1
|
Wanderley TS, Buscemi R, Conboy Ó, Knight B, Crisenza GEM. General Alkene 1,2- syn-Cyano-Hydroxylation Procedure Via Electrochemical Activation of Isoxazoline Cycloadducts. J Am Chem Soc 2024; 146:32848-32858. [PMID: 39537202 PMCID: PMC11613428 DOI: 10.1021/jacs.4c13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Stereoselective alkene 1,2-difunctionalization is a privileged strategy to access three-dimensional C(sp3)-rich chiral molecules from readily available "flat" carbon feedstocks. State-of-the-art approaches exploit chiral transition metal-catalysts to enable high levels of regio- and stereocontrol. However, this is often achieved at the expense of a limited alkene scope and reduced generality. 1,3-Dipolar cycloadditions are routinely used to form heterocycles from alkenes with high levels of regioselectivity and stereospecificity. Nevertheless, methods for the ring-opening of cycloadducts to reveal synthetically useful functionalities require the use of hazardous reagents or forcing reaction conditions; thus limiting their synthetic applications. Herein, we describe the implementation of a practical, general and selective electrosynthetic strategy for olefin 1,2-syn-difunctionalization, which hinges on the design of novel reagents-consisting of a nitrile oxide 1,3-dipole precursor, equipped with a sulfonyl-handle. These can selectively difunctionalize alkenes via "click" 1,3-dipolar cycloadditions, and then facilitate the telescoped electrochemical single electron transfer activation of the ensuing isoxazoline intermediate. Cathodic reduction of the cycloadduct triggers a radical fragmentation pathway delivering sought-after stereodefined 1,2-syn-hydroxy nitrile derivatives. Our telescoped electrochemical procedure tolerates a wide range of functionalities, and─crucially─enables the difunctionalization of both electron-rich, electron-poor and unactivated olefins, with diverse degree of substitution; thus providing a robust, general and selective metal-free alternative to current alkene difunctionalization strategies. Capitalizing on these features, we employed our electrosynthetic method to enable the late-stage syn-hydroxy-cyanation of natural products and bioactive compounds, and streamline the de novo synthesis of pharmaceutical agents.
Collapse
Affiliation(s)
- Taciano
A. S. Wanderley
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Roberto Buscemi
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Órla Conboy
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Benjamin Knight
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| | - Giacomo E. M. Crisenza
- Department of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, U.K.
| |
Collapse
|
2
|
Xin S, Liao J, Tang Q, Feng X, Liu X. Photoinduced copper-catalyzed asymmetric cyanoalkylalkynylation of alkenes, terminal alkynes, and oximes. Chem Sci 2024:d4sc05642f. [PMID: 39444560 PMCID: PMC11494415 DOI: 10.1039/d4sc05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
The asymmetric dicarbofunctionalization of alkenes via a radical relay process can provide routes to diverse hydrocarbon derivatives. Three-component carboalkynylation, limited to particular alkyl halides and using readily available cycloketone oxime esters as redox-active precursors, is restricted by the available pool of suitable chiral ligands for broadening the redox potential window of copper complexes and simultaneously creating the enantiocontrol environment. Herein, we report a new hybrid tridentate ligand bearing a guanidine-amide-pyridine unit for photoinduced copper-catalyzed cyanoalkylalkynylation of alkenes. Leveraging the copper catalyst's redox capability is achieved via merging the electron-rich ligand with a readily organized configuration and enhanced absorption in the visible light range, which also facilitates the enantioselectivity. The generality of the catalyst system is exemplified by the efficacy across a number of alkenes, terminal alkynes and cycloketone oxime esters, working smoothly to give alkyne-bearing nitriles with good yields and excellent enantioselectivity. A mechanistic study reveals that the chiral copper catalyst meets the requirements of possessing sufficient reduction ability, good light absorption properties, and appropriate steric hindrance.
Collapse
Affiliation(s)
- Shuang Xin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Jibang Liao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Qi Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
3
|
Zou L, Zheng X, Yi X, Lu Q. Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp 3)-H bonds. Nat Commun 2024; 15:7826. [PMID: 39244599 PMCID: PMC11380679 DOI: 10.1038/s41467-024-52248-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Enantioselective transformations of hydrocarbons to three-dimensional chiral molecules remain a significant challenge in synthetic chemistry. This study uses asymmetric paired oxidative and reductive catalysis to promote the enantioselective alkylarylation of olefins through the functionalization of C(sp3)-H bonds in alkanes. This asymmetric photoelectrocatalytic approach enables the facile construction of a wide range of enantioenriched α-aryl carbonyls with excellent enantioselectivity (up to 96% ee) from readily accessible starting materials. Notably, aryl bromides, aryl iodides, and even aryl chlorides were compatible with the developed catalytic system. Mechanistic studies reveal that alkanes and electrophiles are simultaneously activated on the electrodes.
Collapse
Affiliation(s)
- Long Zou
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Xinyue Zheng
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - XueZheng Yi
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Qingquan Lu
- The Institute for Advanced Studies, Wuhan University, Wuhan, Hubei, 430072, P. R. China.
- Wuhan University Shenzhen Research Institute, Shenzhen, 518000, P. R. China.
| |
Collapse
|
4
|
Lu S, Agata R, Nomura S, Matsuda H, Isozaki K, Nakamura M. Regioselective Propargylic Suzuki-Miyaura Coupling by SciPROP-Iron Catalyst. J Org Chem 2024; 89:8385-8396. [PMID: 38684935 DOI: 10.1021/acs.joc.4c00168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The iron-catalyzed Suzuki-Miyaura cross-coupling of secondary propargyl electrophiles with lithium organoborates has been established. A propyl-bridged bulky bisphosphine ligand, SciPROP-TB, cooperated with the bulky TIPS substituent at the alkyne terminal position to achieve the cross-coupling reaction with exclusive propargylic selectivity. The reaction features high functional group compatibility, regioselectivity, and yield with a broad substrate scope. The reaction of an optically active chiral propargyl bromide proceeds with complete racemization, supporting a mechanism involving propargyl radical formation.
