1
|
Liu H, Jiang H, Qi C. Macrocyclization of carbon dioxide with 3-triflyloxybenzynes and tetrahydrofuran: straightforward access to 14-membered macrolactones. Chem Commun (Camb) 2024; 60:6639-6642. [PMID: 38855889 DOI: 10.1039/d4cc01229a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A novel [2+2+5+5] macrocyclization of carbon dioxide with 3-triflyloxybenzynes and tetrahydrofuran has been disclosed for the first time under transition metal-free conditions. The reaction provides a facile method for the synthesis of a rare type of 14-membered macrocyclic lactone, which is potentially useful but difficult to access by existing methods.
Collapse
Affiliation(s)
- Hongjian Liu
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, P. R. China.
| |
Collapse
|
2
|
Luo Y, Huang W. Base-mediated carboxylation of C-nucleophiles with CO 2. Org Biomol Chem 2023; 21:8628-8641. [PMID: 37860946 DOI: 10.1039/d3ob01367g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Carbon dioxide (CO2) is an available, abundant, and renewable C1 resource, which could be converted into value-added chemicals. Due to its inherent thermodynamic stability and kinetic inertness, it is difficult to realize its efficient utilization. Nevertheless, many elegant strategies for the utilization of CO2 have been developed using Lewis bases, frustrated Lewis pairs, hydroxyl-containing compounds, amino-group-containing compounds or transition metal catalysis. Among them, base-mediated carboxylation of C-nucleophiles is an environmentally friendly strategy for CO2 conversion, which is operationally simple, using low-toxicity bases and economical available promoters, without the use of complex ligands or cocatalysts. This review summarizes related work on the base-mediated carboxylation of C-nucleophiles with CO2, based on the effects of nucleophiles, promoters, additives, and solvents. The types of pronucleophile are categorized as follows: hydrocarbon with C(sp3)-H, C(sp2)-H or C(sp)-H bonds, organosilanes, organotin, organoboron, and N-tosylhydrazones. Typical mechanisms and applications of these carboxylation reactions are also depicted. Moreover, mechanistic comprehension of CO2 activation and conversion at a molecular level aims to further expand the repertoire of carboxylation transformations mediated by bases.
Collapse
Affiliation(s)
- Yanlong Luo
- School of Chemical Engineering and Technology, Tianshui Normal University, Tianshui, Gansu 741001, China.
| | - Wenbin Huang
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Labiche A, Malandain A, Molins M, Taran F, Audisio D. Modern Strategies for Carbon Isotope Exchange. Angew Chem Int Ed Engl 2023; 62:e202303535. [PMID: 37074841 DOI: 10.1002/anie.202303535] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/17/2023] [Accepted: 04/19/2023] [Indexed: 04/20/2023]
Abstract
In contrast to stable and natural abundant carbon-12, the synthesis of organic molecules with carbon (radio)isotopes must be conceived and optimized in order to navigate through the hurdles of radiochemical requirements, such as high costs of the starting materials, harsh conditions and radioactive waste generation. In addition, it must initiate from the small cohort of available C-labeled building blocks. For long time, multi-step approaches have represented the sole available patterns. On the other side, the development of chemical reactions based on the reversible cleavage of C-C bonds might offer new opportunities and reshape retrosynthetic analysis in radiosynthesis. This review aims to provide a short survey on the recently emerged carbon isotope exchange technologies that provide effective opportunity for late-stage labeling. At present, such strategies have relied on the use of primary and easily accessible radiolabeled C1-building blocks, such as carbon dioxide, carbon monoxide and cyanides, while the activation principles have been based on thermal, photocatalytic, metal-catalyzed and biocatalytic processes.
