novel cascade reactions for benzazole synthesis have been reported in the last decade.
Therefore, there is a strong need to elucidate the recent progress in the formation of various
classes of benzazoles, including benzimidazoles, benzoxazoles, benzothiazoles, indazoles,
and benzisoxazoles, via imines obtained by condensation reactions or oxidative/
redox coupling reactions In this review, we provide a comprehensive survey of this
area. In particular, various green and mild synthetic methodologies are summarized, and
the multiple roles of novel catalysts and significant mechanisms for several transformations are highlighted in
detail. We believe that this review will aid researchers studying the synthesis of complex molecules containing
the benzazole motif via imines.
Collapse
Affiliation(s)
- Ran An
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Mengbi Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingbo Zang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hang Xu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhuang Hou
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Guo
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
6
|
Ryabchuk P, Leischner T, Kreyenschulte C, Spannenberg A, Junge K, Beller M. Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angew Chem Int Ed Engl 2020; 59:18679-18685. [PMID: 32779271 PMCID: PMC7589247 DOI: 10.1002/anie.202007613] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 01/02/2023]
Abstract
A bifunctional 3d-metal catalyst for the cascade synthesis of diverse pyrroles from nitroarenes is presented. The optimal catalytic system Co/NGr-C@SiO2 -L is obtained by pyrolysis of a cobalt-impregnated composite followed by subsequent selective leaching. In the presence of this material, (transfer) hydrogenation of easily available nitroarenes and subsequent Paal-Knorr/Clauson-Kass condensation provides >40 pyrroles in good to high yields using dihydrogen, formic acid, or a CO/H2 O mixture (WGSR conditions) as reductant. In addition to the favorable step economy, this straightforward domino process does not require any solvents or external co-catalysts. The general synthetic utility of this methodology was demonstrated on a variety of functionalized substrates including the preparation of biologically active and pharmaceutically relevant compounds, for example, (+)-Isamoltane.
Collapse
Affiliation(s)
- Pavel Ryabchuk
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | | | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V.Albert-Einstein-Straße 29a18059RostockGermany
| |
Collapse
|
7
|
Ryabchuk P, Leischner T, Kreyenschulte C, Spannenberg A, Junge K, Beller M. Cascade Synthesis of Pyrroles from Nitroarenes with Benign Reductants Using a Heterogeneous Cobalt Catalyst. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Pavel Ryabchuk
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Thomas Leischner
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Carsten Kreyenschulte
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Anke Spannenberg
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Kathrin Junge
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V. Albert-Einstein-Straße 29a 18059 Rostock Germany
| |
Collapse
|
8
|
Nguyen LA, Dang TD, Ngo QA, Nguyen TB. Sulfur-Promoted Synthesis of Benzoxazoles from 2-Aminophenols and Aldehydes. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000523] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Le Anh Nguyen
- Institute of Chemistry; Vietnam Academy of Science and Technology; 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Vietnam Academy of Science and Technology; Graduate University of Science and Technology; 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thai Duy Dang
- Institute of Chemistry; Vietnam Academy of Science and Technology; 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Quoc Anh Ngo
- Institute of Chemistry; Vietnam Academy of Science and Technology; 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
- Vietnam Academy of Science and Technology; Graduate University of Science and Technology; 18 Hoang Quoc Viet, Cau Giay Hanoi Vietnam
| | - Thanh Binh Nguyen
- Institut de Chimie des Substances Naturelles; CNRS UPR 2301; Université Paris-Sud, Université Paris-Saclay; 1, avenue de la Terrasse 91198 Gif-sur-Yvette France
| |
Collapse
|
9
|
Boddapati S, Saketi JMR, Mutchu BR, Bollikolla HB, Adil SF, Khan M. Copper promoted desulfurization and C-N cross coupling reactions: Simple approach to the synthesis of substituted 2-aminobenzoxazoles and 2,5-disubstituted tetrazole amines. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2019.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
10
|
Sharghi H, Aboonajmi J, Aberi M, Shekouhy M. Amino Acids: Nontoxic and Cheap Alternatives for Amines for the Synthesis of Benzoxazoles through the Oxidative Functionalization of Catechols. Adv Synth Catal 2020. [DOI: 10.1002/adsc.201901096] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Hashem Sharghi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Jasem Aboonajmi
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| | - Mahdi Aberi
