1
|
Maji S, Gope B, Sharma M, Das A, Jose A, Biswas A, Bhattacharyya K, Mandal SK. Independent LUMO Reactivity in Mesoionic N-Heterocyclic Thiones: Synthesis of a Stable Radical Anion. Angew Chem Int Ed Engl 2025; 64:e202418673. [PMID: 39411972 DOI: 10.1002/anie.202418673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Indexed: 11/14/2024]
Abstract
Mesoionic compounds, with positive and negative charges, are expected to have dual-site highest occupied molecular orbital (HOMO, donor) and lowest unoccupied molecular orbital (LUMO, acceptor) reactivity. Herein, we report a novel class of air-stable mesoionic N-heterocyclic thiones (mNHTs) synthesized from abnormal N-heterocyclic carbenes (aNHCs). DFT studies revealed a highly polarized exocyclic thione moiety and computed Fukui function analysis suggests the dual-site HOMO/LUMO reactivity of mNHTs predicting donor property at the negatively charged 'S' center while acceptor property at the cationic imidazole ring. The independent LUMO reactivity of the mNHT was realized by its chemical reduction to an elusive radical anion, which was characterized by a single crystal X-raydiffraction study. Further, we explore the reactivity of radical anion for the activation of SO2 gas, C-Br bonds of aryl bromide and photocatalytic functionalization of C-X (X = F, Br) bonds. This work unlocks the independent LUMO reactivity of a mesoionic compound.
Collapse
Affiliation(s)
- Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Biplab Gope
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Madhur Sharma
- Chemistry Department, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Anex Jose
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | - Amit Biswas
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| | | | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, India
| |
Collapse
|
2
|
Haug I, Reitz J, Ziane C, Buchmeiser MR, Hansmann MM, Naumann S. Mesoionic N-Heterocyclic Olefins as Initiators for the Lewis Pair Polymerization of Epoxides. Macromol Rapid Commun 2024; 45:e2300716. [PMID: 38497903 DOI: 10.1002/marc.202300716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Mesoionic N-heterocyclic olefins (mNHOs) have recently emerged as a novel class of highly nucleophilic and super-basic σ-donor compounds. Making use of these properties in synthetic polymer chemistry, it is shown that a combination of a specific mNHO and a Mg-based Lewis acid (magnesium bis(hexamethyldisilazide), Mg(HMDS)2) delivers poly(propylene oxide) in quantitative yields from the polymerization of the corresponding epoxide (0.1 mol% mNHO loading). The initiation mechanism involves monomer activation by the Lewis acid and direct ring-opening of the monomer by nucleophilic attack of the mNHO, forming a zwitterionic propagating species. Modulation of the mNHO properties is thereby a direct tool to impact initiation efficiency, revealing a sterically unencumbered triazole-derivative as particularly useful. The joint application of mNHOs together with borane-type Lewis acids is also outlined, resulting in high conversions and fast polymerization kinetics. Importantly, while molar mass distributions remain relatively broad, indicating faster propagation than initiation, the overall molar masses are significantly lower than found in the case of regular NHOs, underlining the increased nucleophilicity and ensuing improved initiation efficiency of mNHOs.
Collapse
Affiliation(s)
- Iris Haug
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| | - Justus Reitz
- TU Dortmund, Faculty for Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Célia Ziane
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| | - Michael R Buchmeiser
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| | - Max M Hansmann
- TU Dortmund, Faculty for Chemistry and Chemical Biology, 44227, Dortmund, Germany
| | - Stefan Naumann
- University of Stuttgart, Institute of Polymer Chemistry, 70569, Stuttgart, Germany
| |
Collapse
|
3
|
Ževart T, Pinter B, Lozinšek M, Urankar D, Jansen-van Vuuren RD, Košmrlj J. Towards structurally versatile mesoionic N-heterocyclic olefin ligands and their coordination to palladium, gold, and boron hydride. Dalton Trans 2024; 53:8915-8925. [PMID: 38590282 DOI: 10.1039/d4dt00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We have developed an efficient and versatile approach for the synthesis of a family of 1,2,3-triazole-based mesoionic N-heterocyclic olefin (mNHO) ligands and investigated their coordination to palladium, gold, and boron hydride experimentally and computationally. We reacted mNHOs obtained through deprotonation of the corresponding methylated and ethylated 1,3,4-triaryl-1,2,3-triazolium salts with [Pd(allyl)Cl]2 to give the corresponding [Pd(η3-allyl)Cl(mNHO)] coordination complexes. 13C NMR data revealed the strong σ-donor character of the mNHO ligands, consistent with the calculated bond orders and atom-condensed charges. Furthermore, we also synthesized [AuCl(mNHO)] and a BH3-mNHO adduct by reacting the triazolium salts with AuCl(SMe2) and BH3·THF, respectively. The BH3-mNHO adduct was tested in the reduction of select aldehydes and ketones to alcohols.