Collapse
Affiliation(s)
- Alexandre Labiche
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Augustin Malandain
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Maxime Molins
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Frédéric Taran
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| | - Davide Audisio
- Université Paris Saclay, CEA, Département Médicaments et Technologies pour la Santé, SCBM, 91191, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Pradhan R, Gutman KL, Mas Ud A, Hulley EB, Waynant KV. Catalytic Carboxylation of Terminal Alkynes with Copper(I) Azothioformamide Complexes. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- Rabina Pradhan
- Department of Chemistry, University of Idaho, 875 Perimeter Dr., Moscow, Idaho 83844, United States
| | - Kaylaa L. Gutman
- Department of Chemistry, University of Idaho, 875 Perimeter Dr., Moscow, Idaho 83844, United States
| | - Abu Mas Ud
- Department of Chemistry, University of Wyoming, 1000 E. University Ave, Laramie, Wyoming 82071, United States
| | - Elliott B. Hulley
- Department of Chemistry, University of Wyoming, 1000 E. University Ave, Laramie, Wyoming 82071, United States
| | - Kristopher V. Waynant
- Department of Chemistry, University of Idaho, 875 Perimeter Dr., Moscow, Idaho 83844, United States
| |
Collapse
|
5
|
Si F, Yue W, Su L, Han W, Yan Z, Zhou X, Fu H. The effect of metal silver(I) salt on CO2 conversion to α-alkylidene cyclic carbonates: A DFT study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Vadivelu P, Ganesan K. Density Functional Theory Study on [Ni 0(1,10-Phenanthroline)]-Catalyzed Reductive Carboxylation of Alkyl and Aryl Halides with CO 2: Effect of the Lewis Acid and β-H Elimination Side Reaction in the Crucial CO 2 Insertion Step. Inorg Chem 2022; 61:19463-19474. [DOI: 10.1021/acs.inorgchem.2c03340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Prabha Vadivelu
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur610 005, India
| | - Krithika Ganesan
- Department of Chemistry, Central University of Tamil Nadu, Neelakudi, Thiruvarur610 005, India
| |
Collapse
|
7
|
Li JR, Chen C, Liu XB, Hu YL. Novel and sustainable carboxylation of terminal alkynes and CO 2 to alkynyl carboxylic acids using triazolium ionic liquid-modified PMO-supported transition metal acetylacetonate as effective cooperative catalysts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:83247-83261. [PMID: 35761139 DOI: 10.1007/s11356-022-21630-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Efficient and sustainable chemical fixation of CO2 into value-added chemicals is one of the most promising objectives in environmental chemistry. In this work, transition metal acetylacetonate immobilized onto triazolium ionic liquid-modified periodic mesoporous organosilica PMO-IL-M(x) was successfully prepared and investigated as an effective and heterogeneous catalyst in the direct carboxylation of terminal alkynes and CO2 to the desired alkynyl carboxylic acids. It was found that the catalyst PMO-IL-Sn(0.3) exhibited extraordinary catalytic performance in terms of excellent activity, stability, productivity, and excellent yields under mild reaction conditions. Moreover, the catalyst PMO-IL-Sn(0.3) could be easily recovered and reused at least six times without considerable loss in catalytic activity. This work provides a sustainable and efficient synergistic strategy for the chemical fixation of carbon dioxide into valuable alkynyl carboxylic acids.
Collapse
Affiliation(s)
- Jing-Rui Li
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, People's Republic of China
| | - Chen Chen
- College of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, People's Republic of China
| | - Xiao-Bing Liu
- College of Chemistry and Chemical Engineering, Jinggangshan University, Ji'an, 343009, People's Republic of China
| | - Yu-Lin Hu
- College of Chemistry and Chemical Engineering, Anshun University, Anshun, 561000, People's Republic of China.