- Department of Chemical and Materials Engineering, Faculty of Shahid Rajaee, Shiraz BranchTechnical and Vocational University (TVU) Shiraz Iran
| | - Mohsen Shekouhy
- Department of Chemistry, College of SciencesShiraz University Shiraz 71454 Iran
| |
Collapse
|
11
|
Panda N, Sahoo K. Synthesis of 4‐Alkenyl Benzoxazoles via Pd‐catalyzed
ortho
C−H Functionalization of 2‐Amidophenols. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201801272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Niranjan Panda
- Department of ChemistryNational Institute of Technology Rourkela Odisha- 769008 India
| | - Kanchanbala Sahoo
- Department of ChemistryNational Institute of Technology Rourkela Odisha- 769008 India
| |
Collapse
|
12
|
Patra A, James A, Das TK, Biju AT. Oxidative NHC Catalysis for the Generation of Imidoyl Azoliums: Synthesis of Benzoxazoles. J Org Chem 2018; 83:14820-14826. [DOI: 10.1021/acs.joc.8b02598] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Atanu Patra
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Anjima James
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Tamal Kanti Das
- Organic Chemistry Division, CSIR-National Chemical Laboratory (CSIR-NCL), Dr. Homi Bhabha Road, Pune 411008, India
| | - Akkattu T. Biju
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Li Y, Yu X, Wang Y, Fu H, Zheng X, Chen H, Li R. Unsymmetrical Pincer N-Heterocyclic Carbene–Nitrogen–Phosphine Chelated Palladium(II) Complexes: Synthesis, Structure, and Reactivity in Direct Csp2–H Arylation of Benzoxazoles. Organometallics 2018. [DOI: 10.1021/acs.organomet.8b00005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yaqiu Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaojun Yu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yangdiandian Wang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Haiyan Fu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hua Chen
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
14
|
Meng X, Wang Y, Chen B, Chen G, Jing Z, Zhao P. OMS-2/H2O2/Dimethyl Carbonate: An Environmentally-Friendly Heterogeneous Catalytic System for the Oxidative Synthesis of Benzoxazoles at Room Temperature. Org Process Res Dev 2017. [DOI: 10.1021/acs.oprd.7b00315] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xu Meng
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Yuanguang Wang
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Baohua Chen
- State
Key Laboratory of Applied Organic Chemistry, Lanzhou University, Gansu Lanzhou, 730000, P. R. China
| | - Gexin Chen
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| | - Zhenqiang Jing
- Suzhou Institute of Nano-Tech and Nano-Bionic (SINANO), Chinese Academy of Sciences, Suzhou 215123, P. R. China
| | - Peiqing Zhao
- State
Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research
Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou, 730000, P. R. China
| |
Collapse
|
15
|
Ganji P, van Leeuwen PWNM. Phosphine Supported Ruthenium Nanoparticle Catalyzed Synthesis of Substituted Pyrazines and Imidazoles from α-Diketones. J Org Chem 2017; 82:1768-1774. [DOI: 10.1021/acs.joc.6b03032] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Prasad Ganji
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Piet W. N. M. van Leeuwen
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007 Tarragona, Spain
- Laboratoire
de Physique et Chimie des Nano Objets, LPCNO, UMR5215 INSA-UPSCNRS, Université de Toulouse, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse, France
| |
Collapse
|
16
|
Li ZL, Jin LK, Cai C. Efficient synthesis of 2-substituted azoles: radical C–H alkylation of azoles with dicumyl peroxide, methylarenes and cycloalkanes under metal-free condition. Org Chem Front 2017. [DOI: 10.1039/c7qo00396j] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient synthesis of 2-substituted azoles by alkylation of azoles with dicumyl peroxide, methylarenes and cycloalkanes under metal-free condition has been developed.
Collapse
Affiliation(s)
- Ze-lin Li
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Li-kun Jin
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| | - Chun Cai
- College of Chemical Engineering
- Nanjing University of Science & Technology
- Nanjing
- China
| |
Collapse
|
17
|
Urzúa JI, Contreras R, Salas CO, Tapia RA. N-Heterocyclic carbene copper(i) complex-catalyzed synthesis of 2-aryl benzoxazoles and benzothiazoles. RSC Adv 2016. [DOI: 10.1039/c6ra18510j] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A new an efficient synthesis of 2-aryl benzoxazoles and benzothiazoles by intramolecular cyclization of 2-haloanilides/2-halothioanilides using a copper(i)-NHC complex is described.
Collapse
Affiliation(s)
- Julio I. Urzúa
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago
- Chile
| | - Renato Contreras
- Departamento de Química
- Facultad de Ciencias
- Universidad de Chile
- Santiago
- Chile
| | - Cristian O. Salas
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago
- Chile
| | - Ricardo A. Tapia
- Facultad de Química
- Pontificia Universidad Católica de Chile
- Santiago
- Chile
| |
Collapse
|