1
|
Vashishtha M, Li J, Ranjbar M, Gadipelli S, Shearing PR, Walker G, Kumar KV. Crystal Shape Factors of Form I Paracetamol. CRYSTAL GROWTH & DESIGN 2025; 25:2784-2791. [PMID: 40352749 PMCID: PMC12063038 DOI: 10.1021/acs.cgd.5c00005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/14/2025]
Abstract
In this work, we report the new protocols that are developed to determine the shape factors of Form I paracetamol crystals using a combination of techniques that rely on the state-of-the-art X-ray computed tomography and Morphologi G3. The determined shape factors successfully predicted the crystal growth rate of paracetamol in 2-propanol and the length of the crystals growing in the supersaturated solution.
Collapse
Affiliation(s)
- Mayank Vashishtha
- Department
of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, University of Limerick, Limerick V94 T9PX, Ireland
| | - Juntao Li
- Department
of Chemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
| | - Mahmoud Ranjbar
- Department
of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, University of Limerick, Limerick V94 T9PX, Ireland
| | - Srinivas Gadipelli
- Department
of Chemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
| | - Paul R Shearing
- Department
of Chemical Engineering, University College
London, London WC1E 6BT, United
Kingdom
- Department
of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Gavin Walker
- Department
of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, University of Limerick, Limerick V94 T9PX, Ireland
| | - K Vasanth Kumar
- Department
of Chemical Sciences, Synthesis and Solid State Pharmaceutical Centre, University of Limerick, Limerick V94 T9PX, Ireland
- Department
of Chemical and Process Engineering, Faculty of Engineering and Physical
Sciences, University of Surrey, Guildford GU2 7XH, U.K.
| |
Collapse
|
2
|
Ranjbar M, Vashishtha M, Walker G, Kumar KV. Process Analytical Technology Obtained Metastable Zone Width, Nucleation Rate and Solubility of Paracetamol in Isopropanol-Theoretical Analysis. Pharmaceuticals (Basel) 2025; 18:314. [PMID: 40143093 PMCID: PMC11944372 DOI: 10.3390/ph18030314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
Background: Metastable zone width (MSZW) and solubility are crucial for developing crystallization procedures in the purification of active pharmaceutical ingredients (APIs). Traditionally, determining these properties involves labor-intensive methods that can take weeks or even months. With advancements in process analytical technologies (PAT) and the increasing focus on quality by design (QbD) in pharmaceutical manufacturing, more efficient and reliable protocols are needed. In this study, we employ in situ Fourier Transform Infrared (FTIR) spectroscopy and Focused Beam Reflectance Measurement (FBRM) to establish protocols for measuring solubility at different temperatures and MSZW at varying cooling rates. Methods: We experimentally determined MSZW and solubility using FTIR spectroscopy and FBRM. IR spectra were analyzed to obtain solubility concentrations, while FBRM counts were used to extract MSZW and supersolubility concentrations. The collected data were assessed using four theoretical models, including a newly developed model based on classical nucleation theory. By fitting experimental MSZW data to these models, we determined nucleation kinetics and thermodynamic parameters. Results: Our novel model exhibited excellent agreement with experimental MSZW data across different cooling rates, demonstrating its robustness. The nucleation rate constant and nucleation rate ranged between 10²¹ and 10²² molecules/m³·s. The Gibbs free energy of nucleation was calculated as 3.6 kJ/mol, with surface energy values between 2.6 and 8.8 mJ/m². The estimated critical nucleus radius was in the order of 10⁻³ m. Conclusions: The protocols we developed for predicting MSZW and solubility of paracetamol using PAT can serve as a guideline for other APIs. Our theoretical model enhances the predictive accuracy of nucleation kinetics and thermodynamics, contributing to optimized crystallization processes.
Collapse
Affiliation(s)
- Mahmoud Ranjbar
- Synthesis and Solid-State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Mayank Vashishtha
- Synthesis and Solid-State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Gavin Walker
- Synthesis and Solid-State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - K. Vasanth Kumar
- Synthesis and Solid-State Pharmaceutical Centre, Department of Chemical Sciences, Bernal Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Chemical and Process Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
3
|
Zhang B, Stefanidis GD, Van Gerven T. Can Ultrasound Replace Seeding in Flow Reactive Crystallization of an Aromatic Amine? Org Process Res Dev 2024; 28:4431-4443. [PMID: 39723331 PMCID: PMC11667746 DOI: 10.1021/acs.oprd.4c00385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/19/2024] [Accepted: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Continuous crystallization has gained substantial interest due to its high product reproducibility, high labor efficiency, and low capital and production costs. Continuous seeding is preferable and often even required in the application of pharmaceuticals, which presents a bottleneck in continuous crystallization. This work proposes to apply ultrasound for continuous in situ seeding in the continuous reactive crystallization of an aromatic amine. Flow crystallization experiments with both ultrasound and conventionally prepared seeds were conducted. It was found that sonication initiated nucleation and continuously produced crystals in a stable manner. The nucleation rate could be controlled by adjusting the sonication power, highlighting the advantages of the sonicated seed generation strategy. Experiments under different flow conditions demonstrated that a higher flow rate combined with an appropriate sonication power was favorable for robust particle quality, reduced likelihood of clogging, and better reproducibility. Compared with the conventional addition of seed crystals, sonication-induced crystallization achieved higher yields and produced products with a narrow and unimodal size distribution. All sonicated experiments exhibited high robustness, indicating the feasibility and reliability of this method as a replacement for conventional seeding techniques in the continuous reactive crystallization of the studied compound. In summary, using ultrasound for continuous in situ seeding of the aromatic amine offers unique advantages in process robustness and product quality control, providing a promising strategy for continuous crystallization of similar systems.
