1
|
Mastalir Á, Molnár Á. Coupling reactions induced by ionic palladium species deposited onto porous support materials. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Xia QQ, Wang XH, Yu JL, Xue ZY, Chai J, Liu X, Wu MX. Tale of COF-on-MOF Composites with Structural Regulation and Stepwise Luminescence Enhancement. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45669-45678. [PMID: 36174061 DOI: 10.1021/acsami.2c12606] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Integrating metal-organic framework (MOF)-covalent organic framework (COF) allows versatile engineering of hybrid materials with properties superior to pristine components, especially COFs suffered from aggregation-caused quenching (ACQ), unlocking more possibilities to improve the luminescence of COFs. In this work, we prepared various MOF@COF composites with different COF layer thicknesses, in which stable UiO-66-NH2 served as the inner substrate and 1,3,5-benzenetricarboxaldehyde (BT), and 3,3'-dihydroxybenzidine (DH) were used to construct a COF layer. In addition to the conventional preparation method, we increased the ratio of BT and DH to be 1:2.5, and impressively, the morphologies of acquired UC (1:2.5) materials were quite different from the previous reticular structure and gradually extended from the spherical structure to the prickly structure with the increase of COF monomers. Remarkably, all of the UC materials possessed better luminescence properties than individual COF due to the limited COF layers. Meanwhile, UC-1 materials with an optimal COF layer displayed the strongest emission. In comparison with a single COF, the quantum yields of UC-1 and UC-1 (1:2.5) were increased nearly 7 times and 5 times, respectively. Moreover, the fluorescence of UC-1 materials was progressively enhanced via selective F- sensing. This work is expected to shed light on the potential hybridization of MOF-COF with structural adjustment, morphological design, and luminescence enhancement.
Collapse
Affiliation(s)
- Qing-Qing Xia
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xing-Huo Wang
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Jia-Lin Yu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhi-Yuan Xue
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315201, Zhejiang, P. R. China
| | - Xiaomin Liu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Ming-Xue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
3
|
Guan Q, Zhou LL, Dong YB. Metalated covalent organic frameworks: from synthetic strategies to diverse applications. Chem Soc Rev 2022; 51:6307-6416. [PMID: 35766373 DOI: 10.1039/d1cs00983d] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Covalent organic frameworks (COFs) are a class of organic crystalline porous materials discovered in the early 21st century that have become an attractive class of emerging materials due to their high crystallinity, intrinsic porosity, structural regularity, diverse functionality, design flexibility, and outstanding stability. However, many chemical and physical properties strongly depend on the presence of metal ions in materials for advanced applications, but metal-free COFs do not have these properties and are therefore excluded from such applications. Metalated COFs formed by combining COFs with metal ions, while retaining the advantages of COFs, have additional intriguing properties and applications, and have attracted considerable attention over the past decade. This review presents all aspects of metalated COFs, from synthetic strategies to various applications, in the hope of promoting the continued development of this young field.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
4
|
Chakraborty D, Mullangi D, Chandran C, Vaidhyanathan R. Nanopores of a Covalent Organic Framework: A Customizable Vessel for Organocatalysis. ACS OMEGA 2022; 7:15275-15295. [PMID: 35571831 PMCID: PMC9096826 DOI: 10.1021/acsomega.2c00235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/05/2022] [Indexed: 05/14/2023]
Abstract
Covalent organic frameworks (COFs) as crystalline polymers possess ordered nanochannels. When their channels are adorned with catalytically active functional groups, their highly insoluble and fluffy powder texture makes them apt heterogeneous catalysts that can be dispersed in a range of solvents and heated to high temperatures (80-180 °C). This would mean very high catalyst density, facile active-site access, and easy separation leading to high isolated yields. Different approaches have been devised to anchor or disperse the catalytic sites into the nanospaces offered by the COF pores. Such engineered COFs have been investigated as catalysts for many organic transformation reactions. These range from Suzuki-Miyaura coupling, Heck coupling, Knoevenagel condensation, Michael addition, alkene epoxidation, CO2 utilization, and more complex biomimetic catalysis. Such catalysts employ COF as a "passive" support that merely docks catalytically active inorganic clusters, or in other cases, the COF itself participates as an "active" support by altering the electronics of the inorganic catalytic sites through the redox activity of its framework. Even more, catalytic organic pockets or metal complexes have been directly tethered to COF walls to make them behave like single-site organocatalysts. Here, we have listed most COF-based organic transformations by categorizing them as metal-free non-noble-metal@COF and noble-metal@COF. The initial part of this review highlights the advantages of COFs as a component of a heterogeneous catalyst, while the latter part discusses all of the current literature on this topic.