Collapse
Affiliation(s)
- Siming Lu
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryosuke Agata
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Satsuki Nomura
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Hiroshi Matsuda
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Katsuhiro Isozaki
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masaharu Nakamura
- International Research Center of Elements Science, Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan
- Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
5
|
Lei T, Graf S, Schöll C, Krätzschmar F, Gregori B, Appleson T, Breder A. Asymmetric Photoaerobic Lactonization and Aza-Wacker Cyclization of Alkenes Enabled by Ternary Selenium-Sulfur Multicatalysis. ACS Catal 2023; 13:16240-16248. [PMID: 38125978 PMCID: PMC10729055 DOI: 10.1021/acscatal.3c04443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
An adaptable, sulfur-accelerated photoaerobic selenium-π-acid ternary catalyst system for the enantioselective allylic redox functionalization of simple, nondirecting alkenes is reported. In contrast to related photoredox catalytic methods, which largely depend on olefinic substrates with heteroatomic directing groups to unfold high degrees of stereoinduction, the current protocol relies on chiral, spirocyclic selenium-π-acids that covalently bind to the alkene moiety. The performance of this ternary catalytic method is demonstrated in the asymmetric, photoaerobic lactonization and cycloamination of enoic acids and unsaturated sulfonamides, respectively, leading to an averaged enantiomeric ratio (er) of 92:8. Notably, this protocol provides for the first time an asymmetric, catalytic entryway to pharmaceutically relevant 3-pyrroline motifs, which was used as a platform to access a 3,4-dihydroxyproline derivative in only seven steps with a 92:8 er.
Collapse
Affiliation(s)
| | | | - Christopher Schöll
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Felix Krätzschmar
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Bernhard Gregori
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Theresa Appleson
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| | - Alexander Breder
- Institut Für Organische
Chemie, Universität Regensburg, Universitätstrasse 31, 93053 Regensburg, Germany
| |
Collapse
|
6
|
Zhang Z, Slak D, Krebs T, Leuschner M, Schmickler N, Kuchuk E, Schmidt J, Domenianni LI, Kleine Büning JB, Grimme S, Vöhringer P, Gansäuer A. A Chiral Titanocene Complex as Regiodivergent Photoredox Catalyst: Synthetic Scope and Mechanism of Catalyst Generation. J Am Chem Soc 2023. [PMID: 38016173 DOI: 10.1021/jacs.3c08029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
We describe a combined synthetic, spectroscopic, and computational study of a chiral titanocene complex as a regiodivergent photoredox catalyst (PRC). With Kagan's complex catCl2 either monoprotected 1,3-diols or 1,4-diols can be obtained in high selectivity from a common epoxide substrate in a regiodivergent epoxide opening depending on which enantiomer of the catalyst is employed. Due to the catalyst-controlled regioselectivity of ring opening and the broader substrate scope, the PRC with catCl2 is also a highly attractive branching point for diversity-oriented synthesis. The photochemical processes of cat(NCS)2, a suitable model for catCl2, were probed by time-correlated single-photon counting. The photoexcited complex displays a thermally activated delayed fluorescence as a result of a singlet-triplet equilibration, S1 ⇄ T1, via intersystem crossing and recrossing. Its triplet state is quenched by electron transfer to the T1 state. Computational and cyclic voltammetry studies highlight the importance of our sulfonamide additive. By bonding to sulfonamide additives, chloride abstraction from [catCl2]- is facilitated, and catalyst deactivation by coordination of the sulfonamide group is circumvented.
Collapse
Affiliation(s)
- Zhenhua Zhang
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Daniel Slak
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Tim Krebs
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Marcel Leuschner
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Niklas Schmickler
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Ekaterina Kuchuk
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Jonas Schmidt
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Luis Ignacio Domenianni
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Julius B Kleine Büning
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115 Bonn, Germany
| | - Peter Vöhringer
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115 Bonn, Germany
| | - Andreas Gansäuer
- Kekulé Institut für Organische Chemie und Biochemie, Universität Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| |
Collapse
|
7
|
Song L, Cai L, Gong L, Van der Eycken EV. Photoinduced copper-catalyzed enantioselective coupling reactions. Chem Soc Rev 2023; 52:2358-2376. [PMID: 36916421 DOI: 10.1039/d2cs00734g] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Copper-catalyzed enantioselective coupling has been widely investigated, which allows rapid construction of various chiral molecules. Despite important advances via polar and radical mechanisms, exploring general and practical strategies for the regio-, enantio- and diastereoselective assembly of stereogenic centers is of significant value but remains highly problematic. The integration of photocatalysis with asymmetric copper catalysis could provide appealing access to the development of new reaction pathways and structurally diverse chiral compounds, and extend the boundaries of radical chemistry. This review summarizes recent advances in photoinduced copper-catalyzed enantioselective coupling reactions, and discusses the mechanistic aspects.
Collapse
Affiliation(s)
- Liangliang Song
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lingchao Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, iChEM, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, China.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, 117198 Moscow, Russia
| |
Collapse
|
8
|
Wang C, Ge Q, Xu C, Xing Z, Xiong J, Zheng Y, Duan WL. Photoinduced Copper-Catalyzed C(sp 3)-P Bond Formation by Coupling of Secondary Phosphines with N-(Acyloxy)phthalimides and N-Fluorocarboxamides. Org Lett 2023; 25:1583-1588. [PMID: 36826372 DOI: 10.1021/acs.orglett.3c00475] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
A photoinduced copper-catalyzed C(sp3)-P bond formation has been developed by using N-(acyloxy)phthalimides as radical precursors and secondary phosphine boranes as coupling partners. A variety of alkyl carboxylic acid derivatives can be readily transformed into the corresponding phosphines with high reaction efficiency and structural diversity. Besides, utilizing the 1,5-HAT of the N-centered radical process, the δ C(sp3)-H bond can be coupled with secondary phosphines, which provides a novel method for the regioselective formation of C(sp3)-P bonds.