Collapse
Affiliation(s)
- Biyu Zhang
- Department
of Chemical Engineering, Process Engineering for Sustainable Systems, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Georgios D. Stefanidis
- Department
of Process Analysis and Plant Design, School of Chemical Engineering, National Technical University of Athens, Iroon Polytecneiou 9, Zografou, 15780 Athens, Greece
| | - Tom Van Gerven
- Department
of Chemical Engineering, Process Engineering for Sustainable Systems, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
4
|
Pal S, Pankajakshan A, Besenhard MO, Snead N, Almeida J, Abukhamees S, Craig D, Galvanin F, Gavriilidis A, Mazzei L. Automated Continuous Crystallization Platform with Real-Time Particle Size Analysis via Laser Diffraction. Org Process Res Dev 2024; 28:2755-2764. [PMID: 39055968 PMCID: PMC11267596 DOI: 10.1021/acs.oprd.4c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/08/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
The fourth industrial revolution is gaining momentum in the pharmaceutical industry. However, particulate processes and suspension handling remain big challenges for automation and the implementation of real-time particle size analysis. Moreover, the development of antisolvent crystallization processes is often limited by the associated time-intensive experimental screenings. This work demonstrates a fully automated modular crystallization platform that overcomes these bottlenecks. The system combines automated crystallization, sample preparation, and immediate crystal size analysis via online laser diffraction (LD) and provides a technology for rapidly screening crystallization process parameters and crystallizer design spaces with minimal experimental effort. During the LD measurements, to avoid multiple scattering events, crystal suspension samples are diluted automatically. Multiple software tools, i.e., LabVIEW, Python, and PharmaMV, and logic algorithms are integrated in the platform to facilitate automated control of all the sensors and equipment, enabling fully automated operation. A customized graphical user interface is provided to operate the crystallization platform automatically and to visualize the measured crystal size and the crystal size distribution of the suspension. Antisolvent crystallization of ibuprofen, with ethanol as solvent and water with Soluplus (an additive) as antisolvent, is used as a case study. The platform is demonstrated for antisolvent crystallization of small ibuprofen crystals in a confined impinging jet crystallizer, performing automated preplanned user-defined experiments with online LD analysis.
Collapse
Affiliation(s)
- Sayan Pal
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Arun Pankajakshan
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Maximilian O. Besenhard
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Nicholas Snead
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Juan Almeida
- Perceptive
Engineering, Applied Materials, Vanguard House, Keckwick Lane, Sci
Tech Daresbury, Cheshire WA4 4AB, U.K.
| | - Shorooq Abukhamees
- Department
of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmaceutical
Sciences, The Hashemite University, Zarqa 13115, Jordan
| | - Duncan Craig
- Faculty
of Science, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Federico Galvanin
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Asterios Gavriilidis
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| | - Luca Mazzei
- Department
of Chemical Engineering, University College
London, Torrington Place, London WC1E 7JE, U.K.
| |
Collapse
|
5
|
Liu J, Benyahia B. Single and Multiobjective Shutdown Optimization of a Multistage Continuous Crystallizer. Ind Eng Chem Res 2024; 63:7300-7314. [PMID: 38681867 PMCID: PMC11046430 DOI: 10.1021/acs.iecr.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/25/2024] [Accepted: 03/26/2024] [Indexed: 05/01/2024]
Abstract
This study presents the first model-based optimal shutdown procedure of a multistage continuous crystallization process which aims at the maximization of on-spec production and minimization of the shutdown time. The cooling antisolvent crystallization of Aspirin (acetylsalicylic acid) in a three-stage continuous crystallizer was used as a case study. To address the optimal shutdown problem, several single optimization scenarios were considered to assess the impact of the degrees of freedom, discretization schemes, and optimization settings such as the constraints. The proposed optimal shutdown procedures showed that significant amounts of on-spec crystals can be produced both at fixed and variable shutdown times. Most importantly, the optimal shutdown procedures can match the steady-state productivity, based on the shutdown to steady-state productivity ratio (STSPR) which can easily reach 100%. Moreover, the residual shutdown material, considered as waste, can be dramatically reduced by >80% compared to the current standard shutdown procedures. Given the conflicting nature of the maximization of on-spec production and minimization of the shutdown time, multiobjective optimization of the shutdown operation was also addressed to identify the set of Pareto optimal solutions. Finally, a multicriteria decision-aiding method, based on multiattribute utility theory, was proposed to rank the Pareto optimal solutions to support the decision-making and help identify a suitable and feasible single optimal shutdown solution.
Collapse
Affiliation(s)
- Jiaxu Liu
- Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
| | - Brahim Benyahia
- Chemical Engineering Department, Loughborough University, Epinal Way, Loughborough, Leicestershire LE11 3TU, U.K.
| |
Collapse
|
6
|
Hur I, Casas-Orozco D, Laky D, Destro F, Nagy ZK. Digital design of an integrated purification system for continuous pharmaceutical manufacturing. Chem Eng Sci 2024; 285:119534. [PMID: 38975615 PMCID: PMC11225065 DOI: 10.1016/j.ces.2023.119534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
In this work dynamic models of the continuous crystallization, filtration, deliquoring, washing, and drying steps are introduced, which are developed in the open-source pharmaceutical modeling tool PharmaPy. These models enable the simulation and digital design of an integrated continuous two-stage crystallization and filtration-drying carousel system. The carousel offers an intensified process that can manufacture products with tailored properties through optimal design and control. Results show that improved crystallization design enhances overall process efficiency by improving critical material attributes of the crystal slurry for downstream filtration and drying operations. The digital design of the integrated process achieves enhanced productivity while satisfying multiple design and product quality constraints. Additionally, the impact of model uncertainty on the optimal operating conditions is investigated. The findings demonstrate the systematic process development potential of PharmaPy, providing improved process understanding, design space identification, and optimized robust operation.
Collapse
Affiliation(s)
- Inyoung Hur
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 4797 USA
| | - Daniel Casas-Orozco
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 4797 USA
| | - Daniel Laky
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 4797 USA
| | - Francesco Destro
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 4797 USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 4797 USA
| |
Collapse
|
7
|
Compact capillary high performance liquid chromatography system for pharmaceutical on-line reaction monitoring. Anal Chim Acta 2023; 1247:340903. [PMID: 36781255 DOI: 10.1016/j.aca.2023.340903] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/26/2023] [Accepted: 01/27/2023] [Indexed: 01/30/2023]
Abstract
Due to their size, conventional high performance liquid chromatographs (HPLCs) are difficult to place close to a reaction vessel within a pharmaceutical manufacturing or development site. Typically, long transfer lines are required to move sample from the reactor to the HPLC for analysis and high solvent usage is required. However, herein a compact and modular separation system has been developed to enable co-location of an HPLC with a small-scale reactor for reaction monitoring in the synthesis of active pharmaceutical ingredients. Using a framework based on capillary HPLC, a compact gradient separation system with a fully modular architecture is described. A custom miniature diode-array detector with a linear dynamic range (up to 1500 mAU at 210 nm) was integrated and evaluated for on-line reaction monitoring. In evaluating system suitability, average peak area %RSD of <3%, and an average retention time %RSD of <0.7%, were achieved. To demonstrate practical utility, the compact system was coupled directly to an on-line lab-scale flow through reactor for continuous reaction monitoring in the laboratory fume hood, where a study of the 3rd Bourne reaction was used to compare the performance of the compact system with a commercially available process HPLC instrument (Waters PATROL UPLC). Further, 33 off-line samples from a continuous crystallization reactor were analysed and it was found that the developed compact HPLC system showed equivalent quantitative performance to an Agilent 1290 Infinity II HPLC system.
