1
|
Tian D, Pan Y, Zhao X, Yin Y, Jiang Z. Chiral Lewis Acid-Catalyzed Intramolecular [2 + 2] Photocycloaddition: Enantioselective Synthesis of Azaarene-Functionalized Azabicyclo[2.1.1]hexanes and Bicyclo[1.1.1]pentanes. J Am Chem Soc 2025; 147:12410-12417. [PMID: 40171869 DOI: 10.1021/jacs.5c03542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We present an asymmetric intramolecular [2 + 2] photocycloaddition reaction enabled by a dual catalyst system involving DPZ as a photosensitizer and chiral Sc(III) complex, leading to azaarene-functionalized 2-azabicyclo[2.2.1]hexanes (aza-BCHs). The approach efficiently preventing racemization during subsequent nitrogen-deletion skeletal editing of aza-BCHs to yield 2-substituted bicyclo[1.1.1]pentanes (BCPs). The method achieves high ee and broad substrate scope, including the successful formation of all-carbon quaternary stereocenters. Furthermore, the successful activation of simple azaarene substrates by chiral Lewis acids in asymmetric photocatalysis highlights a notable contribution to this field.
Collapse
Affiliation(s)
- Dong Tian
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yixing Pan
- College of pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Xiaowei Zhao
- College of pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| | - Yanli Yin
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Zhiyong Jiang
- Pingyuan Laboratory, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, P. R. China
- College of pharmacy, Henan University, Kaifeng, Henan 475004, P. R. China
| |
Collapse
|
2
|
Zaika YO, Borodin IO, Olekh HO, Kovalov MV, Diachenko OD, Brovarets VS, Vashchenko BV, Grygorenko OO. Bridged Bicyclic γ-Sultams by Intramolecular Flow Photochemical [2 + 2] Cycloaddition. Org Lett 2025; 27:2858-2862. [PMID: 40088180 DOI: 10.1021/acs.orglett.5c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
An elegant synthetic approach to the construction of a novel saturated heterocycle─2-thia-3-azabicyclo[2.1.1]hexane 2,2-dioxide─was designed. The key step included intramolecular flow photochemical [2 + 2] cycloaddition of appropriately substituted dienes, which were in turn obtained from readily available starting materials on a multigram scale. Further synthetic transformations of the resulting bicyclic compounds enabled the preparation of numerous functionalized derivatives useful for early drug discovery programs as promising isosteres of pyrrolidine, pyrrolidone, and γ-sultams. These studies also demonstrated the tolerance of the title bicyclic system to typical organic chemistry reaction conditions.
Collapse
Affiliation(s)
- Yevhen O Zaika
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1 Akademik Kukhar St, Kyiv 02094, Ukraine
| | - Illia O Borodin
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St, Kyiv 01601, Ukraine
| | - Heorhii O Olekh
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St, Kyiv 01601, Ukraine
| | - Maksym V Kovalov
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St, Kyiv 01601, Ukraine
| | - Oleksandr D Diachenko
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St, Kyiv 01601, Ukraine
| | - Volodymyr S Brovarets
- V. P. Kukhar Institute of Bioorganic Chemistry and Petrochemistry, National Academy of Sciences of Ukraine, 1 Akademik Kukhar St, Kyiv 02094, Ukraine
| | - Bohdan V Vashchenko
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St, Kyiv 01601, Ukraine
| | - Oleksandr O Grygorenko
- Enamine Ltd., 78 Winston Churchill St, Kyiv 02094, Ukraine
- Taras Shevchenko National University of Kyiv, 60 Volodymyrska St, Kyiv 01601, Ukraine
| |
Collapse
|
3
|
Chaudhuri A, de Groot WF, Schuurmans JH, Zondag SD, Bianchi A, Kuijpers KP, Broersma R, Delparish A, Dorbec M, van der Schaaf J, Noël T. Scaling Up Gas-Liquid Photo-Oxidations in Flow Using Rotor-Stator Spinning Disc Reactors and a High-Intensity Light Source. Org Process Res Dev 2025; 29:460-471. [PMID: 40012916 PMCID: PMC11852198 DOI: 10.1021/acs.oprd.4c00458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 02/28/2025]
Abstract
Photochemical transformations have garnered renewed interest over the past decade for their ability to enable unique reactions under mild conditions. However, scaling up such processes, particularly in multiphase systems (e.g., gas-liquid), remains challenging. Previously, we demonstrated the potential of the photochemical rotor-stator spinning disc reactor (pRS-SDR) for scaling the photooxidation of α-terpinene to ascaridole, though the system was limited by the light source, resulting in suboptimal operation in a photon-limited regime. In this work, we unlock the full potential of the pRS-SDR by integrating a high-powered light source (up to 652 W optical output) specifically designed for the reactor. The results show that the high gas-liquid mass transfer rates achievable in the pRS-SDR allow for significant productivity improvements under high irradiance (16.3 kg day-1 at 92% α-terpinene conversion and 2.52 W cm-2 in a 27 mL irradiated volume), representing an order of magnitude increase compared to our previous study. However, the photooxidation of β-citronellol exhibited notable limitations, highlighting the importance of selecting appropriate model reactions when evaluating intensified photochemical reactors.
Collapse
Affiliation(s)
- Arnab Chaudhuri
- Department
of Chemical Engineering and Chemistry, Sustainable Process Engineering, University of Technology (TU/e), Eindhoven 5612 AZ, The Netherlands
| | - Wouter F.C. de Groot
- Department
of Chemical Engineering and Chemistry, Sustainable Process Engineering, University of Technology (TU/e), Eindhoven 5612 AZ, The Netherlands
| | - Jasper H.A. Schuurmans
- Flow Chemistry
Group, Van’t Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Amsterdam 1098 XH, The Netherlands
| | - Stefan D.A. Zondag
- Flow Chemistry
Group, Van’t Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Amsterdam 1098 XH, The Netherlands
| | - Alessia Bianchi
- Department
of Chemical Engineering and Chemistry, Sustainable Process Engineering, University of Technology (TU/e), Eindhoven 5612 AZ, The Netherlands
| | - Koen P.L. Kuijpers
- Technology
and Engineering Group, Janssen Research
and Development, Turnhoutseweg
30, Beerse 2340, Belgium
| | - Rémy Broersma
- Signify
Research, Eindhoven 5656 AE, The Netherlands
| | - Amin Delparish
- Department
of Chemical Engineering and Chemistry, Sustainable Process Engineering, University of Technology (TU/e), Eindhoven 5612 AZ, The Netherlands
| | - Matthieu Dorbec
- Technology
and Engineering Group, Janssen Research
and Development, Turnhoutseweg
30, Beerse 2340, Belgium
| | - John van der Schaaf
- Department
of Chemical Engineering and Chemistry, Sustainable Process Engineering, University of Technology (TU/e), Eindhoven 5612 AZ, The Netherlands
| | - Timothy Noël
- Flow Chemistry
Group, Van’t Hoff Institute for Molecular Sciences (HIMS), Universiteit van Amsterdam (UvA), Amsterdam 1098 XH, The Netherlands
| |
Collapse
|
4
|
Cid Gomes L, Vajravel S, Siljebo W, Rana A, Gustafsson T, Bairaktari A, Thomsen M, Ottosson H. Multiliter-Scale Photosensitized Dimerization of Isoprene to Sustainable Aviation Fuel Precursors. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2025; 13:2467-2476. [PMID: 39981220 PMCID: PMC11837299 DOI: 10.1021/acssuschemeng.4c08755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Synthetic routes to sustainable aviation fuels are needed to mitigate the environmental impacts of the aviation sector. Among several emerging methods, the use of light-driven reactions benefits from milder conditions and the possibility of using sunlight to directly irradiate reactants or, alternatively, to power LEDs with a high and constant light intensity. Dinaphthylketone-photosensitized dimerization of isoprene can afford C10 cycloalkenes that, after hydrogenation, meet the required properties for jet fuels (strongly resembling Jet-A). Isoprene can be photobiologically produced by metabolically engineered cyanobacteria from the conversion of CO2 and water by utilizing solar light, contributing to a carbon-neutral process. The scale-up of such a combined photobiological-photochemical route is essential to bring it closer to the commercial level. Herein, we present the optimization and scale-up of the photosensitized dimerization of isoprene. By designing different reactor setups, flow versus no-flow conditions, and LED lamps (λmax = 365 nm) versus sunlight as the light source, we reached a 2.6 L scale able to produce 61 mL of isoprene dimers per hour, which represents a 14-fold higher productivity compared to our previous results at a smaller scale. We also demonstrated a continuous feed process that converted isoprene into dimers with a 95% yield under LED irradiation. These advancements highlight the potential of light-driven processes to contribute to the energy transition and production of sustainable aviation fuels, making them more viable for commercial use and significantly reducing the environmental impact of the aviation sector.