Collapse
Affiliation(s)
- Debanjan Chakraborty
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| | - Dinesh Mullangi
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Chandana Chandran
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
| | - Ramanathan Vaidhyanathan
- Department
of Chemistry, Indian Institute of Science
Education and Research, Pune 411008, India
- Centre
for Energy Science, Indian Institute of
Science Education and Research, Pune 411008, India
| |
Collapse
|
5
|
Catalytic hydrolysis of ginsenosides by pectinase immobilized on a covalent organic framework material. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.04.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Huang J, Tao Y, Ran S, Yang Y, Li C, Luo P, Chen Z, Tan X. A hydroxy-containing three dimensional covalent organic framework bearing silver nanoparticles for reduction of 4-nitrophenol and degradation of organic dyes. NEW J CHEM 2022. [DOI: 10.1039/d2nj02437c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydroxy-containing three dimensional covalent organic framework bearing Ag nanoparticles for catalytic reduction of 4-nitrophenol and degradation of methylene blue and Congo red.
Collapse
Affiliation(s)
- Juncao Huang
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Yuxin Tao
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Shuqin Ran
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Yujiao Yang
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Chaofan Li
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
| | - Peizhao Luo
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Ziao Chen
- A State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
| | - Xiaoping Tan
- Chongqing Preschool Education College, Chongqing 404047, P. R. China
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| |
Collapse
|
7
|
Chen Y, Zhang S, Xue Y, Mo L, Zhang Z. Palladium anchored on a covalent organic framework as a heterogeneous catalyst for phosphorylation of aryl bromides. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6480] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yu‐Xuan Chen
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Shuo Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Yu‐Jie Xue
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Li‐Ping Mo
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| | - Zhan‐Hui Zhang
- Hebei Key Laboratory of Organic Functional Molecules, National Experimental Chemistry Teaching Center, College of Chemistry and Materials Science Hebei Normal University Shijiazhuang China
| |
Collapse
|
8
|
Pei X, Xiang D, Luo Z, Lei F, Guo Z, Liu D, Zhao Z, Ran M, Dai T. Catalytic performance of palladium nanoparticles encapsulated within nitrogen-doped carbon during Heck reaction. J Catal 2021. [DOI: 10.1016/j.jcat.2021.05.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
9
|
Wen M, Lu S, Fan C, Shen K, Lin S, Pan Q. Covalent organic framework supported Pd(II)‐catalyzed conjugate additions of arylboronic acids to α,β‐unsaturated carboxylic acids. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Min Wen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Shujuan Lu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Chaogang Fan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Kai Shen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Shaohui Lin
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| | - Qinmin Pan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Key Laboratory of Organic Synthesis of Jiangsu Province, Green Polymer and Catalysis Technology Laboratory (GAPCT), College of Chemistry, Chemical Engineering and Materials Science Soochow University Suzhou China
| |
Collapse
|
10
|
δ-Lactones-A New Class of Compounds That Are Toxic to E. coli K12 and R2-R4 Strains. MATERIALS 2021; 14:ma14112956. [PMID: 34070884 PMCID: PMC8199173 DOI: 10.3390/ma14112956] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/27/2021] [Indexed: 11/23/2022]
Abstract
Lactones are among the well-known organic substances with a specific taste and smell. They are characterized by antibacterial, antiviral, anti-inflammatory, and anti-cancer properties. In recent years, among this group of compounds, new biologically active substances have been searched by modifying the main (leading) structure with new analogs with stronger or different responses that may have a toxic effect on the cells of pathogenic bacteria and constitute an alternative to commonly used antibiotics. A preliminary study of δ-lactone derivatives as new potential candidates for antibacterial drugs was conducted. Particular emphasis was placed on the selection of the structure of lactones with the highest biological activity, especially those with fluorine in their structure as a substituent in terms of action on bacterial lipopolysaccharide (LPS) in the model strains of Escherichia coli K12 (without LPS in its structure) and R2–R4 (LPS of different lengths in its structure). In the presented studies, on the basis of the conducted MIC and MBC tests, it was shown that the antibacterial (toxic) activity of lactones depends on their structure and the length of the bacterial LPS in the membrane of specific strains. Moreover, oxidative damage of bacterial DNA isolated from bacteria after modification with newly synthesized compounds after application of the repair enzyme Fpg glycosylase was analyzed. The analyzed damage values were compared with the modification with appropriate antibiotics: ciprofloxacin, bleomycin, and cloxacillin. The presented research clearly shows that lactone derivatives can be potential candidates as substitutes for drugs, e.g., the analyzed antibiotics. Their chemical and biological activity is related to coumarin derivatives and the corresponding δ-lactone groups in the structure of the substituent. The observed results are of particular importance in the case of increasing bacterial resistance to various drugs and antibiotics, especially in nosocomial infections and neoplasms, and in the era of a microbial pandemic.