Collapse
|
8
|
Bjarnason A, Majumder A. A Novel Simulated Moving Plug Flow Crystallizer (SM-PFC) for Addressing the Encrustation Problem: Simulation-Based Studies on Cooling Crystallization. Ind Eng Chem Res 2023; 62:5051-5064. [PMID: 37014370 PMCID: PMC10064315 DOI: 10.1021/acs.iecr.2c02862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/12/2023]
Abstract
The plug flow crystallizer (PFC) is a promising candidate in the move toward adoption of continuous manufacturing in the pharmaceutical industry. However, a major concern for the smooth running of PFCs is the encrustation or fouling which can result in blockage of the crystallizer or unplanned shutdown of the process. In order to address this problem, simulation studies are carried out to explore the feasibility of a novel simulated-moving PFC (SM-PFC) configuration that can run uninterrupted in the presence of heavy fouling without compromising the desired critical quality attributes of the product crystals. The key concept of the SM-PFC lies in the arrangement of the crystallizer segments where a fouled segment is isolated, while a clean segment is simultaneously brought online avoiding fouling-related issues and maintaining uninterrupted operation. The inlet and outlet ports are also changed appropriately so that the whole operation mimics the movement of the PFC. The simulation results suggest that the proposed PFC configuration could be a potential mitigating approach for the encrustation problem enabling continuous operation of the crystallizer in the presence of heavy fouling while maintaining the product specifications.
Collapse
Affiliation(s)
- Aaron Bjarnason
- School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, U.K
| | | |
Collapse
|
9
|
Cohen B, Lehnherr D, Sezen-Edmonds M, Forstater JH, Frederick MO, Deng L, Ferretti AC, Harper K, Diwan M. Emerging Reaction Technologies in Pharmaceutical Development: Challenges and Opportunities in Electrochemistry, Photochemistry, and Biocatalysis. Chem Eng Res Des 2023. [DOI: 10.1016/j.cherd.2023.02.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
10
|
Combining Isolation-Free and Co-processing Manufacturing Approaches to Access Room Temperature Ionic Liquid Forms of APIs. J Pharm Sci 2023:S0022-3549(23)00052-7. [PMID: 36806585 DOI: 10.1016/j.xphs.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/31/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023]
Abstract
The addition of non-active components at the point of active pharmaceutical ingredient (API) isolation by means of co-processing is an attractive approach for improving the material properties of APIs. Simultaneously, there is increased interest in the pharmaceutical industry in continuous manufacturing processes. These often consist of liquid feeds which maintain materials in solution and mean that solids handling is avoided until the final step. Such techniques enable new forms of APIs to be used in final dosage forms which have been overlooked due to unfavourable material properties. API-based ionic liquids (API-ILs) are an example of a class of compounds that exhibit exceptional solubility and stability qualities at the cost of their physical characteristics. API-ILs could benefit from isolation-free manufacturing in combination with co-processing approaches to circumvent handling issues and make them viable routes to formulating poorly soluble APIs. However, API-ILs are most commonly synthesised via a batch reaction that produces an insoluble solid by-product. To avoid this, an ion exchange resin protocol was developed to enable the API-IL to be synthesised and purified in a single step, and also produce it in a liquid effluent that can be integrated with other unit operations. Confined agitated bed crystallisation and spray drying are examples of processes that have been adapted to produce or consume liquid feeds and were combined with the ion exchange process to incorporate the API-IL synthesis into isolation-free frameworks and continuous manufacturing streams. This combination of isolation-free and co-processing techniques paves the way towards end-to-end continuous manufacturing of API-IL drug products.
Collapse
|
11
|
Devos C, Brozzi E, Van Gerven T, Kuhn S. Characterization of a Modular Microfluidic Section for Seeded Nucleation in Multiphase Flow. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- Cedric Devos
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Elena Brozzi
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Tom Van Gerven
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| | - Simon Kuhn
- Department of Chemical Engineering, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Burgos GL, Hernández-Espinell JR, Graciani-Massa T, Yao X, Borchardt-Setter KA, Yu L, López-Mejías V, Stelzer T. Role of Heteronucleants in Melt Crystallization of Crystalline Solid Dispersions. CRYSTAL GROWTH & DESIGN 2023; 23:49-58. [PMID: 38107196 PMCID: PMC10722868 DOI: 10.1021/acs.cgd.2c00444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Few publications exist concerning polymorphic control during melt crystallization, particularly when employing heteronucleants. Here, the influence of a polymeric thin film (polyethylene terephthalate, PET) on the crystallization from melt of the polymorphic compound acetaminophen (ACM) in polyethylene glycol (PEG) was investigated. Molten ACM-PEG at different compositions was monitored using in situ Raman spectroscopy for nucleation induction time measurements and phase identification. Furthermore, X-ray diffraction (XRD) served to analyze the preferred orientation (PO) of the pastilles (solidified melt droplets) on PET-coated and uncoated substrates. The results indicate that PET-coated substrates qualitatively accelerate the nucleation of ACM form II (ACM II) in PEG compared to uncoated glass substrates. Additionally, the occurrence of ACM II in PEG was increased by an average of 10% when crystallized on PET-coated substrates compared to uncoated substrates. Overall, these results suggest that ACM can interact through hydrogen bonding with the PET-coated substrate, leading to faster nucleation. This investigation illustrates the effect of PET-coated substrates in the selective crystallization of ACM II in PEG as crystalline solid dispersions (CSDs). Ultimately, the results suggest the implementation of polymeric heteronucleants in melt crystallization processes, specifically, in advanced polymer-based formulation processes for the enhanced polymorphic form control of pharmaceutical compounds in CSDs.