Collapse
Affiliation(s)
- Leandro Cid Gomes
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | - Sindhujaa Vajravel
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | | | - Anup Rana
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| | | | - Asimina Bairaktari
- Department
of Food Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Marianne Thomsen
- Department
of Food Science, University of Copenhagen, Frederiksberg 1958, Denmark
| | - Henrik Ottosson
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Uppsala 75120, Sweden
| |
Collapse
|
5
|
Aslam M, Akhtar MS, Lim HN, Seo JH, Lee YR. Recent advances in the transformation of maleimides via annulation. Org Biomol Chem 2025; 23:269-291. [PMID: 39545834 DOI: 10.1039/d4ob01632g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Over the past five years, maleimide scaffolds have gained considerable attention in organic synthesis for their role in forming cyclized molecules through annulation and C-H activation. As versatile and reactive coupling agents, maleimides have enabled the efficient synthesis of various cyclized products, including annulation, benzannulation, cycloaddition, and spirocyclization, with applications in medicinal chemistry, drug discovery, and materials science. Despite the extensive study of maleimide chemistry, certain reactions-such as cycloaddition-based annulation, photoannulation, and electrochemical transformations-remain underexplored despite their promising potential in the pharmaceutical and chemical industries. Recent advancements, such as photocatalysis and electrochemical methods, have expanded the utility of maleimides, providing more sustainable and selective approaches for synthesizing complex molecules. This review compiles research published between 2019 and 2024, highlighting the substrate scope, reaction diversity, and industrial relevance of maleimide-based annulation strategies. Additionally, we discuss emerging trends and future directions in maleimide chemistry, exploring opportunities for novel reaction pathways and broader applications in synthetic biology and materials science.
Collapse
Affiliation(s)
- Mohammad Aslam
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | | | - Hee Nam Lim
- Department of Chemistry, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Jeong Hyun Seo
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
6
|
He C, Ba X, Shunatona HP, Edwards JT, Li YX, Keller TM, Sommer RD, Zapf CW, Mortensen DS. Discovery of an Azabicyclo[2.1.1]hexane Piperazinium Salt and Its Application in Medicinal Chemistry via a Rearrangement. Org Lett 2024; 26:5318-5322. [PMID: 38888237 DOI: 10.1021/acs.orglett.4c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Herein we report the discovery of an azabicyclo[2.1.1]hexane piperazinium methanesulfonate salt from an unexpected rearrangement reaction in the preparation of ligand-directed degraders (LDDs). This bench-stable compound was found to be a versatile electrophile in a ring-opening reaction with various types of nucleophiles. Its utility as a versatile medicinal chemistry building block is further demonstrated in the synthesis of an LDD compound targeting degradation of the androgen receptor.
Collapse
Affiliation(s)
- Chi He
- Small Molecule Drug Discovery, Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Xiaochu Ba
- Small Molecule Drug Discovery, Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Hunter P Shunatona
- Small Molecule Drug Discovery, Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Jacob T Edwards
- Small Molecule Drug Discovery, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Yi-Xin Li
- Small Molecule Drug Discovery, Bristol Myers Squibb, 700 Bay Road, Redwood City, California 94063, United States
| | - Taylor M Keller
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Roger D Sommer
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08901, United States
| | - Christoph W Zapf
- Small Molecule Drug Discovery, Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| | - Deborah S Mortensen
- Small Molecule Drug Discovery, Bristol Myers Squibb, 10300 Campus Point Drive, Suite 100, San Diego, California 92121, United States
| |
Collapse
|
7
|
Rigoglioso VP, Boydston AJ. Flow Optimization of Photoredox-Mediated Metal-Free Ring-Opening Metathesis Polymerization. ACS Macro Lett 2023; 12:1479-1485. [PMID: 37870749 DOI: 10.1021/acsmacrolett.3c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Photoredox-mediated metal-free ring-opening metathesis polymerization (MF-ROMP) is a convenient metal-free method to produce a variety of ROMP polymers. Transitioning MF-ROMP from a batch to a continuous flow process has yet to be demonstrated and could potentially benefit the production efficiency, safety, and modularity of reaction conditions. We designed and evaluated continuous flow and droplet flow setups and compared the results for MF-ROMP across a short series of common monomers. By using the droplet flow reactor setup, we achieved flow conversions comparable to that of batch and circumvented issues with diffusion-limited mixing and air exposure.
Collapse
Affiliation(s)
- Vincent P Rigoglioso
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering, Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
8
|
Shire B, Anderson EA. Conquering the Synthesis and Functionalization of Bicyclo[1.1.1]pentanes. JACS AU 2023; 3:1539-1553. [PMID: 37388694 PMCID: PMC10301682 DOI: 10.1021/jacsau.3c00014] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/01/2023]
Abstract
Bicyclo[1.1.1]pentanes (BCPs) have become established as attractive bioisosteres for para-substituted benzene rings in drug design. Conferring various beneficial properties compared with their aromatic "parents," BCPs featuring a wide array of bridgehead substituents can now be accessed by an equivalent variety of methods. In this perspective, we discuss the evolution of this field and focus on the most enabling and general methods for BCPs synthesis, considering both scope and limitation. Recent breakthroughs on the synthesis of bridge-substituted BCPs are described, as well as methodologies for postsynthesis functionalization. We further explore new challenges and directions for the field, such as the emergence of other rigid small ring hydrocarbons and heterocycles possessing unique substituent exit vectors.