Collapse
Affiliation(s)
- Tisa Ževart
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| | - Balazs Pinter
- The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI 1000 Ljubljana, Slovenia
| | - Damijana Urankar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| | - Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| |
Collapse
|
4
|
Eitzinger A, Reitz J, Antoni PW, Mayr H, Ofial AR, Hansmann MM. Pushing the Upper Limit of Nucleophilicity Scales by Mesoionic N-Heterocyclic Olefins. Angew Chem Int Ed Engl 2023; 62:e202309790. [PMID: 37540606 DOI: 10.1002/anie.202309790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023]
Abstract
A series of mesoionic, 1,2,3-triazole-derived N-heterocyclic olefins (mNHOs), which have an extraordinarily electron-rich exocyclic CC-double bond, was synthesized and spectroscopically characterized, in selected cases by X-ray crystallography. The kinetics of their reactions with arylidene malonates, ArCH=C(CO2 Et)2 , which gave zwitterionic adducts, were investigated photometrically in THF at 20 °C. The resulting second-order rate constants k2 (20 °C) correlate linearly with the reported electrophilicity parameters E of the arylidene malonates (reference electrophiles), thus providing the nucleophile-specific N and sN parameters of the mNHOs according to the correlation lg k2 (20 °C)=sN (N+E). With 21
Collapse
Affiliation(s)
- Andreas Eitzinger
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Justus Reitz
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
5
|
Bocalandro M, González Armesto JJ, Montero-Cabrera LA, Martínez González M. 1,3 Dipolar Cycloaddition of Münchnones: Factors behind the Regioselectivity. J Phys Chem A 2023; 127:645-660. [PMID: 36629023 DOI: 10.1021/acs.jpca.2c06472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The 1,3 dipolar cycloaddition reactions of münchnones and alkenes provide an expedite synthetic way to substituted pyrroles, an exceedingly important structural motif in the pharmaceutical and material science fields of research. The factors governing their regioselectivity rationalization are not well understood. Using several approaches, we investigate a set of 14 reactions (featuring two münchnones, 12 different alkenes, and two alkynes). The Natural Bond Theory and the Non-Covalent Interaction Index analyses of the noncovalent interaction energies fail to predict the experimental major regioisomer. Employing global cDFT descriptors or local ones such as the Fukui function and dual descriptor yields similarly inaccurate predictions. Only the local softness pairing, within Pearson's Hard and Soft Acids and Bases principle, constitutes a reliable predictor for the major reaction product. By taking into account an estimator for the steric effects, the correct regioisomer is predicted. Steric effects play a major role in driving the regioselectivity, as was corroborated by energy decomposition analysis of the transition states.
Collapse
Affiliation(s)
- Meylin Bocalandro
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana10400, Cuba
| | | | - Luis A Montero-Cabrera
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana10400, Cuba
| | - Marco Martínez González
- Laboratory of Computational and Theoretical Chemistry, Faculty of Chemistry, University of Havana, Havana10400, Cuba
| |
Collapse
|
6
|
Abstract
This Perspective article highlights the recent development of mesoionic N-heterocyclic olefins (mNHOs), where the exo-cyclic olefinic carbon is not bonded to strongly electron-withdrawing groups. The unquenched basicity and nucleophilicity of the exo-cyclic olefinic carbon make mNHOs strong σ-donors and enable unique reactivity patterns.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6.
| |
Collapse
|
7
|
Qu ZW, Zhu H, Streubel R, Grimme S. Catalytic Isomerization of Unprotected Mesoionic N‐heterocyclic Olefins and Their Lewis Adducts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng-Wang Qu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Beringstr. 4 D-53115 Bonn GERMANY
| | - Hui Zhu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| | - Rainer Streubel
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institut für Anorganische Chemie Bonn GERMANY
| | - Stefan Grimme
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| |
Collapse
|
8
|
Maity R, Sarkar B. Chemistry of Compounds Based on 1,2,3-Triazolylidene-Type Mesoionic Carbenes. JACS AU 2022; 2:22-57. [PMID: 35098220 PMCID: PMC8790748 DOI: 10.1021/jacsau.1c00338] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Indexed: 05/04/2023]
Abstract
Mesoionic carbenes (MICs) of the 1,2,3-triazolylidene type have established themselves as a popular class of compounds over the past decade. Primary reasons for this popularity are their modular synthesis and their strong donor properties. While such MICs have mostly been used in combination with transition metals, the past few years have also seen their utility together with main group elements. In this paper, we present an overview of the recent developments on this class of compounds that include, among others, (i) cationic and anionic MIC ligands, (ii) the donor/acceptor properties of these ligands with a focus on the several methods that are known for estimating such donor/acceptor properties, (iii) a detailed overview of 3d metal complexes and main group compounds with these MIC ligands, (iv) results on the redox and photophysical properties of compounds based on MIC ligands, and (v) an overview on electrocatalysis, redox-switchable catalysis, and small-molecule activation to highlight the applications of compounds based on MIC ligands in contemporary chemistry. By discussing several aspects from the synthetic, spectroscopic, and application point of view of these classes of compounds, we highlight the state of the art of compounds containing MICs and present a perspective for future research in this field.
Collapse
Affiliation(s)
- Ramananda Maity
- Dr.
R. Maity Department of Chemistry, University
of Calcutta, 92, A. P.