Collapse
Affiliation(s)
- Giovanni López Burgos
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| | - José R Hernández-Espinell
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Tatiana Graciani-Massa
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Xin Yao
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Kennedy A Borchardt-Setter
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Lian Yu
- Department of Chemistry, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin 53705, United States
| | - Vilmalí López-Mejías
- Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States; Department of Chemistry, University of Puerto Rico, San Juan, Puerto Rico 00931, United States
| | - Torsten Stelzer
- Department of Pharmaceutical Sciences, University of Puerto Rico, San Juan, Puerto Rico 00936, United States; Molecular Sciences Research Center, Crystallization Design Institute, University of Puerto Rico, San Juan, Puerto Rico 00926, United States
| |
Collapse
|
13
|
Scott D, Briggs NEB, Formosa A, Burnett A, Desai B, Hammersmith G, Rapp K, Capellades G, Myerson AS, Roper TD. Impurity Purging through Systematic Process Development of a Continuous Two-Stage Crystallization. Org Process Res Dev 2023. [DOI: 10.1021/acs.oprd.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Drew Scott
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Naomi E. B. Briggs
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Anna Formosa
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Annessa Burnett
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23284, United States
| | - Bimbisar Desai
- TCG GreenChem, Inc., 701 Charles Ewing Boulevard, Ewing, New Jersey08628, United States
| | - Greg Hammersmith
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Kersten Rapp
- On Demand Pharmaceuticals, 1550 E Gude Drive, Rockville, Maryland20850, United States
| | - Gerard Capellades
- Henry M. Rowan College of Engineering, Rowan University, Glassboro, New Jersey08028, United States
| | - Allan S. Myerson
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts02139, United States
| | - Thomas D. Roper
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, Virginia23284, United States
| |
Collapse
|
14
|
Kshirsagar S, Lakshmi Ramana Susarla N, Ramakrishnan S, Nagy ZK. Process intensification of atorvastatin calcium crystallization for target polymorph development via continuous combined cooling and antisolvent crystallization using an oscillatory baffled crystallizer. Int J Pharm 2022; 627:122172. [PMID: 36084877 PMCID: PMC10759184 DOI: 10.1016/j.ijpharm.2022.122172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
In this paper, continuous crystallization of Atorvastatin calcium (ASC) using a continuous oscillatory baffled crystallizer (COBC) has been investigated. Like most API manufacturing, ASC is manufactured batchwise and the pure API is recovered via batch combined cooling and antisolvent crystallization (CCAC) process, which has the challenges of low productivity, wide crystal size distribution (CSD) and sometimes polymorphic form contamination. To overcome the limitations of the batch crystallization, continuous crystallization of ASC was studied in a NiTech (United Kingdom) DN15 COBC, manufactured by Alconbury Weston Ltd. (AWL, United Kingdom), with the aim to improve productivity and CSD of the desired polymorph. The COBC has the advantage of high heat transfer rates and improved mixing that significantly reduces the crystallization time. It also has the advantage of spatial temperature distribution and multiple addition ports to control supersaturation and hence the crystallization process. This work uses an array of process analytical technology (PAT) tools to assess key process parameters that affect the polymorphic outcome and CSD. Two parameters were found to have significant impact on the polymorph, they are ratio of solvent to antisolvent at the point of mixing of the two streams and presence of seeds. The splitting of antisolvent into two addition ports in the COBC was found to give the desired form. The CCAC of ASC in COBC was found to be -30-fold more productive than the batch CCAC process. The cycle time for generating 100 g of desired polymorphic form of ASC also significantly reduced from 22 h in batch process to 12 min in the COBC. The crystals obtained using a CCAC process in a COBC had a narrower CSD compared to that from a batch crystallization process.
Collapse
Affiliation(s)
- Shivani Kshirsagar
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA; Dr. Reddy's Laboratories Ltd., IPDO, Bachupally, Hyderabad 500090, India
| | | | | | - Zoltan K Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
15
|
Sonnenschein J, Hermes M, Höving S, Kockmann N, Wohlgemuth K. Population balance modeling of unstirred cooling crystallization on an integrated belt filter. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2022.108024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
16
|
Kufner AC, Krummnow A, Danzer A, Wohlgemuth K. Strategy for Fast Decision on Material System Suitability for Continuous Crystallization Inside a Slug Flow Crystallizer. MICROMACHINES 2022; 13:1795. [PMID: 36296148 PMCID: PMC9610778 DOI: 10.3390/mi13101795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
There is an increasing focus on two-phase flow in micro- or mini-structured apparatuses for various manufacturing and measurement instrumentation applications, including the field of crystallization as a separation technique. The slug flow pattern offers salient features for producing high-quality products, since narrow residence time distribution of liquid and solid phases, intensified mixing and heat exchange, and an enhanced particle suspension are achieved despite laminar flow conditions. Due to its unique features, the slug flow crystallizer (SFC) represents a promising concept for small-scale continuous crystallization achieving high-quality active pharmaceutical ingredients (API). Therefore, a time-efficient strategy is presented in this study to enable crystallization of a desired solid product in the SFC as quickly as possible and without much experimental effort. This strategy includes pre-selection of the solvent/solvent mixture using heuristics, verifying the slug flow stability in the apparatus by considering the static contact angle and dynamic flow behavior, and modeling the temperature-dependent solubility in the supposed material system using perturbed-chain statistical associating fluid theory (PC-SAFT). This strategy was successfully verified for the amino acids l-alanine and l-arginine and the API paracetamol for binary and ternary systems and, thus, represents a general approach for using different material systems in the SFC.