Collapse
|
9
|
Zondag SDA, Mazzarella D, Noël T. Scale-Up of Photochemical Reactions: Transitioning from Lab Scale to Industrial Production. Annu Rev Chem Biomol Eng 2023; 14:283-300. [PMID: 36913716 DOI: 10.1146/annurev-chembioeng-101121-074313] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
In the past two decades, we have witnessed a rapid emergence of new and powerful photochemical and photocatalytic synthetic methods. Although these methods have been used mostly on a small scale, there is a growing need for efficient scale-up of photochemistry in the chemical industry. This review summarizes and contextualizes the advancements made in the past decade regarding the scale-up of photo-mediated synthetic transformations. Simple scale-up concepts and important fundamental photochemical laws have been provided along with a discussion concerning suitable reactor designs that should facilitate scale-up of this challenging class of organic reactions.
Collapse
Affiliation(s)
- Stefan D A Zondag
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
| | - Daniele Mazzarella
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Timothy Noël
- Flow Chemistry Group, van 't Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Amsterdam, The Netherlands;
| |
Collapse
|
10
|
Wright BA, Matviitsuk A, Black MJ, García-Reynaga P, Hanna LE, Herrmann AT, Ameriks MK, Sarpong R, Lebold TP. Skeletal Editing Approach to Bridge-Functionalized Bicyclo[1.1.1]pentanes from Azabicyclo[2.1.1]hexanes. J Am Chem Soc 2023; 145:10960-10966. [PMID: 37145091 PMCID: PMC10281541 DOI: 10.1021/jacs.3c02616] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Azabicyclo[2.1.1]hexanes (aza-BCHs) and bicyclo[1.1.1]pentanes (BCPs) have emerged as attractive classes of sp3-rich cores for replacing flat, aromatic groups with metabolically resistant, three-dimensional frameworks in drug scaffolds. Strategies to directly convert, or "scaffold hop", between these bioisosteric subclasses through single-atom skeletal editing would enable efficient interpolation within this valuable chemical space. Herein, we describe a strategy to "scaffold hop" between aza-BCH and BCP cores through a nitrogen-deleting skeletal edit. Photochemical [2+2] cycloadditions, used to prepare multifunctionalized aza-BCH frameworks, are coupled with a subsequent deamination step to afford bridge-functionalized BCPs, for which few synthetic solutions currently exist. The modular sequence provides access to various privileged bridged bicycles of pharmaceutical relevance.
Collapse
Affiliation(s)
- Brandon A Wright
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Michael J Black
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | | | - Luke E Hanna
- Janssen Research and Development, San Diego, California 92121, United States
| | - Aaron T Herrmann
- Janssen Research and Development, San Diego, California 92121, United States
| | - Michael K Ameriks
- Janssen Research and Development, San Diego, California 92121, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Terry P Lebold
- Janssen Research and Development, San Diego, California 92121, United States
| |
Collapse
|
11
|
Abstract
How do you get into flow? We trained in flow chemistry during postdoctoral research and are now applying it in new areas: materials chemistry, crystallization, and supramolecular synthesis. Typically, when researchers think of "flow", they are considering predominantly liquid-based organic synthesis; application to other disciplines comes with its own challenges. In this Perspective, we highlight why we use and champion flow technologies in our fields, summarize some of the questions we encounter when discussing entry into flow research, and suggest steps to make the transition into the field, emphasizing that communication and collaboration between disciplines is key.
Collapse
Affiliation(s)
- Andrea Laybourn
- Faculty
of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K.
| | - Karen Robertson
- Faculty
of Engineering, University of Nottingham, University Park Campus, Nottingham NG7 2RD, U.K.
| | - Anna G. Slater
- Department
of Chemistry and Materials Innovation Factory, University of Liverpool, Crown Street, Liverpool L69 7ZD, U.K.
| |
Collapse
|
12
|
Flow photochemistry — from microreactors to large-scale processing. Curr Opin Chem Eng 2023. [DOI: 10.1016/j.coche.2023.100897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
13
|
Grillo G, Cintas P, Colia M, Calcio Gaudino E, Cravotto G. Process intensification in continuous flow organic synthesis with enabling and hybrid technologies. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.966451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Industrial organic synthesis is time and energy consuming, and generates substantial waste. Traditional conductive heating and mixing in batch reactors is no longer competitive with continuous-flow synthetic methods and enabling technologies that can strongly promote reaction kinetics. These advances lead to faster and simplified downstream processes with easier workup, purification and process scale-up. In the current Industry 4.0 revolution, new advances that are based on cyber-physical systems and artificial intelligence will be able to optimize and invigorate synthetic processes by connecting cascade reactors with continuous in-line monitoring and even predict solutions in case of unforeseen events. Alternative energy sources, such as dielectric and ohmic heating, ultrasound, hydrodynamic cavitation, reactive extruders and plasma have revolutionized standard procedures. So-called hybrid or hyphenated techniques, where the combination of two different energy sources often generates synergistic effects, are also worthy of mention. Herein, we report our consolidated experience of all of these alternative techniques.
Collapse
|
14
|
Domański M, Žurauskas J, Barham JP. Tunable Microwave Flow System for Scalable Synthesis of Alkyl Imidazolium-type Ionic Liquids. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Michał Domański
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93040, Germany
| | - Jonas Žurauskas
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93040, Germany
| | - Joshua P. Barham
- Institute of Organic Chemistry, University of Regensburg, Universitätsstr. 31, Regensburg 93040, Germany
| |
Collapse
|
15
|
Magano J. Large-Scale Amidations in Process Chemistry: Practical Considerations for Reagent Selection and Reaction Execution. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Javier Magano
- Chemical Research & Development, Pfizer Worldwide Research & Development, Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
16
|
Burange AS, Osman SM, Luque R. Understanding flow chemistry for the production of active pharmaceutical ingredients. iScience 2022; 25:103892. [PMID: 35243250 PMCID: PMC8867129 DOI: 10.1016/j.isci.2022.103892] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Multi-step organic syntheses of various drugs, active pharmaceutical ingredients, and other pharmaceutically and agriculturally important compounds have already been reported using flow synthesis. Compared to batch, hazardous and reactive reagents can be handled safely in flow. This review discusses the pros and cons of flow chemistry in today’s scenario and recent developments in flow devices. The review majorly emphasizes on the recent developments in the flow synthesis of pharmaceutically important products in last five years including flibanserin, imatinib, buclizine, cinnarizine, cyclizine, meclizine, ribociclib, celecoxib, SC-560 and mavacoxib, efavirenz, fluconazole, melitracen HCl, rasagiline, tamsulosin, valsartan, and hydroxychloroquine. Critical steps and new development in the flow synthesis of selected compounds are also discussed.