| |
Collapse
|
8
|
Green carboxylation of CO2 triggered by well-dispersed silver nanoparticles immobilized by melamine-based porous organic polymers. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Bai P, Jiang Y, Xiao T, Qin G. A Single‐Step Synthesis of Stereodefined Skipped Trienes: Pd‐Catalyzed Cascade Reaction of Terminal Alkynes with Allylic Halides. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Peizhi Bai
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Yubo Jiang
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Tiebo Xiao
- Kunming University of Science and Technology Faculty of Science CHINA
| | - Guiping Qin
- Kunming University of Science and Technology Faculty of Science 727 South Jingming Road, Chenggong District, Kunming 650500 Kunming CHINA
| |
Collapse
|
10
|
Marx M, Frauendorf H, Spannenberg A, Neumann H, Beller M. Revisiting Reduction of CO 2 to Oxalate with First-Row Transition Metals: Irreproducibility, Ambiguous Analysis, and Conflicting Reactivity. JACS AU 2022; 2:731-744. [PMID: 35373201 PMCID: PMC8970009 DOI: 10.1021/jacsau.2c00005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Construction of higher C≥2 compounds from CO2 constitutes an attractive transformation inspired by nature's strategy to build carbohydrates. However, controlled C-C bond formation from carbon dioxide using environmentally benign reductants remains a major challenge. In this respect, reductive dimerization of CO2 to oxalate represents an important model reaction enabling investigations on the mechanism of this simplest CO2 coupling reaction. Herein, we present common pitfalls encountered in CO2 reduction, especially its reductive coupling, based on established protocols for the conversion of CO2 into oxalate. Moreover, we provide an example to systematically assess these reactions. Based on our work, we highlight the importance of utilizing suitable orthogonal analytical methods and raise awareness of oxidative reactions that can likewise result in the formation of oxalate without incorporation of CO2. These results allow for the determination of key parameters, which can be used for tailoring of prospective catalytic systems and will promote the advancement of the entire field.
Collapse
Affiliation(s)
- Maximilian Marx
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Holm Frauendorf
- Institut
für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen, Tammannstraße 2, 37077 Göttingen, Germany
| | - Anke Spannenberg
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Helfried Neumann
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Matthias Beller
- Leibniz-Institut
für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
11
|
Conversion of CO2 to cyclic carbonates by metal-ethylenediamine complexes in ionic liquid: A DFT mechanistic study. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2021.101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Hu Y, Hu L, Gao H, Lv X, Wu Y, Lu G. Computational study of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2: Pauli repulsion-controlled regioselectivity of Cu–Bpin additions. Org Chem Front 2022. [DOI: 10.1039/d2qo00236a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The mechanism and origin of regioselectivity of Cu-catalyzed 1,2-hydrocarboxylation of 1,3-dienes with CO2 were computationally investigated. The results show that CO2 not only acts as a carboxylation reagent, but also...
Collapse
|
13
|
Chen F, Tao S, Liu N, Dai B. CNN-Type Binuclear Cu(I) Complexes Catalyzed Direct Carboxylation via the Fixation of CO 2 at Room Temperature. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202112034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Hu L, Gao H, Hu Y, Lv X, Wu YB, Lu G. Origins of regio- and stereoselectivity in Cu-catalyzed alkyne difunctionalization with CO2 and organoboranes. Org Chem Front 2022. [DOI: 10.1039/d1qo01788h] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The anti-to-Cu 1,2-migration of alkynyl boronates is critical for the 1,1-E-selective difunctionalization of terminal alkynes with CO2 and organoboranes.
Collapse
Affiliation(s)
- Lingfei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Han Gao
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yanlei Hu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Xiangying Lv
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| | - Yan-Bo Wu
- Key Lab for Materials of Energy Conversion and Storage of Shanxi Province and Key Lab of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Gang Lu
- School of Chemistry and Chemical Engineering, Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
15
|
Xie Y, Feng H, Qi Y, Huang J, Huang L. Chemodivergent Synthesis of Oxazolidin-2-ones via Cu-Catalyzed Carboxyl Transfer Annulation of Propiolic Acids with Amines. J Org Chem 2021; 86:16940-16947. [PMID: 34726412 DOI: 10.1021/acs.joc.1c02099] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Carboxylic acids are widely found in natural products and bioactive molecules and have served as raw material compounds in industry. We now report the first example of copper(I)-catalyzed carboxyl transfer annulation of propiolic acids with amines, thereby chemodivergently constructing the oxazolidine-2-ones. In this reaction, two kinds of key propargyamine intermediates were formed through sequential CuI/NBS-catalyzed oxidative deamination/decarboxylative alkynylation or CuI-catalyzed decarboxylative hydroamination/alkynylation. The advantages of this decarboxylative coupling/carboxylative cyclization are showcased in the atom economy, chemical specificity, and functional group tolerance.