Collapse
Affiliation(s)
- Anne Cathrine Kufner
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Adrian Krummnow
- Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, TU Dortmund University, D-44227 Dortmund, Germany
- AbbVie Deutschland GmbH & Co. KG, Global Pharmaceutical R&D, Knollstraße, D-67061 Ludwigshafen am Rhein, Germany
| | - Andreas Danzer
- Department of Biochemical and Chemical Engineering, Laboratory of Thermodynamics, TU Dortmund University, D-44227 Dortmund, Germany
| | - Kerstin Wohlgemuth
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
17
|
Yu Y, Robertson PKJ, Ranade VV. Continuous Antisolvent Crystallization Using Fluidic Devices: Fluidic Oscillator, Helical Coil, and Coiled Flow Inverter. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c02504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yang Yu
- School of Chemistry and Chemical Engineering, Queen’s University, BelfastBT9 5AG, U.K
| | - Peter K. J. Robertson
- School of Chemistry and Chemical Engineering, Queen’s University, BelfastBT9 5AG, U.K
| | - Vivek V. Ranade
- School of Chemistry and Chemical Engineering, Queen’s University, BelfastBT9 5AG, U.K
- Bernal Institute, University of Limerick, LimerickV94 T9PX, Ireland
| |
Collapse
|
18
|
Pons-Siepermann C, Cohen B, Tabora JE, Jones K, Skliar D, Cho P, Wilbert CR. Implementation of MSMPR Crystallization to Avoid Liquid–Liquid Phase Separation. Org Process Res Dev 2022. [DOI: 10.1021/acs.oprd.2c00201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Carlos Pons-Siepermann
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| | - Benjamin Cohen
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| | - J. E. Tabora
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| | - Kelvin Jones
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| | - Dimitri Skliar
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| | - Patricia Cho
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| | - Christopher R. Wilbert
- Chemical Process Development, Bristol Myers Squibb, 1 Squibb Drive, New Brunswick, New Jersey08903, United States
| |
Collapse
|
19
|
Amari S, Nakamura A, Takiyama H. Effect of Operating Conditions on the Characteristics of Crystalline Particles in a Cascade-Type Crystallizer. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Shuntaro Amari
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ayano Nakamura
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Hiroshi Takiyama
- Department of Chemical Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| |
Collapse
|
20
|
Destro F, Nagy ZK, Barolo M. A benchmark simulator for quality-by-design and quality-by-control studies in continuous pharmaceutical manufacturing - Intensified filtration-drying of crystallization slurries. Comput Chem Eng 2022; 163:107809. [PMID: 38178942 PMCID: PMC10765423 DOI: 10.1016/j.compchemeng.2022.107809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This article introduces ContCarSim, a benchmark simulator for the development and testing of quality-by-design and quality-by-control strategies in the continuous intensified filtration-drying of paracetamol/ethanol slurries on a novel carousel technology, developed by Alconbury Weston Ltd (United Kingdom). The simulator is based on a detailed mechanistic mathematical modeling framework, and has been validated with filtration and drying experiments on a prototype equipment. A set of design- and control-relevant challenges to be addressed through ContCarSim are proposed. A case study is developed, to demonstrate the features of the simulator and its suitability to design, test and optimize the unit operation. ContCarSim is expected to promote the transition to end-to-end continuous pharmaceutical manufacturing and the adoption of closed-loop quality control by the pharmaceutical industry. The simulator can also be employed as a benchmark for data analytics and process monitoring studies.
Collapse
Affiliation(s)
- Francesco Destro
- CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD (Italy)
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Massimiliano Barolo
- CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD (Italy)
| |
Collapse
|
21
|
Hansen J, Kleinebudde P. Increasing the Batch Size of a QESD Crystallization by Using a MSMPR Crystallizer. Pharmaceutics 2022; 14:pharmaceutics14061227. [PMID: 35745799 PMCID: PMC9227344 DOI: 10.3390/pharmaceutics14061227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/31/2022] [Accepted: 06/07/2022] [Indexed: 11/22/2022] Open
Abstract
Quasi-emulsion solvent diffusion (QESD) crystallizations can improve the micromeritic properties of drugs and excipients. A solution is dispersed in a miscible antisolvent as a transient emulsion. Using this technique, substances that normally crystallize in the form of e.g., needles, agglomerate into spherical, hollow particles. A disadvantage of QESD crystallizations is that the particle size of the agglomerates decreases with an increased solvent fraction of the mother liquor. Therefore, in batch production, many consecutive runs have to be performed, which is a time- and material-intensive process. The aim of this study was to convert a previously used lab-scale batch crystallizer into a mixed-suspension, mixed-product removal (MSMPR) crystallizer, since the batch size could be simply increased by increasing the run time of the system. The mean residence time (MRT) and solvent fraction in the system was predicted and verified using actual measurement curves. The experiments showed that >50 g QESD metformin hydrochloride could be crystallized in a single run, without observing a large shift in the particle size, while maintaining good flowability. Observations regarding the effect of the MRT on the particle size distribution could be verified for the production on a larger scale than previously described.
Collapse
|
22
|
Continuous synthesis of dolutegravir sodium crystals using liquid-gas heterogeneous microreactor. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Bodák B, Breveglieri F, Mazzotti M. On the model-based design and comparison of crystallization-based deracemization techniques. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
24
|
Bolla G, Sarma B, Nangia AK. Crystal Engineering of Pharmaceutical Cocrystals in the Discovery and Development of Improved Drugs. Chem Rev 2022; 122:11514-11603. [PMID: 35642550 DOI: 10.1021/acs.chemrev.1c00987] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The subject of crystal engineering started in the 1970s with the study of topochemical reactions in the solid state. A broad chemical definition of crystal engineering was published in 1989, and the supramolecular synthon concept was proposed in 1995 followed by heterosynthons and their potential applications for the design of pharmaceutical cocrystals in 2004. This review traces the development of supramolecular synthons as robust and recurring hydrogen bond patterns for the design and construction of supramolecular architectures, notably, pharmaceutical cocrystals beginning in the early 2000s to the present time. The ability of a cocrystal between an active pharmaceutical ingredient (API) and a pharmaceutically acceptable coformer to systematically tune the physicochemical properties of a drug (i.e., solubility, permeability, hydration, color, compaction, tableting, bioavailability) without changing its molecular structure is the hallmark of the pharmaceutical cocrystals platform, as a bridge between drug discovery and pharmaceutical development. With the design of cocrystals via heterosynthons and prototype case studies to improve drug solubility in place (2000-2015), the period between 2015 to the present time has witnessed the launch of several salt-cocrystal drugs with improved efficacy and high bioavailability. This review on the design, synthesis, and applications of pharmaceutical cocrystals to afford improved drug products and drug substances will interest researchers in crystal engineering, supramolecular chemistry, medicinal chemistry, process development, and pharmaceutical and materials sciences. The scale-up of drug cocrystals and salts using continuous manufacturing technologies provides high-value pharmaceuticals with economic and environmental benefits.