Collapse
Affiliation(s)
- Anand S. Burange
- Department of Chemistry, Wilson College, Chowpatty, Mumbai 400007, India
- Corresponding author
| | - Sameh M. Osman
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Rafael Luque
- Departamento de Quimica Organica, Universidad de Cordoba, Edificio Marie Curie (C-3), Ctra Nnal IV-A, Km 396, E14014 Cordoba, Spain
- Peoples Friendship University of Russia (RUDN University), 6 Miklukho Maklaya str., 107198 Moscow, Russian Federation
- Corresponding author
| |
Collapse
|
17
|
Rigotti T, Schwinger DP, Graßl R, Jandl C, Bach T. Enantioselective crossed intramolecular [2+2] photocycloaddition reactions mediated by a chiral chelating Lewis acid. Chem Sci 2022; 13:2378-2384. [PMID: 35310494 PMCID: PMC8864722 DOI: 10.1039/d2sc00113f] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 02/01/2022] [Indexed: 12/01/2022] Open
Abstract
In intramolecular [2+2] photocycloaddition reactions, the two tethered olefins can approach each other in a straight or in a crossed fashion. Despite the fact that the latter reaction mode leads to intriguing, otherwise inaccessible bridged skeletons, there has so far not been any enantioselective variants thereof. This study concerned the crossed [2+2]-photocycloaddition of 2-(alkenyloxy)cyclohex-2-enones to bridged cyclobutanes. It was found that the reaction could be performed with high enantioselectivity (80-94% ee) under visible light conditions when employing a chiral rhodium Lewis acid as a catalyst (2 mol%).
Collapse
Affiliation(s)
- Thomas Rigotti
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Daniel P Schwinger
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Raphaela Graßl
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Christian Jandl
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| | - Thorsten Bach
- School of Natural Sciences, Department Chemie, Catalysis Research Center (CRC), Technische Universität München 85747 Garching Germany +49 89 28913315 +49 89 28913330
| |
Collapse
|
18
|
Triandafillidi I, Nikitas NF, Gkizis PL, Spiliopoulou N, Kokotos CG. Hexafluoroisopropanol-Promoted or Brønsted Acid-Mediated Photochemical [2+2] Cycloadditions of Alkynes with Maleimides. CHEMSUSCHEM 2022; 15:e202102441. [PMID: 34978379 DOI: 10.1002/cssc.202102441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/23/2021] [Indexed: 06/14/2023]
Abstract
Although the use of light stimulating organic transformations has been known for more than a century, there is an increasing research interest on expanding the established knowledge. While [2+2] cycloadditions are promoted photochemically, literature precedent on the reaction between alkynes and maleimides is limited and only a handful of examples exist, focusing mainly on N-aliphatic maleimides. Herein, the differences in reactivity between N-alkyl and N-aryl maleimides were identified, and the use of hexafluoroisopropanol (HFIP) or trifluoroacetic acid (TFA) as viable solutions was proposed in order to achieve high yields. In the case of N-alkyl maleimides, both HFIP-mediated or TFA-promoted reactions were established using LED 370 nm irradiation, without the use of an external photocatalyst. In the case of N-aryl maleimides, thioxanthone (THX) was employed as the energy transfer photocatalyst along with LED 427 nm irradiation and HFIP. Mechanistic studies were performed, supporting the pivotal role of HFIP or TFA, in acquiring good to high yields in both classes of maleimides.
Collapse
Affiliation(s)
- Ierasia Triandafillidi
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikolaos F Nikitas
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Petros L Gkizis
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Nikoleta Spiliopoulou
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| | - Christoforos G Kokotos
- Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, 15771, Athens, Greece
| |
Collapse
|
19
|
Bargum MA, Krell-Jørgensen MP, Nielsen M, Qvortrup K, Laraia L. A photochemical microfluidic reactor for photosensitized [2+2] cycloadditions. Synlett 2022. [DOI: 10.1055/a-1771-4883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Here we report a microfluidic system for photochemical cycloadditions fabricated using silicon micro processing technologies. The system was optimized to yield residence times of just a few minutes for a range of photochemical [2+2]-cycloaddition reactions facilitated using high power UV-LEDs at 375 nm and triplet photosensitizers, which removed the need for the low wavelengths typically required for these types of transformations. Adducts using different excitable olefins with different linear-, carbocyclic- and heterocyclic coupling partners were explored to demonstrate the feasibility of performing photochemistry in microflow in an academic research environment. Finally, a reaction leading to a novel dihydrooxepin-2(3H)-one scaffold, and a mechanistic proposal for its formation are reported.
Collapse
Affiliation(s)
| | | | - Martin Nielsen
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Katrine Qvortrup
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Luca Laraia
- Department of Chemistry, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
20
|
Buglioni L, Raymenants F, Slattery A, Zondag SDA, Noël T. Technological Innovations in Photochemistry for Organic Synthesis: Flow Chemistry, High-Throughput Experimentation, Scale-up, and Photoelectrochemistry. Chem Rev 2022; 122:2752-2906. [PMID: 34375082 PMCID: PMC8796205 DOI: 10.1021/acs.chemrev.1c00332] [Citation(s) in RCA: 282] [Impact Index Per Article: 94.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 02/08/2023]
Abstract
Photoinduced chemical transformations have received in recent years a tremendous amount of attention, providing a plethora of opportunities to synthetic organic chemists. However, performing a photochemical transformation can be quite a challenge because of various issues related to the delivery of photons. These challenges have barred the widespread adoption of photochemical steps in the chemical industry. However, in the past decade, several technological innovations have led to more reproducible, selective, and scalable photoinduced reactions. Herein, we provide a comprehensive overview of these exciting technological advances, including flow chemistry, high-throughput experimentation, reactor design and scale-up, and the combination of photo- and electro-chemistry.
Collapse
Affiliation(s)
- Laura Buglioni
- Micro
Flow Chemistry and Synthetic Methodology, Department of Chemical Engineering
and Chemistry, Eindhoven University of Technology, Het Kranenveld, Bldg 14—Helix, 5600 MB, Eindhoven, The Netherlands
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Fabian Raymenants
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Aidan Slattery
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Stefan D. A. Zondag
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Timothy Noël
- Flow
Chemistry Group, van ’t Hoff Institute for Molecular Sciences
(HIMS), Universiteit van Amsterdam (UvA), Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Francis D, Blacker AJ, Kapur N, Marsden SP. Readily Reconfigurable Continuous-Stirred Tank Photochemical Reactor Platform. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Daniel Francis
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| | - A. John Blacker
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemical and Process Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Nikil Kapur
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Mechanical Engineering, University of Leeds, Leeds LS2 9JT, U.K
| | - Stephen P. Marsden
- Institute of Process Research and Development, University of Leeds, Leeds LS2 9JT, U.K
- School of Chemistry, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
22
|
Homon AA, Hryshchuk OV, Mykhailenko OV, Vashchenko BV, Melnykov KP, Michurin OM, Daniliuc CG, Gerus II, Kovtunenko VO, Kondratov IS, Grygorenko OO. 4‐(Di‐/Trifluoromethyl)‐2‐heterabicyclo[2.1.1]hexanes: Advanced Fluorinated Phenyl Isosteres and Proline analogues. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Anton A. Homon
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | - Oleksandr V. Hryshchuk
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Olha V. Mykhailenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Bohdan V. Vashchenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Kostiantyn P. Melnykov
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| | - Oleg M. Michurin
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
| | - Constantin G. Daniliuc
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Münster Corrensstr. 40 48149 Münster Germany
| | - Igor I. Gerus
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | | | - Ivan S. Kondratov
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- V.P. Kukhar Institute of Bioorganic Chemistry & Petrochemistry NAS of Ukraine Murmanska Street 1 Kyiv 02660 Ukraine
| | - Oleksandr O. Grygorenko
- Enamine Ltd. (www.enamine.net) Chervonotkatska Street 78 Kyiv 02094 Ukraine
- Taras Shevchenko National University of Kyiv Volodymyrska Street 60 Kyiv 01601 Ukraine
| |
Collapse
|
23
|
Deeprose MJ, Lowe M, Noble A, Booker-Milburn KI, Aggarwal VK. Sequential Photocatalytic Reactions for the Diastereoselective Synthesis of Cyclobutane Scaffolds. Org Lett 2021; 24:137-141. [PMID: 34882426 DOI: 10.1021/acs.orglett.1c03746] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The synthesis of densely functionalized cyclobutanes containing all-carbon quaternary stereocenters in high regio- and diastereoselectivity remains synthetically challenging. Herein, we show that this can be achieved by using a sequential photocatalysis strategy, wherein 3-chloromaleimides undergo triplet sensitized [2 + 2] photocycloadditions with alkynes or alkenes followed by photoredox-catalyzed dechlorinative C-C bond forming reactions to install quaternary stereocenters. This allows the rapid assembly of structurally complex and sterically congested 3-azabicyclo[3.2.0]heptane scaffolds from readily available starting materials.