Collapse
|
11
|
Machado TF, Serra MES, Murtinho D, Valente AJM, Naushad M. Covalent Organic Frameworks: Synthesis, Properties and Applications-An Overview. Polymers (Basel) 2021; 13:970. [PMID: 33809960 PMCID: PMC8004293 DOI: 10.3390/polym13060970] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/25/2022] Open
Abstract
Covalent Organic Frameworks (COFs) are an exciting new class of microporous polymers with unprecedented properties in organic material chemistry. They are generally built from rigid, geometrically defined organic building blocks resulting in robust, covalently bonded crystalline networks that extend in two or three dimensions. By strategically combining monomers with specific structures and properties, synthesized COF materials can be fine-tuned and controlled at the atomic level, with unparalleled precision on intrapore chemical environment; moreover, the unusually high pore accessibility allows for easy post-synthetic pore wall modification after the COF is synthesized. Overall, COFs combine high, permanent porosity and surface area with high thermal and chemical stability, crystallinity and customizability, making them ideal candidates for a myriad of promising new solutions in a vast number of scientific fields, with widely varying applications such as gas adsorption and storage, pollutant removal, degradation and separation, advanced filtration, heterogeneous catalysis, chemical sensing, biomedical applications, energy storage and production and a vast array of optoelectronic solutions. This review attempts to give a brief insight on COF history, the overall strategies and techniques for rational COF synthesis and post-synthetic functionalization, as well as a glance at the exponentially growing field of COF research, summarizing their main properties and introducing the numerous technological and industrial state of the art applications, with noteworthy examples found in the literature.
Collapse
Affiliation(s)
- Tiago F. Machado
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - M. Elisa Silva Serra
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Dina Murtinho
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Artur J. M. Valente
- University of Coimbra, CQC, Department of Chemistry, 3004-535 Coimbra, Portugal; (T.F.M.); (M.E.S.S.); (D.M.)
| | - Mu. Naushad
- Advanced Materials Research Chair, Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
- Yonsei Frontier Lab, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
12
|
Chen Y, Chen Q, Zhang Z. Application of Covalent Organic Framework Materials as Heterogeneous Ligands in Organic Synthesis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202107030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Affiliation(s)
- Hai‐Yang Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| | - Tao Wang
- Key Laboratory of Applied Surface and Colloid Chemistry Ministry of Education School of Chemistry and Chemical Engineering Shaanxi Normal University Xi'an 710119 China
| |
Collapse
|
14
|
Sarkar S, Ghosh S, Mondal J, Islam SM. Cu/Cu xO y NPs architectured COF: a recyclable catalyst for the synthesis of oxazolidinedione via atmospheric cyclizative CO 2 utilization. Chem Commun (Camb) 2020; 56:12202-12205. [PMID: 32926027 DOI: 10.1039/d0cc04835f] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study describes the favourable construction of a crystalline covalent organic framework (COF) with exceptional surface area, tunable pore size and huge CO2 capture efficiency to facilitate a novel multicomponent cyclization by introducing CO2 into extremely reactive organic skeletons. In the presence of a catalytic Cu/CuxOy NP-loaded COF, several 2-bromo-3-alkylacrylic acids combined with several amine derivatives and CO2 (0.1 MPa) are converted to the desired oxazolidinediones in excellent yields (up to 96%) under alkali-free conditions and ambient temperature.
Collapse
Affiliation(s)
- Somnath Sarkar
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, WB, India.
| | - Swarbhanu Ghosh
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, WB, India.
| | - Jahangir Mondal
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, WB, India.
| | - Sk Manirul Islam
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, 741235, WB, India.
| |
Collapse
|
15
|
Guan Q, Wang GB, Zhou LL, Li WY, Dong YB. Nanoscale covalent organic frameworks as theranostic platforms for oncotherapy: synthesis, functionalization, and applications. NANOSCALE ADVANCES 2020; 2:3656-3733. [PMID: 36132748 PMCID: PMC9419729 DOI: 10.1039/d0na00537a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Accepted: 07/15/2020] [Indexed: 05/08/2023]
Abstract
Cancer nanomedicine is one of the most promising domains that has emerged in the continuing search for cancer diagnosis and treatment. The rapid development of nanomaterials and nanotechnology provide a vast array of materials for use in cancer nanomedicine. Among the various nanomaterials, covalent organic frameworks (COFs) are becoming an attractive class of upstarts owing to their high crystallinity, structural regularity, inherent porosity, extensive functionality, design flexibility, and good biocompatibility. In this comprehensive review, recent developments and key achievements of COFs are provided, including their structural design, synthesis methods, nanocrystallization, and functionalization strategies. Subsequently, a systematic overview of the potential oncotherapy applications achieved till date in the fast-growing field of COFs is provided with the aim to inspire further contributions and developments to this nascent but promising field. Finally, development opportunities, critical challenges, and some personal perspectives for COF-based cancer therapeutics are presented.
Collapse
Affiliation(s)
- Qun Guan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Guang-Bo Wang
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Le-Le Zhou
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Wen-Yan Li
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| | - Yu-Bin Dong
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University Jinan 250014 P. R. China
| |
Collapse
|