Collapse
Affiliation(s)
- Chuanyong Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Qiangqiang Ge
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Cheng Xu
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Zhongqiu Xing
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Jianqi Xiong
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei-Liang Duan
- College of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou 225002, China.,School of Chemistry and Chemical Engineering, Shaanxi Normal University, 620 Xi Changan Street, Xi'an 710119, China
| |
Collapse
|
9
|
Visible Light Induced C-H/N-H and C-X Bonds Reactions. REACTIONS 2023. [DOI: 10.3390/reactions4010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
Abstract
Herein, we report efficient visible light-induced photoredox reactions of C–H/N–H and C–X Bonds. These methods have provided access to varied portfolio of synthetically important γ-ketoesters, azaspirocyclic cyclohexadienones spirocyclohexadienones, multisubstituted benzimidazole derivatives, substituted N,2-diarylacetamide, 2-arylpyridines and 2-arylquinolines in good yields and under mild conditions. Moreover, we have successfully discussed the construction through visible light-induction by an intermolecular radical addition, dearomative cyclization, aryl migration and desulfonylation. Similarly, we also spotlight the visible light-catalyzed aerobic C–N bond activation from well-known building blocks through cyclization, elimination and aromatization. The potential use of a wide portfolio of simple ketones and available primary amines has made this transformation very attractive.
Collapse
|
10
|
Copper-Catalyzed Radical Trifluoromethylalkynylation of Unactivated Alkenes with Terminal Alkynes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
11
|
Sarkar S, Banerjee A, Ngai MY. Synthesis of Ketonylated Carbocycles via Excited-State Copper-Catalyzed Radical Carbo-Aroylation of Unactivated Alkenes. ChemCatChem 2023; 15:e202201128. [PMID: 38105796 PMCID: PMC10723085 DOI: 10.1002/cctc.202201128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 12/19/2023]
Abstract
Carbocycles are core skeletons in natural and synthetic organic compounds possessing a wide diversity of important biological activities. Herein, we report the development of an excited-state copper-catalyzed radical carbo-aroylation of unactivated alkenes to synthesize ketonylated tetralins, di- and tetrahydrophenanthrenes, and cyclopentane derivatives. The reaction is operationally simple and features mild reaction conditions that tolerate a broad range of functional groups. Preliminary mechanistic studies suggest a reaction pathway beginning with photoexcitation of [CuI-BINAP]2 and followed by a single electron transfer (SET), radical aroylation of unactivated alkenes, radical cyclization, and re-aromatization, affording the desired ketonylated carbocycles.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| | - Arghya Banerjee
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| | - Ming-Yu Ngai
- Department of Chemistry and Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York 11794-3400, USA
| |
Collapse
|
12
|
Hou L, Zhou Y, Yu H, Zhan T, Cao W, Feng X. Enantioselective Radical Addition to Ketones through Lewis Acid-Enabled Photoredox Catalysis. J Am Chem Soc 2022; 144:22140-22149. [PMID: 36414018 DOI: 10.1021/jacs.2c09691] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Photocatalysis opens up a new window for carbonyl chemistry. Despite a multitude of photochemical reactions of carbonyl compounds, visible light-induced catalytic asymmetric transformations remain elusive and pose a formidable challenge. Accordingly, the development of simple, efficient, and economic catalytic systems is the ideal pursuit for chemists. Herein, we report an enantioselective radical photoaddition to ketones through a Lewis acid-enabled photoredox catalysis wherein the in situ formed chiral N,N'-dioxide/Sc(III)-ketone complex serves as a temporary photocatalyst to trigger single-electron transfer oxidation of silanes for the generation of nucleophilic radical species, including primary, secondary, and tertiary alkyl radicals, giving various enantioenriched aza-heterocycle-based tertiary alcohols in good to excellent yields and enantioselectivities. The results of electron paramagnetic resonance (EPR) and high-resolution mass spectrum (HRMS) measurements provided favorable evidence for the stereocontrolled radical addition process involved in this reaction.
Collapse
Affiliation(s)
- Liuzhen Hou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Han Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Tangyu Zhan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
13
|
Beaudelot J, Oger S, Peruško S, Phan TA, Teunens T, Moucheron C, Evano G. Photoactive Copper Complexes: Properties and Applications. Chem Rev 2022; 122:16365-16609. [PMID: 36350324 DOI: 10.1021/acs.chemrev.2c00033] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Photocatalyzed and photosensitized chemical processes have seen growing interest recently and have become among the most active areas of chemical research, notably due to their applications in fields such as medicine, chemical synthesis, material science or environmental chemistry. Among all homogeneous catalytic systems reported to date, photoactive copper(I) complexes have been shown to be especially attractive, not only as alternative to noble metal complexes, and have been extensively studied and utilized recently. They are at the core of this review article which is divided into two main sections. The first one focuses on an exhaustive and comprehensive overview of the structural, photophysical and electrochemical properties of mononuclear copper(I) complexes, typical examples highlighting the most critical structural parameters and their impact on the properties being presented to enlighten future design of photoactive copper(I) complexes. The second section is devoted to their main areas of application (photoredox catalysis of organic reactions and polymerization, hydrogen production, photoreduction of carbon dioxide and dye-sensitized solar cells), illustrating their progression from early systems to the current state-of-the-art and showcasing how some limitations of photoactive copper(I) complexes can be overcome with their high versatility.
Collapse
Affiliation(s)
- Jérôme Beaudelot
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Samuel Oger
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| | - Stefano Peruško
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium.,Organic Synthesis Division, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020Antwerp, Belgium
| | - Tuan-Anh Phan
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Titouan Teunens
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium.,Laboratoire de Chimie des Matériaux Nouveaux, Université de Mons, Place du Parc 20, 7000Mons, Belgium
| | - Cécile Moucheron
- Laboratoire de Chimie Organique et Photochimie, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/08, 1050Brussels, Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50 - CP160/06, 1050Brussels, Belgium
| |
Collapse
|
14
|
Sarkar S, Banerjee A, Shah JA, Mukherjee U, Frederiks NC, Johnson CJ, Ngai MY. Excited-State Copper-Catalyzed [4 + 1] Annulation Reaction Enables Modular Synthesis of α,β-Unsaturated-γ-Lactams. J Am Chem Soc 2022; 144:20884-20894. [PMID: 36326178 PMCID: PMC9754811 DOI: 10.1021/jacs.2c09006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Synthesis of α,β-unsaturated-γ-lactams continue to attract attention due to the importance of this structural motif in organic chemistry. Herein, we report the development of a visible-light-induced excited-state copper-catalyzed [4 + 1] annulation reaction for the preparation of a wide range of γ-H, -OH, and -OR-substituted α,β-unsaturated-γ-lactams using acrylamides as the 4-atom unit and aroyl chlorides as the 1-atom unit. This modular synthetic protocol features mild reaction conditions, broad substrate scope, and high functional group tolerance. The reaction is amenable to late-stage diversification of complex molecular architectures, including derivatives of marketed drugs. The products of the reaction can serve as versatile building blocks for further derivatization. Preliminary mechanistic studies suggest an inner-sphere catalytic cycle involving photoexcitation of the Cu(BINAP) catalyst, single-electron transfer, and capture of radical intermediates by copper species, followed by reductive elimination or protonation to give the desired γ-functionalized α,β-unsaturated-γ-lactams.