Collapse
Affiliation(s)
- Mark J Deeprose
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | - Martin Lowe
- Medicinal Chemistry Department, UCB, 216 Bath Road, Slough, SL1 3WE, U.K
| | - Adam Noble
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| | | | - Varinder K Aggarwal
- School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, U.K
| |
Collapse
|
24
|
Bonner A, Loftus A, Padgham AC, Baumann M. Forgotten and forbidden chemical reactions revitalised through continuous flow technology. Org Biomol Chem 2021; 19:7737-7753. [PMID: 34549240 DOI: 10.1039/d1ob01452h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Continuous flow technology has played an undeniable role in enabling modern chemical synthesis, whereby a myriad of reactions can now be performed with greater efficiency, safety and control. As flow chemistry furthermore delivers more sustainable and readily scalable routes to important target structures a growing number of industrial applications are being reported. In this review we highlight the impact of flow chemistry on revitalising important chemical reactions that were either forgotten soon after their initial report as necessary improvements were not realised due to a lack of available technology, or forbidden due to unacceptable safety concerns relating to the experimental procedure. In both cases flow processing in combination with further reaction optimisation has rendered a powerful set of tools that make such transformations not only highly efficient but moreover very desirable due to a more streamlined construction of desired scaffolds. This short review highlights important contributions from academic and industrial laboratories predominantly from the last 5 years allowing the reader to gain an appreciation of the impact of flow chemistry.
Collapse
Affiliation(s)
- Arlene Bonner
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Aisling Loftus
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Alex C Padgham
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, D04 N2E5, Dublin, Ireland.
| |
Collapse
|
25
|
Robinson A, Dieckmann M, Krieger JP, Vent-Schmidt T, Marantelli D, Kohlbrenner R, Gribkov D, Simon LL, Austrup D, Rod A, Bochet CG. Development and Scale-Up of a Novel Photochemical C–N Oxidative Coupling. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Alan Robinson
- Syngenta Group, Breitenloh 5, CH-4332 Stein, Switzerland
| | | | | | | | | | | | - Denis Gribkov
- Syngenta Group, Breitenloh 5, CH-4333 Münchwilen, Switzerland
| | | | - David Austrup
- Syngenta Group, Breitenloh 5, CH-4333 Münchwilen, Switzerland
| | - Alexandre Rod
- Department of Chemistry, University of Fribourg, 9 Ch. du Musée, CH-1700 Fribourg, Switzerland
| | - Christian G. Bochet
- Department of Chemistry, University of Fribourg, 9 Ch. du Musée, CH-1700 Fribourg, Switzerland
| |
Collapse
|
26
|
Howie RA, Elliott LD, Kayal S, Sun XZ, Hanson-Heine MWD, Hunter J, Clark CA, Love A, Wiseall C, Lee DS, Poliakoff M, Booker Milburn KI, George MW. Integrated Multistep Photochemical and Thermal Continuous Flow Reactions: Production of Bicyclic Lactones with Kilogram Productivity. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rowena A. Howie
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Luke D. Elliott
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | - Surajit Kayal
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Xue-Zhong Sun
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | | | - Jonathan Hunter
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Charlotte A. Clark
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Ashley Love
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Christopher Wiseall
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Darren S. Lee
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | - Martyn Poliakoff
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| | | | - Michael W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, U.K
| |
Collapse
|
27
|
Fournier K, Marina N, Joshi N, Berthiaume VR, Currie S, Lanterna AE, Scaiano JC. Scale-up of a photochemical flow reactor for the production of lignin-coated titanium dioxide as a sunscreen ingredient. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY 2021. [DOI: 10.1016/j.jpap.2021.100040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
28
|
Elliott LD, Booker-Milburn KI, Lennox AJJ. Daisy-Chaining Photo- and Thermal Chemistry: Multistep Continuous Flow Synthesis of Visible-Light-Mediated Photochemistry with a High-Temperature Cascade Reaction. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Luke D. Elliott
- School of Chemistry, University of Bristol, Cantock’s Close, Bristol BS8 1TS, U.K
| | | | | |
Collapse
|
29
|
Lan Z, Lu Y. Photoiodization of toluene in a microflow platform. J Flow Chem 2021. [DOI: 10.1007/s41981-021-00187-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
30
|
Gambacorta G, Sharley JS, Baxendale IR. A comprehensive review of flow chemistry techniques tailored to the flavours and fragrances industries. Beilstein J Org Chem 2021; 17:1181-1312. [PMID: 34136010 PMCID: PMC8182698 DOI: 10.3762/bjoc.17.90] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/22/2021] [Indexed: 12/28/2022] Open
Abstract
Due to their intrinsic physical properties, which includes being able to perform as volatile liquids at room and biological temperatures, fragrance ingredients/intermediates make ideal candidates for continuous-flow manufacturing. This review highlights the potential crossover between a multibillion dollar industry and the flourishing sub-field of flow chemistry evolving within the discipline of organic synthesis. This is illustrated through selected examples of industrially important transformations specific to the fragrances and flavours industry and by highlighting the advantages of conducting these transformations by using a flow approach. This review is designed to be a compendium of techniques and apparatus already published in the chemical and engineering literature which would constitute a known solution or inspiration for commonly encountered procedures in the manufacture of fragrance and flavour chemicals.
Collapse
Affiliation(s)
- Guido Gambacorta
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - James S Sharley
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| | - Ian R Baxendale
- Department of Chemistry, University of Durham, Stockton Road, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
31
|
Abstract
AbstractContinuous flow photochemistry as a field has witnessed an increasing popularity over the last decade in both academia and industry. Key drivers for this development are safety, practicality as well as the ability to rapidly access complex chemical structures. Continuous flow reactors, whether home-built or from commercial suppliers, additionally allow for creating valuable target compounds in a reproducible and automatable manner. Recent years have furthermore seen the advent of new energy efficient LED lamps that in combination with innovative reactor designs provide a powerful means to increasing both the practicality and productivity of modern photochemical flow reactors. In this review article we wish to highlight key achievements pertaining to the scalability of such continuous photochemical processes.