Collapse
Affiliation(s)
- Yujuan Xie
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.,Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Yayu Qi
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- China State Institute of Pharmaceutical Industry, Shanghai Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
16
|
Zhou R, Yang M, Li Y, Li D. Cu(I)‐Catalyzed Carboxylation of Aryl Boronic Acid with CO
2. ChemistrySelect 2021. [DOI: 10.1002/slct.202102980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Rong Zhou
- Xinjiang Agricultural University College of Chemistry and Chemical Engineering Urumqi 830052
| | - MiLi Yang
- Xinjiang Agricultural University College of Chemistry and Chemical Engineering Urumqi 830052
| | - YuQin Li
- Xinjiang Agricultural University College of Chemistry and Chemical Engineering Urumqi 830052
| | - DingBang Li
- Xinjiang Agricultural University College of Chemistry and Chemical Engineering Urumqi 830052
| |
Collapse
|
17
|
Han F, Li H, Zhuang H, Hou Q, Yang Q, Zhang B, Miao C. Direct synthesis of cyclic carbonates from olefins and CO2: Single- or multi-component catalytic systems via epoxide or halohydrin intermediate. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Zhang K, Liu Z, Liu N. Synthesis of carbonates from CO
2
and epoxides catalyzed by the system of
N
‐heterocyclic carbene, hydrogen bond donor, CrCl
2
, and tetrabutylammonium bromide. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Kuikui Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang China
| | - Zhenbang Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan Shihezi University Shihezi Xinjiang China
| |
Collapse
|
19
|
Cao Y, A. Dhahad H, Hussen HM, E. Anqi A, Farouk N, Issakhov A, Heravi MRP. Alkylative/arylative carboxylation of unsaturated hydrocarbons utilizing CO2 as C1 synthon: An update. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Wang L, Shi F, Qi C, Xu W, Xiong W, Kang B, Jiang H. Stereodivergent synthesis of β-iodoenol carbamates with CO 2 via photocatalysis. Chem Sci 2021; 12:11821-11830. [PMID: 34659721 PMCID: PMC8442729 DOI: 10.1039/d1sc03366b] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/02/2021] [Indexed: 01/24/2023] Open
Abstract
Photocatalytic conversion of carbon dioxide (CO2) into value-added chemicals is of great significance from the viewpoint of green chemistry and sustainable development. Here, we report a stereodivergent synthesis of β-iodoenol carbamates through a photocatalytic three-component coupling of ethynylbenziodoxolones, CO2 and amines. By choosing appropriate photocatalysts, both Z- and E-isomers of β-iodoenol carbamates, which are difficult to prepare using existing methods, can be obtained stereoselectively. This transformation featured mild conditions, excellent functional group compatibility and broad substrate scope. The potential synthetic utility of this protocol was demonstrated by late-stage modification of bioactive molecules and pharmaceuticals as well as by elaborating the products to access a wide range of valuable compounds. More importantly, this strategy could provide a general and practical method for stereodivergent construction of trisubstituted alkenes such as triarylalkenes, which represents a fascinating challenge in the field of organic chemistry research. A series of mechanism investigations revealed that the transformation might proceed through a charge-transfer complex which might be formed through a halogen bond.