Collapse
Affiliation(s)
- Geetha Bolla
- Department of Chemistry, Ben-Gurion University of the Negev, Building 43, Room 201, Sderot Ben-Gurion 1, Be'er Sheva 8410501, Israel
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India
| | - Ashwini K Nangia
- School of Chemistry, University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad 500046, India
| |
Collapse
|
25
|
Holtze C, Boehling R. Batch or flow chemistry? – a current industrial opinion on process selection. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100798] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Liu F, Luo W, Qiu J, Guo Y, Zhao S, Bao B. Continuous Antisolvent Crystallization of Dolutegravir Sodium Using Microfluidics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Fen Liu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Luo
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Qiu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yaohao Guo
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
- Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology and School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Bo Bao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
27
|
Stocker MW, Harding MJ, Todaro V, Healy AM, Ferguson S. Integrated Purification and Formulation of an Active Pharmaceutical Ingredient via Agitated Bed Crystallization and Fluidized Bed Processing. Pharmaceutics 2022; 14:pharmaceutics14051058. [PMID: 35631643 PMCID: PMC9145956 DOI: 10.3390/pharmaceutics14051058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/05/2022] [Accepted: 05/09/2022] [Indexed: 01/25/2023] Open
Abstract
Integrated API and drug product processing enable molecules with high clinical efficacy but poor physicochemical characteristics to be commercialized by direct co-processing with excipients to produce advanced multicomponent intermediates. Furthermore, developing isolation-free frameworks would enable end-to-end continuous processing of drugs. The aim of this work was to purify a model API (sodium ibuprofen) and impurity (ibuprofen ethyl ester) system and then directly process it into a solid-state formulation without isolating a solid API phase. Confined agitated bed crystallization is proposed to purify a liquid stream of impure API from 4% to 0.2% w/w impurity content through periodic or parallelized operations. This stream is combined with a polymer solution in an intermediary tank, enabling the API to be spray coated directly onto microcrystalline cellulose beads. The spray coating process was developed using a Design of Experiments approach, allowing control over the drug loading efficiency and the crystallinity of the API on the beads by altering the process parameters. The DoE study indicated that the solvent volume was the dominant factor controlling the drug loading efficiency, while a combination of factors influenced the crystallinity. The products from the fluidized bed are ideal for processing into final drug products and can subsequently be coated to control drug release.
Collapse
Affiliation(s)
- Michael W. Stocker
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
| | - Matthew J. Harding
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
| | - Valerio Todaro
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (V.T.); (A.M.H.)
| | - Anne Marie Healy
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (V.T.); (A.M.H.)
| | - Steven Ferguson
- School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland; (M.W.S.); (M.J.H.)
- I-Form, The SFI Research Centre for Advanced Manufacturing, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- SSPC, The SFI Research Centre for Pharmaceuticals, School of Chemical and Bioprocess Engineering, University College Dublin, Belfield, D04 V1W8 Dublin, Ireland
- National Institute for Bioprocess Research and Training, 24 Foster Avenue, Blackrock, Co., Belfield, A94 X099 Dublin, Ireland
- Correspondence: ; Tel.: +353-1-716-1898
| |
Collapse
|
28
|
Pascual G, Donnellan P, Glennon B, Wood B, Jones RC. Design and Optimization of the Single-Stage Continuous Mixed Suspension-Mixed Product Removal Crystallization of 2-Chloro- N-(4-methylphenyl)propenamide. ACS OMEGA 2022; 7:13676-13686. [PMID: 35559147 PMCID: PMC9088942 DOI: 10.1021/acsomega.1c07228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 03/08/2022] [Indexed: 06/15/2023]
Abstract
A continuously operated single-stage mixed suspension-mixed product removal (MSMPR) crystallizer was developed for the continuous cooling crystallization of 2-chloro-N-(4-methylphenyl)propanamide (CNMP) in toluene from 25 to 0 °C. The conversion of the previous batch to a continuous process was key to developing a methodology linking the synthesis and purification unit operations of CNMP and gave further insight in the development of continuous process trains for active pharmaceutical ingredient materials. By monitoring how parameters such as cooling and agitation rates influence particle size and the yield, two batch start-up strategies were compared. The second part of the study focused on developing and optimizing the continuous cooling crystallization of CNMP in the MSMPR crystallizer in relation to the yield by determining the effects of varying the residence time and the agitation rates. During the MSMPR operation, the plot of the focused beam reflectance measurement total counts versus time oscillates and reaches an unusual state of control. Despite the oscillations, the dissolved concentration was constant. The yield and production rate from the system were constant after two residence times, as supported by FTIR data. The overall productivity was higher at shorter residence times (τ), and a productivity of 69.51 g/h for τ = 20 min was achieved for the isolation of CNMP.
Collapse
Affiliation(s)
- Gladys
Kate Pascual
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Philip Donnellan
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| | - Brian Glennon
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
- APC
Ltd, Cherrywood Business
Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Barbara Wood
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
- APC
Ltd, Cherrywood Business
Park, Loughlinstown, Dublin D18 DH50, Ireland
| | - Roderick C. Jones
- Synthesis
and Solid State Pharmaceutical Centre (SSPC), School of Chemical and
Bioprocess Engineering, University College
Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
29
|
Tsushima I, Maeda K, Arafune K, Itoh K, Yamamoto T, Taguchi S, Miki H. Industrial Crystallization of Potassium Sulfate Using a Suspension Crystallizer: Inclusion of Mother Liquor and an Impurity Distribution Model. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2022. [DOI: 10.1252/jcej.21we107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ippei Tsushima
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Kouji Maeda
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Koji Arafune
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Kazuhiro Itoh
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Takuji Yamamoto
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | - Shogo Taguchi
- Department of Chemical Engineering and Materials Science, University of Hyogo
| | | |
Collapse
|
30
|
Destro F, Barolo M. A review on the modernization of pharmaceutical development and manufacturing - Trends, perspectives, and the role of mathematical modeling. Int J Pharm 2022; 620:121715. [PMID: 35367580 DOI: 10.1016/j.ijpharm.2022.121715] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/23/2022] [Accepted: 03/29/2022] [Indexed: 01/20/2023]
Abstract
Recently, the pharmaceutical industry has been facing several challenges associated to the use of outdated development and manufacturing technologies. The return on investment on research and development has been shrinking, and, at the same time, an alarming number of shortages and recalls for quality concerns has been registered. The pharmaceutical industry has been responding to these issues through a technological modernization of development and manufacturing, under the support of initiatives and activities such as quality-by-design (QbD), process analytical technology, and pharmaceutical emerging technology. In this review, we analyze this modernization trend, with emphasis on the role that mathematical modeling plays within it. We begin by outlining the main socio-economic trends of the pharmaceutical industry, and by highlighting the life-cycle stages of a pharmaceutical product in which technological modernization can help both achieve consistently high product quality and increase return on investment. Then, we review the historical evolution of the pharmaceutical regulatory framework, and we discuss the current state of implementation and future trends of QbD. The pharmaceutical emerging technology is reviewed afterwards, and a discussion on the evolution of QbD into the more effective quality-by-control (QbC) paradigm is presented. Further, we illustrate how mathematical modeling can support the implementation of QbD and QbC across all stages of the pharmaceutical life-cycle. In this respect, we review academic and industrial applications demonstrating the impact of mathematical modeling on three key activities within pharmaceutical development and manufacturing, namely design space description, process monitoring, and active process control. Finally, we discuss some future research opportunities on the use of mathematical modeling in industrial pharmaceutical environments.