Graphical abstract
Collapse
|
32
|
Manning MA, Sun W, Light ME, Harrowven DC. A photochemical ring expansion of 6- to 8-membered nitrogen heterocycles by [1,3]-sigmatropic rearrangement. Chem Commun (Camb) 2021; 57:4556-4559. [PMID: 33956001 DOI: 10.1039/d1cc00393c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A new route to azocines and benzoazocines from furopyridinones is described through a photochemically induced [1,3]-sigmatropic rearrangement. The method gives access to these 8-membered nitrogen heterocycles from dimethyl squarate in four stages and with excellent atom economy by sequencing thermal and photochemical ring expansion steps under continuous flow.
Collapse
Affiliation(s)
- Morgan A Manning
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Wei Sun
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - Mark E Light
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| | - David C Harrowven
- Chemistry, University of Southampton, Highfield, Southampton, SO17 1BJ, UK.
| |
Collapse
|
33
|
Brown M, Aljarah M, Asiki H, Leung LMH, Smithen DA, Miller N, Nemeth G, Davies L, Niculescu-Duvaz D, Zambon A, Springer C. Toward the Scale-Up of a Bicyclic Homopiperazine via Schmidt Rearrangement and Photochemical Oxaziridine Rearrangement in Continuous-Flow. Org Process Res Dev 2021; 25:148-156. [PMID: 33679122 PMCID: PMC7928940 DOI: 10.1021/acs.oprd.0c00361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/29/2022]
Abstract
The scale-up of a chiral bicyclic homopiperazine of pharmaceutical interest was investigated. The outcome and safety profile of a key batch ring-expansion step via Schmidt rearrangement was improved using continuous-flow chemistry. The selectivity of nitrogen insertion for the ring expansion was improved via an alternative photochemical oxaziridine rearrangement under mild conditions, which when converted to continuous-flow in a simple and efficient flow reactor allowed the first photochemical scale-up of a homopiperazine.
Collapse
Affiliation(s)
- Michael Brown
- Drug
Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, United Kingdom
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Mohammed Aljarah
- Drug
Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, United Kingdom
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Hannah Asiki
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Leo M. H. Leung
- Drug
Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, United Kingdom
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Deborah A. Smithen
- Drug
Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, United Kingdom
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Natalie Miller
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Gabor Nemeth
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Lawrence Davies
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Dan Niculescu-Duvaz
- Drug
Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, United Kingdom
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Alfonso Zambon
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| | - Caroline Springer
- Drug
Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Macclesfield SK10 4TG, United Kingdom
- Cancer
Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, London SM2 5NG, United Kingdom
| |
Collapse
|
34
|
Neyt NC, Riley DL. Application of reactor engineering concepts in continuous flow chemistry: a review. REACT CHEM ENG 2021. [DOI: 10.1039/d1re00004g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The adoption of flow technology for the manufacture of chemical entities, and in particular pharmaceuticals, has seen rapid growth over the past two decades with the technology now blurring the lines between chemistry and chemical engineering.
Collapse
Affiliation(s)
- Nicole C. Neyt
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| | - Darren L. Riley
- Faculty of Natural and Agricultural Sciences
- Department of Chemistry
- University of Pretoria
- South Africa
| |
Collapse
|
35
|
Niu W, Zheng Y, Li Y, Du L, Liu W. Photochemical microfluidic synthesis of vitamin D3 by improved light sources with photoluminescent substrates. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
36
|
Abstract
Photochemical transformations of molecular building blocks have become an important and widely recognized research field in the past decade. Detailed and deep understanding of novel photochemical catalysts and reaction concepts with visible light as the energy source has enabled a broad application portfolio for synthetic organic chemistry. In parallel, continuous-flow chemistry and microreaction technology have become the basis for thinking and doing chemistry in a novel fashion with clear focus on improved process control for higher conversion and selectivity. As can be seen by the large number of scientific publications on flow photochemistry in the recent past, both research topics have found each other as exceptionally well-suited counterparts with high synergy by combining chemistry and technology. This review will give an overview on selected reaction classes, which represent important photochemical transformations in synthetic organic chemistry, and which benefit from mild and defined process conditions by the transfer from batch to continuous-flow mode.
Collapse
Affiliation(s)
- Thomas H. Rehm
- Division Energy & Chemical Technology/Flow Chemistry GroupFraunhofer Institute for Microengineering and Microsystems IMMCarl-Zeiss-Straße 18–2055129MainzGermany
| |
Collapse
|
37
|
Bonciolini S, Di Filippo M, Baumann M. A scalable continuous photochemical process for the generation of aminopropylsulfones. Org Biomol Chem 2020; 18:9428-9432. [PMID: 32969443 DOI: 10.1039/d0ob01801e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient continuous photochemical process is presented that delivers a series of novel γ-aminopropylsulfones via a tetrabutylammonium decatungstate (TBADT) catalysed HAT-process. Crucial to this success is the exploitation of a new high-power LED emitting at 365 nm that was found to be superior to an alternative medium-pressure Hg lamp. The resulting flow process enabled the scale-up of this transformation reaching throughputs of 20 mmol h-1 at substrate concentrations up to 500 mM. Additionally, the substrate scope of this transformation was evaluated demonstrating the straightforward incorporation of different amine substituents as well as alkyl appendages next to the sulfone moiety. It is anticipated that this methodology will allow for further exploitations of these underrepresented γ-aminopropylsulfone scaffolds in the future.
Collapse
Affiliation(s)
- Stefano Bonciolini
- School of Chemistry, University College Dublin, Science Centre South, Belfield, D04 N2E2, Ireland.
| | - Mara Di Filippo
- School of Chemistry, University College Dublin, Science Centre South, Belfield, D04 N2E2, Ireland.
| | - Marcus Baumann
- School of Chemistry, University College Dublin, Science Centre South, Belfield, D04 N2E2, Ireland.
| |
Collapse
|
38
|
Ravetz B, Tay NES, Joe CL, Sezen-Edmonds M, Schmidt MA, Tan Y, Janey JM, Eastgate MD, Rovis T. Development of a Platform for Near-Infrared Photoredox Catalysis. ACS CENTRAL SCIENCE 2020; 6:2053-2059. [PMID: 33274281 PMCID: PMC7706074 DOI: 10.1021/acscentsci.0c00948] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 05/05/2023]
Abstract
Over the past decade, chemists have embraced visible-light photoredox catalysis due to its remarkable ability to activate small molecules. Broadly, these methods employ metal complexes or organic dyes to convert visible light into chemical energy. Unfortunately, the excitation of widely utilized Ru and Ir chromophores is energetically wasteful as ∼25% of light energy is lost thermally before being quenched productively. Hence, photoredox methodologies require high-energy, intense light to accommodate said catalytic inefficiency. Herein, we report photocatalysts which cleanly convert near-infrared (NIR) and deep red (DR) light into chemical energy with minimal energetic waste. We leverage the strong spin-orbit coupling (SOC) of Os(II) photosensitizers to directly access the excited triplet state (T1) with NIR or DR irradiation from the ground state singlet (S0). Through strategic catalyst design, we access a wide range of photoredox, photopolymerization, and metallaphotoredox reactions which usually require 15-50% higher excitation energy. Finally, we demonstrate superior light penetration and scalability of NIR photoredox catalysis through a mole-scale arene trifluoromethylation in a batch reactor.