Collapse
Affiliation(s)
- Satavisha Sarkar
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Arghya Banerjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Upasana Mukherjee
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Nicoline C. Frederiks
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Christopher J. Johnson
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
| | - Ming-Yu Ngai
- Department of Chemistry, State University of New York, Stony Brook, New York, 11794-3400, USA
- Institute of Chemical Biology and Drug Discovery, State University of New York, Stony Brook, New York, 11794-3400 USA
| |
Collapse
|
15
|
Huang J, Chen Z. The Alkynylative Difunctionalization of Alkenes. Chemistry 2022; 28:e202201519. [DOI: 10.1002/chem.202201519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Jie Huang
- School of Chemistry and Chemical Engineering Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| | - Zhi‐Min Chen
- School of Chemistry and Chemical Engineering Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs Shanghai Jiao Tong University Shanghai 200240 P. R. China
| |
Collapse
|
16
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Guo Y, Qi X, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp
3
)−H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022; 61:e202208232. [DOI: 10.1002/anie.202208232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Indexed: 01/22/2023]
Affiliation(s)
- Rui Guo
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Sijia Li
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Mengzhen Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre Key Laboratory of Pesticides & Chemical Biology Ministry of Education International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
17
|
Guo R, Xiao H, Li S, Luo Y, Bai J, Zhang M, Qi X, Guo Y, Zhang G. Photoinduced Copper‐Catalyzed Asymmetric C(sp3)‐H Alkynylation of Cyclic Amines by Intramolecular 1,5‐Hydrogen Atom Transfer. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Haijing Xiao
- Central China Normal University Department of Chemistry CHINA
| | - Sijia Li
- Central China Normal University Department of Chemistry CHINA
| | - Yixin Luo
- Wuhan University Department of Chemistry CHINA
| | - Jiahui Bai
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Mengzhen Zhang
- Central China Normal University Department of Chemistry CHINA
| | - Xiaotian Qi
- Wuhan University Department of Chemistry CHINA
| | - Yinlong Guo
- Shanghai Institute of Organic Chemistry State Key Laborary of Organometallic Chemistry CHINA
| | - Guozhu Zhang
- Shanghai Institute of Organic Chemistry Chemistry 345 Lingling Rd 200032 Shanghai CHINA
| |
Collapse
|
18
|
Zhang H, Huang C, Yuan XA, Yu S. Photoexcited Chiral Copper Complex-Mediated Alkene E → Z Isomerization Enables Kinetic Resolution. J Am Chem Soc 2022; 144:10958-10967. [PMID: 35675512 DOI: 10.1021/jacs.2c04040] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
While asymmetric synthesis has been established as a powerful synthetic tool for the construction of versatile enantioenriched molecules in the most efficient and practical manner, the resolution of racemates is still the most universal industrial approach to the synthesis of chiral compounds. However, the direct formation of enantiopure Z-isomers through the catalytic nonenzymatic kinetic resolution of racemic E-alkenes remains challenging. Herein, we disclose an unprecedented enantioselective E → Z isomerization mediated by a photoexcited chiral copper complex. This catalytic system enables kinetic resolution of 2-styrylpyrrolidines. This process is difficult to realize under thermal conditions. Mechanistic experiments and density functional theory (DFT) calculations revealed that different overall sensitization rates of the substrate-catalyst complex of the two enantiomers led to the observed excellent kinetic resolution efficiency. This photochemical transformation expands the potential of kinetic resolution beyond their established ground-state reactivity, furnishing a novel reaction mode for enantioselective catalysis at its excited state.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Congcong Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Xiang-Ai Yuan
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
19
|
Engl S, Reiser O. Copper-photocatalyzed ATRA reactions: concepts, applications, and opportunities. Chem Soc Rev 2022; 51:5287-5299. [PMID: 35703016 DOI: 10.1039/d2cs00303a] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Atom transfer radical addition (ATRA) reactions are linchpin transformations in synthetic chemistry enabling the atom-economic difunctionalization of alkenes. Thereby a rich chemical space can be accessed through smart combinations of simple starting materials. Originally, these reactions required toxic and hazardous radical initiators or harsh thermal activation and thus, the recent resurgence and dramatic evolution of photocatalysis appeared as an attractive complement to catalyze such transformations in a mild and energy-efficient manner. Initially, this technique relied primarily on complexes of precious metals, such as ruthenium or iridium, to absorb the visible light. Hence, copper photocatalysis rapidly developed into a powerful alternative, not just from an economic point of view. Originally considered to be disadvantageous as a pathway for deactivation by quenching their excited state, the dynamic nature of Cu-complexes enables them to undergo facile ligand exchange and thus opens up special opportunities for transformations utilizing their inner-coordination sphere. Moreover, the ability of Cu(II), representing a persistent radical, to capture incipient radicals offers the possibility to access heretofore elusive two-component, but also three-component, ATRA reactions, not feasible with ruthenium or iridium catalysts. In this regard, the idea of using Cu(I)-substrate assemblies as active photocatalysts is an emerging field to achieve such 3-component coupling reactions even under enantioselective control, which is reflected by an increasing number of reports being covered in this review.