Collapse
Affiliation(s)
- Francesco Destro
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy
| | - Massimiliano Barolo
- CAPE-Lab - Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, via Marzolo 9, 35131 Padova PD, Italy.
| |
Collapse
|
31
|
Tacsi K, Stoffán G, Pusztai É, Nagy B, Domokos A, Szilágyi B, Nagy ZK, Marosi G, Pataki H. Implementation of sonicated continuous plug flow crystallization technology for processing of acetylsalicylic acid reaction mixture. POWDER TECHNOL 2022. [DOI: 10.1016/j.powtec.2022.117255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
32
|
Sonnenschein J, Wohlgemuth K. Archimedes tube crystallizer: Design and characterization for small-scale continuous crystallization. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
33
|
Continuous chiral resolution of racemic Ibuprofen by diastereomeric salt formation in a Couette-Taylor crystallizer. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
34
|
Continuous Isolation of Particles with Varying Aspect Ratios up to Thin Needles Achieving Free-Flowing Products. CRYSTALS 2022. [DOI: 10.3390/cryst12020137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The continuous vacuum screw filter (CVSF) for small-scale continuous product isolation of suspensions was operated for the first time with cuboid-shaped and needle-shaped particles. These high aspect ratio particles are very common in pharmaceutical manufacturing processes and provide challenges in filtration, washing, and drying processes. Moreover, the flowability decreases and undesired secondary processes of attrition, breakage, and agglomeration may occur intensively. Nevertheless, in this study, it is shown that even cuboid and needle-shaped particles (l-alanine) can be processed within the CVSF preserving the product quality in terms of particle size distribution (PSD) and preventing breakage or attrition effects. A dynamic image analysis-based approach combining axis length distributions (ALDs) with a kernel-density estimator was used for evaluation. This approach was extended with a quantification of the center of mass of the density-weighted ALDs, providing a measure to analyze the preservation of the inlet PSD statistically. Moreover, a targeted residual moisture below 1% could be achieved by adding a drying module (Tdry = 60 °C) to the modular setup of the CVSF.
Collapse
|
35
|
Application of a System Model for Continuous Manufacturing of an Active Pharmaceutical Ingredient in an Industrial Environment. J Pharm Innov 2022. [DOI: 10.1007/s12247-021-09609-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
36
|
Mathew Thomas K, Nyande BW, Lakerveld R. Design and Characterization of Kenics Static Mixer Crystallizers. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.01.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
37
|
Jia S, Yang P, Gao Z, Li Z, Fang C, Gong J. Recent Progress of Antisolvent Crystallization. CrystEngComm 2022. [DOI: 10.1039/d2ce00059h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Antisolvent crystallization is a significant unit operation in the pharmaceutical industry, especially on drug crystal properties optimization. This paper firstly highlights the applications of antisolvent crystallization in crystal engineering. Antisolvent...
Collapse
|
38
|
Continuous Crystallization Using Ultrasound Assisted Nucleation, Cubic Cooling Profiles and Oscillatory Flow. Processes (Basel) 2021. [DOI: 10.3390/pr9122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Continuous tubular crystallizers have the potential to reduce manufacturing costs and increase product quality. However, designing tubular crystallizers is a complex and challenging task as crystallization is a complex, multiphase process with a propensity for fouling and clogging. While several designs have been proposed to overcome these issues, these designs are either unproven or poorly scalable and complex. In this work a continuous crystallizer is designed and evaluated to mitigate these issues. The tubular crystallizer combines a novel method to obtain a cubic cooling profile to control the supersaturation, ultrasound to induce nucleation and oscillatory flow to improve mixing and minimize fouling and sedimentation. The results show that the crystallizer was able to operate for more than 4 h without clogging, with high yields and a narrow particle size distribution. The design proposed here is therefore considered a viable approach for continuous crystallizers.
Collapse
|
39
|
Schmalenberg M, Krell T, Mathias C, Kockmann N. Continuous Miniaturized Draft Tube Baffle Crystallizer with Particle Screw for Supportive Suspension Discharge. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c03748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mira Schmalenberg
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Tobias Krell
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Christopher Mathias
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| | - Norbert Kockmann
- BCI Equipment Design, TU Dortmund University, Emil-Figge-Straße 68, 44227 Dortmund, Germany
| |
Collapse
|
40
|
Towards Continuous Primary Manufacturing Processes—Particle Design through Combined Crystallization and Particle Isolation. Processes (Basel) 2021. [DOI: 10.3390/pr9122187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Integrated continuous manufacturing processes of active pharmaceutical ingredients (API) provide key benefits concerning product quality control, scale-up capability, and a reduced time-to-market. Thereby, the crystallization step, which is used in approximately 90% of API productions, mainly defines the final API properties. This study focuses on the design and operation of an integrated small-scale process combining a continuous slug flow crystallizer (SFC) with continuous particle isolation using the modular continuous vacuum screw filter (CVSF). By selective adjustment of supersaturation and undersaturation, the otherwise usual blocking could be successfully avoided in both apparatuses. It was shown that, during crystallization in an SFC, a significant crystal growth of particles (Δd50,3≈ 220 µm) is achieved, and that, during product isolation in the CVSF, the overall particle size distribution (PSD) is maintained. The residual moistures for the integrated process ranged around 2% during all experiments performed, ensuring free-flowing particles at the CVSF outlet. In summary, the integrated setup offers unique features, such as its enhanced product quality control and fast start-up behavior, providing a promising concept for integrated continuous primary manufacturing processes of APIs.
Collapse
|
41
|
Destro F, Hur I, Wang V, Abdi M, Feng X, Wood E, Coleman S, Firth P, Barton A, Barolo M, Nagy ZK. Mathematical modeling and digital design of an intensified filtration-washing-drying unit for pharmaceutical continuous manufacturing. Chem Eng Sci 2021; 244:116803. [PMID: 38229929 PMCID: PMC10790184 DOI: 10.1016/j.ces.2021.116803] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This paper introduces a comprehensive mathematical model of a novel integrated filter-dryer carousel system, designed for continuously filtering, washing and drying a slurry stream into a crystals cake. The digital twin includes models for dead-end filtration, cake washing and convective cake drying, based on dynamic multi-component mass, energy and momentum balances. For set of feed conditions and control inputs, the model allows tracking the solvents and impurities content in the cake (critical quality attributes, CQAs) throughout the whole process. The model parameters were identified for the isolation of paracetamol from a multi-component slurry, containing a non-volatile impurity. The calibrated model was used for identifying the probabilistic design space and maximum throughput for the process, expressing the combinations of the carousel feed conditions and control inputs for which the probability of meeting the target CQAs is acceptable.