Collapse
Affiliation(s)
- Benjamin
D. Ravetz
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Nicholas E. S. Tay
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Candice L. Joe
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
- E-mail:
| | - Melda Sezen-Edmonds
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Michael A. Schmidt
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Yichen Tan
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jacob M. Janey
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Martin D. Eastgate
- Chemical
Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Tomislav Rovis
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- E-mail:
| |
Collapse
|
39
|
Sheng X, Zheng Y, Li W, Gao R, Du L, Wang Y. Scale-up potential of photochemical microfluidic synthesis by selective dimension enlarging with agitation of microbubbles. Chem Eng Sci 2020. [DOI: 10.1016/j.ces.2020.115862] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
40
|
Kayahan E, Jacobs M, Braeken L, Thomassen LC, Kuhn S, van Gerven T, Leblebici ME. Dawn of a new era in industrial photochemistry: the scale-up of micro- and mesostructured photoreactors. Beilstein J Org Chem 2020; 16:2484-2504. [PMID: 33093928 PMCID: PMC7554662 DOI: 10.3762/bjoc.16.202] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/15/2020] [Indexed: 01/23/2023] Open
Abstract
Photochemical activation routes are gaining the attention of the scientific community since they can offer an alternative to the traditional chemical industry that mainly utilizes thermochemical activation of molecules. Photoreactions are fast and selective, which would potentially reduce the downstream costs significantly if the process is optimized properly. With the transition towards green chemistry, the traditional batch photoreactor operation is becoming abundant in this field. Process intensification efforts led to micro- and mesostructured flow photoreactors. In this work, we are reviewing structured photoreactors by elaborating on the bottleneck of this field: the development of an efficient scale-up strategy. In line with this, micro- and mesostructured bench-scale photoreactors were evaluated based on a new benchmark called photochemical space time yield (mol·day−1·kW−1), which takes into account the energy efficiency of the photoreactors. It was manifested that along with the selection of the photoreactor dimensions and an appropriate light source, optimization of the process conditions, such as the residence time and the concentration of the photoactive molecule is also crucial for an efficient photoreactor operation. In this paper, we are aiming to give a comprehensive understanding for scale-up strategies by benchmarking selected photoreactors and by discussing transport phenomena in several other photoreactors.
Collapse
Affiliation(s)
- Emine Kayahan
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Mathias Jacobs
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium
| | - Leen Braeken
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Leen Cj Thomassen
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Simon Kuhn
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Tom van Gerven
- Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - M Enis Leblebici
- Center for Industrial Process Technology, Department of Chemical Engineering, KU Leuven, Diepenbeek, Belgium.,Process Engineering for Sustainable Systems, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| |
Collapse
|
41
|
García-Lacuna J, Domínguez G, Pérez-Castells J. Flow Chemistry for Cycloaddition Reactions. CHEMSUSCHEM 2020; 13:5138-5163. [PMID: 32662578 DOI: 10.1002/cssc.202001372] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Continuous flow reactors form part of a rapidly growing research area that has changed the way synthetic chemistry is performed not only in academia but also at the industrial level. This Review highlights the most recent advances in cycloaddition reactions performed in flow systems. Cycloadditions are atom-efficient transformations for the synthesis of carbo- and heterocycles, involved in the construction of challenging skeletons of complex molecules. The main advantages of translating these processes into flow include using intensified conditions, safer handling of hazardous reagents and gases, easy tuning of reaction conditions, and straightforward scaling up. These benefits are especially important in cycloadditions such as the copper(I)-catalyzed azide alkyne cycloaddition (CuAAC), Diels-Alder reaction, ozonolysis and [2+2] photocycloadditions. Some of these transformations are key reactions in the industrial synthesis of pharmaceuticals.
Collapse
Affiliation(s)
- Jorge García-Lacuna
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Gema Domínguez
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| | - Javier Pérez-Castells
- Department of Chemistry and Biochemistry, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities Urbanización Montepríncipe, 28660, Boadilla del Monte, Madrid, Spain
| |
Collapse
|
42
|
Roibu A, Horn CR, Van Gerven T, Kuhn S. Photon Transport and Hydrodynamics in Gas‐Liquid Flow Part 2: Characterization of Bubbly Flow in an Advanced‐Flow Reactor. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Anca Roibu
- KU Leuven Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Clemens R. Horn
- Corning European Technology Center Corning S.A.S 7 bis avenue de Valvins CS 70156 Samois sur Seine, Avon France
| | - Tom Van Gerven
- KU Leuven Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| | - Simon Kuhn
- KU Leuven Department of Chemical Engineering Celestijnenlaan 200F 3001 Leuven Belgium
| |
Collapse
|
43
|
Sezen-Edmonds M, Tabora JE, Cohen BM, Zaretsky S, Simmons EM, Sherwood TC, Ramirez A. Predicting Performance of Photochemical Transformations for Scaling Up in Different Platforms by Combining High-Throughput Experimentation with Computational Modeling. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Melda Sezen-Edmonds
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Jose E. Tabora
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Benjamin M. Cohen
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Serge Zaretsky
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Eric M. Simmons
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| | - Trevor C. Sherwood
- Discovery Chemistry, Bristol Myers Squibb, Lawrenceville, New Jersey 08543, United States
| | - Antonio Ramirez
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey 08903, United States
| |
Collapse
|
44
|
Elliott LD, Kayal S, George MW, Booker-Milburn K. Rational Design of Triplet Sensitizers for the Transfer of Excited State Photochemistry from UV to Visible. J Am Chem Soc 2020; 142:14947-14956. [PMID: 32786778 DOI: 10.1021/jacs.0c05069] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Time Dependent Density Functional Theory has been used to assist the design and synthesis of a series thioxanthone triplet sensitizers. Calculated energies of the triplet excited state (ET) informed both the type and position of auxochromes placed on the thioxanthone core, enabling fine-tuning of the UV-vis absorptions and associated triplet energies. The calculated results were highly consistent with experimental observation in both the order of the λmax and ET values. The synthesized compounds were then evaluated for their efficacies as triplet sensitizers in a variety of UV and visible light preparative photochemical reactions. The results of this study exceeded expectations; in particular [2 + 2] cycloaddition chemistry that had previously been sensitized in the UV was found to undergo cycloaddition at 455 nm (blue) with a 2- to 9-fold increase in productivity (g/h) relative to input power. This study demonstrates the ability of powerful modern computational methods to aid in the design of successful and productive triplet sensitized photochemical reactions.