Collapse
Affiliation(s)
- Lu Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Fuxing Shi
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Chaorong Qi
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenjie Xu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Bangxiong Kang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 P. R. China
| |
Collapse
|
21
|
|
22
|
Sila-, bora-, thio-, and phosphono-carboxylation of unsaturated compounds with carbon dioxide: An overview. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101522] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Xiong W, Wu B, Zhu B, Tan X, Wang L, Wu W, Qi C, Jiang H. One‐Pot Palladium‐Catalyzed Carbonylative Sonogashira Coupling using Carbon Dioxide as Carbonyl Source. ChemCatChem 2021. [DOI: 10.1002/cctc.202100051] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Wenfang Xiong
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Bowen Wu
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Baiyao Zhu
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Xiaobin Tan
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Lu Wang
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Wanqing Wu
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Chaorong Qi
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| | - Huanfeng Jiang
- School of Chemistry and Chemical Engineering Key Lab of Functional Molecular Engineering of Guangdong Province South China University of Technology 510640 Guangzhou P. R. China
| |
Collapse
|
24
|
Chen F, Tao S, Liu N, Dai B. N-Heterocyclic carbene-nitrogen molybdenum catalysts for utilization of CO2. Polyhedron 2021. [DOI: 10.1016/j.poly.2020.114990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Xu W, Guo D, Ebadi AG, Toughani M, Vessally E. Transition-metal catalyzed carboxylation of organoboron compounds with CO2. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2020.101403] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
26
|
Shi JB, Bu Q, Liu BY, Dai B, Liu N. Organocatalytic Strategy for the Fixation of CO 2 via Carboxylation of Terminal Alkynes. J Org Chem 2021; 86:1850-1860. [PMID: 33356265 DOI: 10.1021/acs.joc.0c02673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An organocatalytic strategy for the direct carboxylation of terminal alkynes with CO2 has been developed. The combined use of a bifunctional organocatalyst and Cs2CO3 resulted in a robust catalytic system for the preparation of a range of propiolic acid derivatives in high yields with broad substrate scope using CO2 at atmospheric pressure under mild temperatures (60 °C). This work has demonstrated that this organocatalytic method offers a competitive alternative to metal catalysis for the carboxylation of terminal alkynes and CO2. In addition, this protocol was suitable for the three-component carboxylation of terminal alkynes, alkyl halides, and CO2.
Collapse
Affiliation(s)
- Jun-Bin Shi
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, P. R. China
| | - Qingqing Bu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, P. R. China
| | - Bin-Yuan Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, P. R. China.,Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, P. R. China
| | - Bin Dai
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, P. R. China
| | - Ning Liu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, Shihezi University, North Fourth Road, Shihezi, Xinjiang 832003, P. R. China
| |
Collapse
|
27
|
Wang L, Wang P, Guo T, Xiong W, Kang B, Qi C, Luo G, Luo Y, Jiang H. Copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO 2: stereoselective synthesis of ( Z)-enol carbamates. Org Chem Front 2021. [DOI: 10.1039/d0qo01607a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A copper-catalyzed four-component reaction of alkenes, Togni's reagent, amines and CO2 was disclosed, providing an efficient and straightforward access to a range of stereodefined (Z)-enol carbamates.
Collapse
Affiliation(s)
- Lu Wang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Pan Wang
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Tianzuo Guo
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Wenfang Xiong
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Bangxiong Kang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Chaorong Qi
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| | - Gen Luo
- Institutes of Physical Science and Information Technology
- Anhui University
- Hefei 230601
- P. R. China
- State Key Lab of Fine Chemicals
| | - Yi Luo
- State Key Lab of Fine Chemicals
- School of Chemical Engineering
- Dalian University of Technology
- Dalian 116024
- P. R. China
| | - Huanfeng Jiang
- Key Lab of Functional Molecular Engineering of Guangdong Province
- School of Chemistry and Chemical Engineering
- South China University of Technology
- Guangzhou 510640
- P. R. China
| |
Collapse
|
28
|
|
29
|
Baughman NN, Akhmedov NG, Petersen JL, Popp BV. Experimental and Computational Analysis of CO2 Addition Reactions Relevant to Copper-Catalyzed Boracarboxylation of Vinyl Arenes: Evidence for a Phosphine-Promoted Mechanism. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00488] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Notashia N. Baughman
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Novruz G. Akhmedov
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| | - Brian V. Popp
- C. Eugene Bennett Department of Chemistry, West Virginia University, 100 Prospect Street, Morgantown, West Virginia 26506, United States
| |
Collapse
|
30
|
Huang WB, Ren FY, Wang MW, Qiu LQ, Chen KH, He LN. Cu(II)-Catalyzed Phosphonocarboxylative Cyclization Reaction of Propargylic Amines and Phosphine Oxide with CO2. J Org Chem 2020; 85:14109-14120. [DOI: 10.1021/acs.joc.0c02172] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Wen-Bin Huang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fang-Yu Ren
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Wei Wang
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Li-Qi Qiu
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Kai-Hong Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Liang-Nian He
- State Key Laboratory and Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
31
|
Hydrocarboxylation of alkynes utilizing CO2 as C1 synthon: A facile and environmentally benign access to α,β-unsaturated carboxylic acids. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.101220] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|