C. Road, Kolkata 700009, India
| | - Biprajit Sarkar
- Prof.
Dr. B. Sarkar Lehrstuhl für Anorganische Koordinationschemie,
Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
| |
Collapse
|
9
|
Merschel A, Vishnevskiy YV, Neumann B, Stammler G, Ghadwal RS. Crystalline phosphino-functionalized mesoionic olefins (p-MIOs). Dalton Trans 2022; 51:8217-8222. [DOI: 10.1039/d2dt01314b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphino-functionalized mesoionic olefins (p-MIOs), (iMIC)CHR (iMIC = PhC{N(Dipp)}2C(PPh2)C, Dipp = 2,6-iPr2C6H3; R = H 4a or Ph 4b) derived from a 1,3-imidazole based mesoionic carbene (iMIC) are reported. The p-MIOs...
Collapse
|
10
|
Liang Q, Hayashi K, Li L, Song D. Dioxygenation of unprotected mesoionic N-heterocyclic olefins. Chem Commun (Camb) 2021; 57:10927-10930. [PMID: 34596194 DOI: 10.1039/d1cc04695k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the dioxygenation of mesoionic N-heterocyclic olefins (mNHOs) using molecular dioxygen. For 1,2,3-triazole-derived mNHOs possessing a vinyl proton and at least one acidic C-H group, they are oxidized into the corresponding triazolium benzoate salts, whereas those without vinyl proton or an acidic C-H group are oxidized into triazolium oxide and ketones/aldehydes.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Longfei Li
- College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
11
|
Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV. Mesoionic and N-Heterocyclic Carbenes Coordinated N + Center: Experimental and Computational Analysis. Chempluschem 2021; 86:1416-1420. [PMID: 34636173 DOI: 10.1002/cplu.202100281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
N-Heterocyclic carbenes, carbocyclic carbenes, remote N-heterocyclic carbenes and N-heterocyclic silylenes are known to form L→N+ coordination bonds. However, mesoionic carbenes (MICs) are not reported to form coordination bonds with cationic nitrogen. Herein, synthesis and quantum chemical studies were performed on 1,2,3-triazol-5-ylidene stabilized N+ center. Six compounds with MIC→N+ ←NHC were synthesized. Density functional theory calculations and energy decomposition analysis were carried out to explore the bonding situation between MIC and N+ center. The C→N+ bond lengths were in the range of 1.295-1.342 Å and bond dissociation energies were <400 kcal/mol. Natural bond orbital analysis supported the presence of excess electron density (>3 electrons) at the N+ center. The computational and X-ray diffraction analysis results confirmed the presence of divalent NI character of center nitrogen and MIC→N+ ←NHC coordination interactions.
Collapse
Affiliation(s)
- Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Shruti Awari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| |
Collapse
|
12
|
Maji S, Das A, Mandal SK. Mesoionic N-heterocyclic olefin catalysed reductive functionalization of CO 2 for consecutive N-methylation of amines. Chem Sci 2021; 12:12174-12180. [PMID: 34667583 PMCID: PMC8457391 DOI: 10.1039/d1sc02819g] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/02/2021] [Indexed: 11/21/2022] Open
Abstract
A mesoionic N-heterocyclic olefin (mNHO) was introduced as a metal-free catalyst for the reductive functionalization of CO2 leading to consecutive double N-methylation of primary amines in the presence of 9-borabicyclo[3.3.1]nonane (9-BBN). A wide range of secondary amines and primary amines were successfully methylated under mild conditions. The catalyst sustained over six successive cycles of N-methylation of secondary amines without compromising its activity, which encouraged us to check its efficacy towards double N-methylation of primary amines. Moreover, this method was utilized for the synthesis of two commercially available drug molecules. A detailed mechanistic cycle was proposed by performing a series of control reactions along with the successful characterisation of active catalytic intermediates either by single-crystal X-ray study or by NMR spectroscopic studies in association with DFT calculations.
Collapse
Affiliation(s)
- Subir Maji
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur-741246 India
| | - Arpan Das
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur-741246 India
| | - Swadhin K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata Mohanpur-741246 India
| |
Collapse
|
13
|
Liang Q, Hayashi K, Zeng Y, Jimenez-Santiago JL, Song D. Constructing fused N-heterocycles from unprotected mesoionic N-heterocyclic olefins and organic azides via diazo transfer. Chem Commun (Camb) 2021; 57:6137-6140. [PMID: 34042131 DOI: 10.1039/d1cc02245h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesoionic N-heterocyclic olefins (mNHOs) were first reported last year and their reactivity remains largely unexplored. Herein we report the reaction of unprotected mNHOs and organic azides as a novel synthetic route to a variety of pyrazolo[3,4-d][1,2,3]triazoles, an important structural motif in drug candidates and energetic materials. The only byproduct aniline can be easily recycled and converted back to the starting organic azide, in compliance with the green chemistry principle. The reaction mechanism has been explored through experimental and computational studies.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Yimin Zeng
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Jose L Jimenez-Santiago
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
14
|
Mono‐ and Di‐Mesoionic Carbene‐Boranes: Synthesis, Structures and Utility as Reducing Agents. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100273] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|