Collapse
Affiliation(s)
- Luke D Elliott
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| | - Surajit Kayal
- School of Chemistry, University of Nottingham, University Park,Nottingham NG7 2RD, United Kingdom
| | - Michael W George
- School of Chemistry, University of Nottingham, University Park,Nottingham NG7 2RD, United Kingdom.,Department of Chemical and Environmental Engineering, The University of Nottingham Ningbo China, Ningbo 315100, P. R. China
| | - Kevin Booker-Milburn
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, United Kingdom
| |
Collapse
|
45
|
Graßl R, Jandl C, Bach T. Visible Light-Mediated Photochemical Reactions of 2-(2'-Alkenyloxy)cycloalk-2-enones. J Org Chem 2020; 85:11426-11439. [PMID: 32806100 PMCID: PMC7476038 DOI: 10.1021/acs.joc.0c01501] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The title compounds were prepared, and their reactivity was studied upon sensitized irradiation at λ = 420 nm. Thioxanthen-9-one was employed as the sensitizer at a loading of 10 mol % in small-scale reactions and of 2.5 mol % on a larger scale. Cyclohex-2-enones substituted by a 2'-propenyloxy, 2'-butenyloxy, 2'-pentenyloxy, or 2'-methyl-2'-propenyloxy group in the 2-position gave the products of an intramolecular [2 + 2] photocycloadditon. The reaction proceeded with high regioselectivity (crossed product) and perfect diastereoselectivity (nine examples, 34-99% yield). If the olefin in the tether was trisubstituted (3'-methyl-2'-butenyloxy), no cycloaddition was observed. Rather, a cyclization with subsequent hydrogen abstraction occurred (three examples, 65-86% yield). The results are consistent with a reaction course via a triplet enone intermediate and the formation of a 1,4-diradical by an initial cyclization. The analogous cyclopent-2-enones were less prone to an intramolecular reaction. Instead, decomposition or intermolecular [2 + 2] photocycloaddition reactions prevailed. In the latter event, two main products were identified (three examples, 30-43% yield), resulting either from a head-to-head [2 + 2]-photodimerization or from a twofold [2 + 2] photocycloaddition of the enone to the olefin. The latter reaction sequence generated pentacyclic products with a central [1,5]dioxocane ring. The structure assignment of the two product types was corroborated by a single-crystal X-ray analysis.
Collapse
Affiliation(s)
- Raphaela Graßl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Christian Jandl
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstr. 4, 85747 Garching, Germany
| |
Collapse
|
46
|
|
47
|
Poliakoff M, George MW. Manufacturing chemicals with light: any role in the circular economy? PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190260. [PMID: 32623996 PMCID: PMC7422894 DOI: 10.1098/rsta.2019.0260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
We outline how recent developments in photochemistry can contribute to the realization of the 1912 vision of the pioneering Italian scientist Giacomo Ciamician, namely world-wide chemical-using industry-based chemical plants fuelled solely by the Sun. We then show how a combination of organic photochemistry and flow chemistry could contribute to the circular economy by harnessing the ability of light to provide the energy to promote reactions without the need for some of the added reagents that are necessary in more traditional chemical routes, so-called 'reagentless' chemistry. Photochemistry has a long history but recently it has undergone a renaissance, particularly with the rise in interest in photoredox chemistry. Continuous photoreactors offer a route to scaling up such reactions to a productivity needed for smaller scale pharmaceutical manufacture. We describe some reactor designs from our own laboratory and outline some of their applications. We then relate these to the requirements of the circular economy and the need to conserve the stocks of the less abundant chemical elements. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- M. Poliakoff
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
| | - M. W. George
- School of Chemistry, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, People's Republic of China
- e-mail:
| |
Collapse
|
48
|
Barham JP, König B. Synthetic Photoelectrochemistry. Angew Chem Int Ed Engl 2020; 59:11732-11747. [PMID: 31805216 PMCID: PMC7383880 DOI: 10.1002/anie.201913767] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/03/2019] [Indexed: 01/06/2023]
Abstract
Photoredox catalysis (PRC) and synthetic organic electrochemistry (SOE) are often considered competing technologies in organic synthesis. Their fusion has been largely overlooked. We review state-of-the-art synthetic organic photoelectrochemistry, grouping examples into three categories: 1) electrochemically mediated photoredox catalysis (e-PRC), 2) decoupled photoelectrochemistry (dPEC), and 3) interfacial photoelectrochemistry (iPEC). Such synergies prove beneficial not only for synthetic "greenness" and chemical selectivity, but also in the accumulation of energy for accessing super-oxidizing or -reducing single electron transfer (SET) agents. Opportunities and challenges in this emerging and exciting field are discussed.
Collapse
Affiliation(s)
- Joshua P. Barham
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| | - Burkhard König
- Universität RegensburgFakultät für Chemie und Pharmazie93040RegensburgGermany
| |
Collapse
|
49
|
Wen Z, Maheshwari A, Sambiagio C, Deng Y, Laudadio G, Van Aken K, Sun Y, Gemoets HPL, Noël T. Optimization of a Decatungstate-Catalyzed C(sp 3)-H Alkylation Using a Continuous Oscillatory Millistructured Photoreactor. Org Process Res Dev 2020; 24:2356-2361. [PMID: 33100815 PMCID: PMC7573979 DOI: 10.1021/acs.oprd.0c00235] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 11/29/2022]
Abstract
Tetrabutylammonium decatungstate (TBADT) has emerged as an efficient and versatile photocatalyst for hydrogen atom transfer (HAT) processes that enables the cleavage of both activated and unactivated aliphatic C-H bonds. Using a recently developed oscillatory millistructured continuous-flow photoreactor, investigations of a decatungstate-catalyzed C(sp3)-H alkylation protocol were carried out, and the results are presented here. The performance of the reactor was evaluated in correlation to several chemical and process parameters, including residence time, light intensity, catalyst loading, and substrate/reagent concentration. In comparison with previously reported batch and flow protocols, conditions were found that led to considerably higher productivity, achieving a throughput up to 36.7 mmol/h with a residence time of only 7.5 min.
Collapse
Affiliation(s)
- Zhenghui Wen
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Apoorva Maheshwari
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Carlo Sambiagio
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Yuchao Deng
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands.,School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | - Gabriele Laudadio
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| | - Koen Van Aken
- Creaflow BV, Industrielaan 12, 9800 Deinze, Belgium.,Ecosynth NV, Industrielaan 12, 9800 Deinze, Belgium
| | - Yuhan Sun
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, P. R. China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, P. R. China
| | | | - Timothy Noël
- Department of Chemical Engineering and Chemistry, Micro Flow Chemistry & Synthetic Methodology, Eindhoven University of Technology, Den Dolech 2, 5612 AZ Eindhoven, The Netherlands
| |
Collapse
|
50
|
Steiner A, Roth PMC, Strauss FJ, Gauron G, Tekautz G, Winter M, Williams JD, Kappe CO. Multikilogram per Hour Continuous Photochemical Benzylic Brominations Applying a Smart Dimensioning Scale-up Strategy. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00239] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Alexander Steiner
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - Philippe M. C. Roth
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Franz J. Strauss
- Microinnova Engineering GmbH, Europapark 1, 8412 Allerheiligen bei Wildon, Austria
| | - Guillaume Gauron
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Günter Tekautz
- Microinnova Engineering GmbH, Europapark 1, 8412 Allerheiligen bei Wildon, Austria
| | - Marc Winter
- Corning Reactor Technologies, Corning SAS, 7 bis Avenue de Valvins, CS 70156 Samois sur Seine, 77215 Avon Cedex, France
| | - Jason D. Williams
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| | - C. Oliver Kappe
- Center for Continuous Flow Synthesis and Processing (CC FLOW), Research Center Pharmaceutical Engineering GmbH (RCPE), Inffeldgasse 13, 8010 Graz, Austria
- Institute of Chemistry, University of Graz, NAWI Graz, Heinrichstrasse 28, 8010 Graz, Austria
| |
Collapse
|