Collapse
Affiliation(s)
- Francesco Destro
- CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, 35131 Padova PD, Italy
| | - Inyoung Hur
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Vivian Wang
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - Mesfin Abdi
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - Xin Feng
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | - Erin Wood
- Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food & Drug Administration, Silver Spring, MD, USA
| | | | - Paul Firth
- Alconbury Weston Ltd, Stoke-on-Trent, UK
| | | | - Massimiliano Barolo
- CAPE-Lab – Computer-Aided Process Engineering Laboratory, Department of Industrial Engineering, University of Padova, 35131 Padova PD, Italy
| | - Zoltan K. Nagy
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
42
|
Termühlen M, Strakeljahn B, Schembecker G, Wohlgemuth K. Quantification and evaluation of operating parameters’ effect on suspension behavior for slug flow crystallization. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2021.116771] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Synthesis of a dipeptide by integrating a continuous flow reaction and continuous crystallization. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Tsushima I, Maeda K, Yamamoto T, Arafune K, Miki H. Continuous Crystallization of Phosphoric Acid Using Suspension Crystallizer: Effect of Operating Conditions on Purity of Crystals. CRYSTAL RESEARCH AND TECHNOLOGY 2021. [DOI: 10.1002/crat.202100102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ippei Tsushima
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Kouji Maeda
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Takuji Yamamoto
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Koji Arafune
- Department of Chemical Engineering & Materials Science University of Hyogo 2167 Shosha Himeji‐shi Hyogo 671‐2201 Japan
| | - Hideo Miki
- Katsuragi Industry Co. Ltd. 5‐4‐6 Minamitsumori, Nishinari‐ku Osaka 557‐0063 Japan
| |
Collapse
|
45
|
Steenweg C, Seifert AI, Böttger N, Wohlgemuth K. Process Intensification Enabling Continuous Manufacturing Processes Using Modular Continuous Vacuum Screw Filter. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00294] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Claas Steenweg
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Astrid Ina Seifert
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Nils Böttger
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| | - Kerstin Wohlgemuth
- Department of Biochemical and Chemical Engineering, Laboratory of Plant and Process Design, TU Dortmund University, D-44227 Dortmund, Germany
| |
Collapse
|
46
|
|
47
|
Yang Y, Ahmed B, Mitchell C, Quon JL, Siddique H, Houson I, Florence AJ, Papageorgiou CD. Investigation of Wet Milling and Indirect Ultrasound as Means for Controlling Nucleation in the Continuous Crystallization of an Active Pharmaceutical Ingredient. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yihui Yang
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Bilal Ahmed
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
- EPSRC Future CMAC Manufacturing Research Hub, Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Christopher Mitchell
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Justin L. Quon
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| | - Humera Siddique
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Ian Houson
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Alastair J. Florence
- EPSRC Future CMAC Manufacturing Research Hub, Institute of Pharmacy & Biomedical Sciences, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Charles D. Papageorgiou
- Process Chemistry and Development, Takeda Pharmaceuticals International Company, Boston, 40 Landsdowne, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
48
|
Ma Y, Li Z, Shi P, Lin J, Gao Z, Yao M, Chen M, Wang J, Wu S, Gong J. Enhancing continuous reactive crystallization of lithium carbonate in multistage mixed suspension mixed product removal crystallizers with pulsed ultrasound. ULTRASONICS SONOCHEMISTRY 2021; 77:105698. [PMID: 34375944 PMCID: PMC8358474 DOI: 10.1016/j.ultsonch.2021.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/22/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
In this work, pulsed ultrasound was used to facilitate steady-state reactive crystallization and increase the final yield and productivity of lithium carbonate in continuously operated single and multistage mixed suspension mixed product removal (MSMPR) crystallizers. Experimental analyses of the stirred tank MSMPR cascade were performed to investigate the effects of ultrasound field, residence time and temperature which contributed to the steady-state yield, crystal size distribution and crystal morphology. The results show that pulsed ultrasound can not only significantly enhance the reaction rate, but also help to improve the particle size distribution and the crystal habit. Subsequently, a population balance model was developed and applied to estimate the final yield of the continuous process of the lithium bicarbonate thermal decomposition reaction coupling lithium carbonate crystallization. The consistency of the final yield between the experiments and the simulations proved the reliability of the established model. Through the experimental and simulation analyses, it is demonstrated that the use of pulsed ultrasound, higher final stage temperature, MSMPR cascade design and appropriate residence time help to achieve higher yield and productivity. Furtherly, based on the conclusion drawn, pulsed ultrasound enhanced three-stage MSMPR cascaded lithium carbonate continuous crystallization processes were designed, and the maximum productivity of 44.0 g/h was obtained experimentally.
Collapse
Affiliation(s)
- Yiming Ma
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Zhixu Li
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Peng Shi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Jiawei Lin
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Zhenguo Gao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Menghui Yao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Mingyang Chen
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Jingkang Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Songgu Wu
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China
| | - Junbo Gong
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, People's Republic of China; The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, People's Republic of China.
| |
Collapse
|
49
|
Roche P, Jones RC, Glennon B, Donnellan P. Development of a continuous evaporation system for an
API
solution stream prior to crystallization. AIChE J 2021. [DOI: 10.1002/aic.17377] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Phillip Roche
- School of Chemical & Bioprocess Engineering Univerty College Dublin Dublin Ireland
| | - Roderick C. Jones
- School of Chemical & Bioprocess Engineering Univerty College Dublin Dublin Ireland
| | - Brian Glennon
- School of Chemical & Bioprocess Engineering Univerty College Dublin Dublin Ireland
| | - Philip Donnellan
- School of Chemical & Bioprocess Engineering Univerty College Dublin Dublin Ireland
| |
Collapse
|
50
|
Termühlen M, Etmanski MM, Kryschewski I, Kufner AC, Schembecker G, Wohlgemuth K. Continuous slug flow crystallization: Impact of design and operating parameters on product quality. Chem Eng Res Des 2021. [DOI: 10.1016/j.cherd.2021.04.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|