Collapse
Affiliation(s)
- Sebastian Engl
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| | - Oliver Reiser
- Institut für Organische Chemie, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
20
|
Kiss L, Remete AM, Nonn M, Volk B. Developments in the Alkynyltrifluoromethylations of Alkenes and Alkynes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1811-8679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AbstractAs a consequence of the expanding relevance of fluorine-containing organic molecules in drug research, the synthesis of organofluorine scaffolds has high significance in synthetic organic chemistry. Trifluoromethylative difunctionalizations of carbon–carbon multiple bonds, with the simultaneous introduction of a CF3 group and another function, have considerable potential. Considering the high importance of carbon–carbon bond-forming reactions in organic synthesis, carbotrifluoromethylations and, in particular, alkynyltrifluoromethylations have increasing interest in synthetic chemistry. Alkynyltrifluoromethylation is a narrow area and a relatively new approach in synthetic chemistry; however it has not been reviewed so far. Our goal in this short review is to summarize recent developments in alkynyltrifluoromethylation reactions by considering: (a) alkynyltrifluoromethylation reactions of alkenes, including reactions involving either intramolecular alkynyl migration or intermolecular transformation, and (b) alkynyltrifluoromethylation reactions of alkynes.1 Introduction2 Alkynyltrifluoromethylation Reactions of Alkenes2.1 Reactions Involving Intramolecular Alkynyl Migration2.2 Intermolecular Reactions3 Alkynyltrifluoromethylation Reactions of Alkynes4 Summary and Outlook
Collapse
Affiliation(s)
- Loránd Kiss
- Institute of Organic Chemistry, Research Centre for Natural Sciences
| | | | - Melinda Nonn
- Institute of Pharmaceutical Chemistry, University of Szeged
- MTA TTK Lendület Artificial Transporter Research Group, Institute of Materials and Environmental Chemistry, Research Center for Natural Sciences, Hungarian Academy of Sciences
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals PLC
| |
Collapse
|
21
|
Guo R, Sang J, Xiao H, Li J, Zhang G. Development of Novel
Phosphino‐Oxazoline
Ligands and Their Application in Asymmetric Alkynlylation of Benzylic Halides. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Rui Guo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, , Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 P. R. China
| | - Jiale Sang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, , Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 P. R. China
| | - Haijing Xiao
- CCNU‐uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, , Central China Normal University (CCNU), 152 Luoyu Road, Wuhan Hubei 430079 P. R. China
| | - Junxia Li
- CCNU‐uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, , Central China Normal University (CCNU), 152 Luoyu Road, Wuhan Hubei 430079 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry, , Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 P. R. China
- CCNU‐uOttawa Joint Research Centre, Key Laboratory of Pesticides & Chemical Biology Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry, , Central China Normal University (CCNU), 152 Luoyu Road, Wuhan Hubei 430079 P. R. China
| |
Collapse
|
22
|
Li X, Chen P, Liu G. Palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes: easy access to β-alkynylcarboxylic esters. Chem Commun (Camb) 2022; 58:2544-2547. [PMID: 35099483 DOI: 10.1039/d1cc07092d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A palladium-catalyzed intermolecular alkynylcarbonylation of unactivated alkenes has been established with ethynyl benziodoxolones (EBXs) as alkynylation reagents, providing β-alkynylcarboxylic esters efficiently from simple alkenes. The reaction features moderate to excellent regioselectivity and excellent functional group compatibility under mild reaction conditions.
Collapse
Affiliation(s)
- Xiang Li
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Pinhong Chen
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Guosheng Liu
- State Key Laboratory of Organometallic Chemistry and Shanghai Hongkong Joint Laboratory in Chemical Synthesis, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
23
|
Ueda Y, Masuda Y, Iwai T, Imaeda K, Takeuchi H, Ueno K, Gao M, Hasegawa JY, Sawamura M. Photoinduced Copper-Catalyzed Asymmetric Acylation of Allylic Phosphates with Acylsilanes. J Am Chem Soc 2022; 144:2218-2224. [PMID: 34990146 DOI: 10.1021/jacs.1c11526] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We report a visible-light-induced copper-catalyzed highly enantioselective umpolung allylic acylation reaction with acylsilanes as acyl anion equivalents. Triplet-quenching experiments and DFT calculations supported our reaction design, which is based on copper-to-acyl metal-to-ligand charge transfer (MLCT) photoexcitation that generates a charge-separated triplet state as a highly reactive intermediate. According to the calculations, the allylic phosphate substrate in the excited state undergoes novel molecular activation into an allylic radical weakly bound to the copper complex. The allyl radical fragment undergoes copper-mediated regio- and stereocontrolled coupling with the acyl group under the influence of the chiral N-heterocyclic carbene ligand.
Collapse
Affiliation(s)
- Yusuke Ueda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Yusuke Masuda
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Tomohiro Iwai
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Keisuke Imaeda
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Hiroki Takeuchi
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Kosei Ueno
- Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| | - Min Gao
- Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Jun-Ya Hasegawa
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Institute for Catalysis, Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Masaya Sawamura
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan.,Department of Chemistry, Faculty of Science, Hokkaido University, Sapporo, Hokkaido 060-0810, Japan
| |
Collapse
|
24
|
Abstract
In recent years, visible light-induced transition metal catalysis has emerged as a new paradigm in organic photocatalysis, which has led to the discovery of unprecedented transformations as well as the improvement of known reactions. In this subfield of photocatalysis, a transition metal complex serves a double duty by harvesting photon energy and then enabling bond forming/breaking events mostly via a single catalytic cycle, thus contrasting the established dual photocatalysis in which an exogenous photosensitizer is employed. In addition, this approach often synergistically combines catalyst-substrate interaction with photoinduced process, a feature that is uncommon in conventional photoredox chemistry. This Review describes the early development and recent advances of this emerging field.
Collapse
Affiliation(s)
- Kelvin Pak Shing Cheung
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Sumon Sarkar
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
25
|
Genzink MJ, Kidd JB, Swords WB, Yoon TP. Chiral Photocatalyst Structures in Asymmetric Photochemical Synthesis. Chem Rev 2022; 122:1654-1716. [PMID: 34606251 PMCID: PMC8792375 DOI: 10.1021/acs.chemrev.1c00467] [Citation(s) in RCA: 159] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric catalysis is a major theme of research in contemporary synthetic organic chemistry. The discovery of general strategies for highly enantioselective photochemical reactions, however, has been a relatively recent development, and the variety of photoreactions that can be conducted in a stereocontrolled manner is consequently somewhat limited. Asymmetric photocatalysis is complicated by the short lifetimes and high reactivities characteristic of photogenerated reactive intermediates; the design of catalyst architectures that can provide effective enantiodifferentiating environments for these intermediates while minimizing the participation of uncontrolled racemic background processes has proven to be a key challenge for progress in this field. This review provides a summary of the chiral catalyst structures that have been studied for solution-phase asymmetric photochemistry, including chiral organic sensitizers, inorganic chromophores, and soluble macromolecules. While some of these photocatalysts are derived from privileged catalyst structures that are effective for both ground-state and photochemical transformations, others are structural designs unique to photocatalysis and offer insight into the logic required for highly effective stereocontrolled photocatalysis.
Collapse
Affiliation(s)
- Matthew J Genzink
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Jesse B Kidd
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Wesley B Swords
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Tehshik P Yoon
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
26
|
Li X, Jiang M, Zhu X, Song X, Deng Q, Lv J, Yang D. A desulphurization strategy for Sonogashira couplings by visible light/copper catalysis. Org Chem Front 2022. [DOI: 10.1039/d1qo01548f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
We have developed a new copper-based photocatalyst, [(binap)(tpy)Cu]Cl, and applied it in the visible-light promoted Sonogashira coupling reactions.
Collapse
Affiliation(s)
- Xuan Li
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Xiaolong Zhu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Qirong Deng
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
- Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
27
|
Xiao L, Liu G, Ren P, Wu T, Lu Y, Kong J. Elemental Sulfur: An Excellent Sulfur-Source for Synthesis of Sulfur-Containing Heterocyclics. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202109038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
28
|
Wang M, Wang Q, Ma M, Zhao B. Copper-Catalysed Synthesis of Trifluoromethyl Allenes via Fluoro-carboalkynylation of Alkenes. Org Chem Front 2022. [DOI: 10.1039/d1qo01823j] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Allenes and trifluoromethyl motifs are considered as important building blocks in materials and pharmaceuticals. A copper-catalysed synthesis of trifluoromethyl allenes utilizing readily available feedstocks under mild and environmentlly friendly conditions...
Collapse
|
29
|
Ramani A, Desai B, Dholakiya BZ, Naveen T. Recent advances in visible-light mediated functionalization of olefins and alkynes using copper catalysts. Chem Commun (Camb) 2022; 58:7850-7873. [DOI: 10.1039/d2cc01611g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past decade, visible-light photoredox catalysis has blossomed as a powerful strategy and offers a discrete activation mode complementary to thermal controlled reactions. Visible-light-mediated photoredox catalysis also offers exciting...
Collapse
|
30
|
Lu FD, Chen J, Jiang X, Chen JR, Lu LQ, Xiao WJ. Recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention. Chem Soc Rev 2021; 50:12808-12827. [PMID: 34652345 DOI: 10.1039/d1cs00210d] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transition metal-catalysed asymmetric coupling has been established as a robust tool for constructing complex organic molecules. Although this area has been extensively studied, the development of efficient protocols to construct stereogenic centres with excellent regio- and enantioselectivities is highly desirable and remains challenging. Asymmetric transition metal catalysis with light intervention provides a practical alternative strategy to current methods and considerably expands the synthetic utility as a result of abundant feedstocks and mild conditions. This tutorial review comprehensively summarizes the recent advances in transition-metal-catalysed asymmetric coupling reactions with light intervention; in particular, a concise analysis of substrate scope and the mechanistic scenarios governing stereocontrol is discussed.
Collapse
Affiliation(s)
- Fu-Dong Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Jun Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Xuan Jiang
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Jia-Rong Chen
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Liang-Qiu Lu
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China.
| | - Wen-Jing Xiao
- CCNU-uOttawa Joint Research Centre, Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan 430079, China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
31
|
Cao Z, Li J, Zhang G. Photo-induced copper-catalyzed sequential 1,n-HAT enabling the formation of cyclobutanols. Nat Commun 2021; 12:6404. [PMID: 34737326 PMCID: PMC8569169 DOI: 10.1038/s41467-021-26670-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/09/2022] Open
Abstract
Cyclobutanols are privileged cyclic skeletons in natural products and synthetic building blocks. C(sp3)-H functionalization is a prolonged challenge in organic synthesis. The synthesis of cyclobutanols through double C(sp3)-H bond functionalization remains elusive. Here we report the efficient synthesis of cyclobutanols through intermolecular radical [3 + 1] cascade cyclization, involving the functionalization of two C - H bonds through sequential hydrogen atom transfer. The copper complex reduces the iodomethylsilyl alcohols efficiently under blue-light irradiation to initiate the tandem transformation. The mild reaction tolerates a broad range of functional groups and allows for the facile generation of elaborate polycyclic structures.
Collapse
Affiliation(s)
- Zhusong Cao
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China
| | - Jianye Li
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China
| | - Guozhu Zhang
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei, 430079, P. R. China. .,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, P. R. China.
| |
Collapse
|
32
|
Zhang Y, Wang Q, Yan Z, Ma D, Zheng Y. Visible-light-mediated copper photocatalysis for organic syntheses. Beilstein J Org Chem 2021; 17:2520-2542. [PMID: 34760022 PMCID: PMC8551910 DOI: 10.3762/bjoc.17.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/30/2021] [Indexed: 11/23/2022] Open
Abstract
Photoredox catalysis has been applied to renewable energy and green chemistry for many years. Ruthenium and iridium, which can be used as photoredox catalysts, are expensive and scarce in nature. Thus, the further development of catalysts based on these transition metals is discouraged. Alternative photocatalysts based on copper complexes are widely investigated, because they are abundant and less expensive. This review discusses the scope and application of photoinduced copper-based catalysis along with recent progress in this field. The special features and mechanisms of copper photocatalysis and highlights of the applications of the copper complexes to photocatalysis are reported. Copper-photocatalyzed reactions, including alkene and alkyne functionalization, organic halide functionalization, and alkyl C-H functionalization that have been reported over the past 5 years, are included.
Collapse
Affiliation(s)
- Yajing Zhang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Qian Wang
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Zongsheng Yan
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Donglai Ma
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| | - Yuguang Zheng
- Traditional Chinese Medicine Processing Technology Innovation Center of Hebei Province, Hebei University of Chinese Medicine, Shijiazhuang, 050200, P. R. China
| |
Collapse
|
33
|
Chen X, Li M, Liu Z, Yang C, Xie H, Hu X, Su SJ, Jiang H, Zeng W. Bimetal Cooperatively Catalyzed Arylalkynylation of Alkynylsilanes. Org Lett 2021; 23:6724-6728. [PMID: 34397220 DOI: 10.1021/acs.orglett.1c02283] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
An unprecedented Pd/Rh cooperatively catalyzed arylalkynylation of alkynylsilanes was developed to merge an alkynylidene moiety with benzosilacycle. These silaarenes possess a particular aggregation-induced emission behavior. Mechanistic investigations demonstrate that the relay trimetallic transmetalation plays a pivotal role in governing this transformation.
Collapse
Affiliation(s)
- Xing Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Zhipeng Liu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Can Yang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haisheng Xie
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Xinwei Hu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Shi-Jian Su
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wei Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
34
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
35
|
|
36
|
Jiang X, Han B, Xue Y, Duan M, Gui Z, Wang Y, Zhu S. Nickel-catalysed migratory hydroalkynylation and enantioselective hydroalkynylation of olefins with bromoalkynes. Nat Commun 2021; 12:3792. [PMID: 34145283 PMCID: PMC8213830 DOI: 10.1038/s41467-021-24094-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023] Open
Abstract
α-Chiral alkyne is a key structural element of many bioactive compounds, chemical probes, and functional materials, and is a valuable synthon in organic synthesis. Here we report a NiH-catalysed reductive migratory hydroalkynylation of olefins with bromoalkynes that delivers the corresponding benzylic alkynylation products in high yields with excellent regioselectivities. Catalytic enantioselective hydroalkynylation of styrenes has also been realized using a simple chiral PyrOx ligand. The obtained enantioenriched benzylic alkynes are versatile synthetic intermediates and can be readily transformed into synthetically useful chiral synthons.
Collapse
Affiliation(s)
- Xiaoli Jiang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Bo Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yuhang Xue
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Mei Duan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Zhuofan Gui
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - You Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shaolin Zhu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| |
Collapse
|
37
|
Zhou H, Li ZL, Gu QS, Liu XY. Ligand-Enabled Copper(I)-Catalyzed Asymmetric Radical C(sp 3)–C Cross-Coupling Reactions. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01970] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Huan Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Zhong-Liang Li
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Qiang-Shuai Gu
- Academy for Advanced Interdisciplinary Studies and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| | - Xin-Yuan Liu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, People’s Republic of China
| |
Collapse
|
38
|
Yan Q, Cui W, Song X, Xu G, Jiang M, Sun K, Lv J, Yang D. Sulfonylation of Aryl Halides by Visible Light/Copper Catalysis. Org Lett 2021; 23:3663-3668. [DOI: 10.1021/acs.orglett.1c01050] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiuli Yan
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Wenwen Cui
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Xiuyan Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Guiyun Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, P. R. China
| | - Kai Sun
- College of Chemistry and Chemical Engineering, YanTai University, Yantai, 264005, P. R. China
| | - Jian Lv
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| | - Daoshan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China
| |
Collapse
|
39
|
Affiliation(s)
- Xiaodong Ma
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, P. R. China
- College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
40
|
Cao Z, Li J, Sun Y, Zhang H, Mo X, Cao X, Zhang G. Photo-induced copper-catalyzed alkynylation and amination of remote unactivated C(sp 3)-H bonds. Chem Sci 2021; 12:4836-4840. [PMID: 34163735 PMCID: PMC8179574 DOI: 10.1039/d0sc05883a] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
A method for remote radical C-H alkynylation and amination of diverse aliphatic alcohols has been developed. The reaction features a copper nucleophile complex formed in situ as a photocatalyst, which reduces the silicon-tethered aliphatic iodide to an alkyl radical to initiate 1,n-hydrogen atom transfer. Unactivated secondary and tertiary C-H bonds at β, γ, and δ positions can be functionalized in a predictable manner.
Collapse
Affiliation(s)
- Zhusong Cao
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Jianye Li
- College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| | - Youwen Sun
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Hanwen Zhang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xueling Mo
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xin Cao
- Zhongshan Hospital, Fudan University 180 Fenglin Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
- College of Chemistry, Central China Normal University (CCNU) 152 Luoyu Road Wuhan Hubei 430079 P. R. China
| |
Collapse
|
41
|
Chen X, Li L, Pei C, Li J, Zou D, Wu Y, Wu Y. Visible-Light-Induced Direct Csp 2-H Radical Trifluoroethylation of Coumarins with 1,1,1-Trifluoro-2-iodoethane (CF 3CH 2I). J Org Chem 2021; 86:2772-2783. [PMID: 33492969 DOI: 10.1021/acs.joc.0c02739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we developed the first visible-light-induced direct Csp2-H radical 2,2,2-trifluoroethylation of coumarins with commercially available and cheap reagent CF3CH2I at room temperature. This transformation proceeded smoothly under mild conditions and showed excellent functional group compatibility. The synthetic value of the protocol was also demonstrated by the successful functionalization of several pharmaceuticals.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Linlin Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Congcong Pei
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC, Zhengzhou 450052, People's Republic of China
| | - Dapeng Zou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yangjie Wu
- Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, People's Republic of China
| | - Yusheng Wu
- Tetranov Biopharm, LLC, Zhengzhou 450052, People's Republic of China.,Tetranov International, Inc., 100 Jersey Avenue, Suite A340, New Brunswick, New Jersey 08901, United States
| |
Collapse
|
42
|
De Bonfils P, Péault L, Nun P, Coeffard V. State of the Art of Bodipy‐Based Photocatalysts in Organic Synthesis. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001446] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Paul De Bonfils
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | - Louis Péault
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | - Pierrick Nun
- CEISAM UMR CNRS 6230 Université de Nantes 44000 Nantes France
| | | |
Collapse
|
43
|
Li C, Chen B, Ma X, Mo X, Zhang G. Light‐Promoted Copper‐Catalyzed Enantioselective Alkylation of Azoles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202009323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Chen Li
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaodong Ma
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xueling Mo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
44
|
Yang X, Meng WD, Xu XH, Huang Y. Photoredox-catalyzed 2,2,2-trifluoroethylation and 2,2-difluoroethylation of alkenes with concomitant introduction of a quinoxalin-2(1 H)-one moiety. Org Chem Front 2021. [DOI: 10.1039/d1qo01170g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A photoredox-catalyzed three-component radical cascade reaction of alkenes, quinoxalin-2(1H)-ones, and ICH2CF3/ICH2CF2H is developed.
Collapse
Affiliation(s)
- Xiu Yang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Wei-Dong Meng
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Xiu-Hua Xu
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Science, Chinese Academy of Science, 345 Lingling Lu, Shanghai 200032, China
| | - Yangen Huang
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| |
Collapse
|
45
|
Gong L, Li Y, Ye Z, Cai J. Visible-Light-Promoted Asymmetric Catalysis by Chiral Complexes of First-Row Transition Metals. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/a-1344-2473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
AbstractThis short review presents an overview of visible-light-driven asymmetric catalysis by chiral complexes of first-row transition metals. The processes described here include dual catalysis by a chiral complex of copper, nickel, cobalt, or chromium and an additional photoredox or energy-transfer catalyst, and bifunctional catalysis by a single chiral copper or nickel catalyst. These methods allow valuable transformations with high functional group compatibility. They provide stereoselective construction of carbon–carbon or carbon–heteroatom bonds under mild conditions, and produce a diverse range of previously unknown enantioenriched compounds.1 Introduction2 Nickel-Based Photocatalytic Asymmetric Catalysis3 Copper-Based Photocatalytic Asymmetric Catalysis4 Photocatalytic Asymmetric Catalysis by Chiral Complexes of Cobalt or Chromium5 Conclusion
Collapse
|
46
|
Zhang W, Lin S. Electroreductive Carbofunctionalization of Alkenes with Alkyl Bromides via a Radical-Polar Crossover Mechanism. J Am Chem Soc 2020; 142:20661-20670. [PMID: 33231074 PMCID: PMC7951757 DOI: 10.1021/jacs.0c08532] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Electrochemistry grants direct access to reactive intermediates (radicals and ions) in a controlled fashion toward selective organic transformations. This feature has been demonstrated in a variety of alkene functionalization reactions, most of which proceed via an anodic oxidation pathway. In this report, we further expand the scope of electrochemistry to the reductive functionalization of alkenes. In particular, the strategic choice of reagents and reaction conditions enabled a radical-polar crossover pathway wherein two distinct electrophiles can be added across an alkene in a highly chemo- and regioselective fashion. Specifically, we used this strategy in the intermolecular carboformylation, anti-Markovnikov hydroalkylation, and carbocarboxylation of alkenes-reactions with rare precedents in the literature-by means of the electroreductive generation of alkyl radical and carbanion intermediates. These reactions employ readily available starting materials (alkyl halides, alkenes, etc.) and simple, transition-metal-free conditions and display broad substrate scope and good tolerance of functional groups. A uniform protocol can be used to achieve all three transformations by simply altering the reaction medium. This development provides a new avenue for constructing Csp3-Csp3 bonds.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| | - Song Lin
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14850, United States
| |
Collapse
|
47
|
Li C, Chen B, Ma X, Mo X, Zhang G. Light‐Promoted Copper‐Catalyzed Enantioselective Alkylation of Azoles. Angew Chem Int Ed Engl 2020; 60:2130-2134. [DOI: 10.1002/anie.202009323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/06/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Chen Li
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Bin Chen
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xiaodong Ma
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Xueling Mo
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| | - Guozhu Zhang
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Center for Excellence in Molecular Synthesis University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 P. R. China
| |
Collapse
|
48
|
Prentice C, Morrisson J, Smith AD, Zysman-Colman E. Recent developments in enantioselective photocatalysis. Beilstein J Org Chem 2020; 16:2363-2441. [PMID: 33082877 PMCID: PMC7537410 DOI: 10.3762/bjoc.16.197] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 09/09/2020] [Indexed: 01/02/2023] Open
Abstract
Enantioselective photocatalysis has rapidly grown into a powerful tool for synthetic chemists. This review describes the various strategies for creating enantioenriched products through merging enantioselective catalysis and photocatalysis, with a focus on the most recent developments and a particular interest in the proposed mechanisms for each. With the aim of understanding the scope of each strategy, to help guide and inspire further innovation in this field.
Collapse
Affiliation(s)
- Callum Prentice
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - James Morrisson
- Pharmaceutical Sciences, IMED Biotech Unit, AstraZeneca, Macclesfield SK102NA, United Kingdom
| | - Andrew D Smith
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, Fife, Scotland, KY16 9ST, United Kingdom
| |
Collapse
|
49
|
Lipp A, Badir SO, Molander GA. Stereoinduktion in der Metallaphotoredoxkatalyse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202007668] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Alexander Lipp
- Department of Chemistry Roy and Diana Vagelos Laboratories University of Pennsylvania 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Shorouk O. Badir
- Department of Chemistry Roy and Diana Vagelos Laboratories University of Pennsylvania 231 S. 34th Street Philadelphia PA 19104-6323 USA
| | - Gary A. Molander
- Department of Chemistry Roy and Diana Vagelos Laboratories University of Pennsylvania 231 S. 34th Street Philadelphia PA 19104-6323 USA
| |
Collapse
|
50
|
Lipp A, Badir SO, Molander GA. Stereoinduction in Metallaphotoredox Catalysis. Angew Chem Int Ed Engl 2020; 60:1714-1726. [PMID: 32677341 DOI: 10.1002/anie.202007668] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 11/07/2022]
Abstract
Metallaphotoredox catalysis has evolved into an enabling platform to construct C(sp3 )-hybridized centers under remarkably mild reaction conditions. The cultivation of abundant radical precursor feedstocks has significantly increased the scope of transition-metal-catalyzed cross-couplings, especially with respect to C(sp2 )-C(sp3 ) linkages. In recent years, considerable effort has been devoted to understanding the origin of stereoinduction in dual catalytic processes. In this context, Ni- and Cu-catalyzed transformations have played a predominant role exploiting this mode of catalysis. Herein, we provide a critical overview on recent progress in enantioselective bond formations enabled by Ni- and Cu-catalyzed manifolds. Furthermore, selected stereochemical control elements within the realm of diastereoselective transformations are discussed.
Collapse
Affiliation(s)
- Alexander Lipp
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Shorouk O Badir
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| | - Gary A Molander
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, 231 S. 34th Street, Philadelphia, PA, 19104-6323, USA
| |
Collapse
|