1
|
Yadav MS, Pandey VK, Jaiswal MK, Singh SK, Sharma A, Singh M, Tiwari VK. Late-Stage Functionalization Strategies of 1,2,3-Triazoles: A Post-Click Approach in Organic Synthesis. J Org Chem 2025; 90:5731-5762. [PMID: 40251004 DOI: 10.1021/acs.joc.5c00125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
The 1,2,3-triazole scaffolds are an important class of biologically privileged heterocyclic compounds with several key applications in chemistry, biology, medicine, agriculture, and material science. The "postclick" functionalization of 1,2,3-triazoles may emerge as a promising tactic for the construction of molecular architectures of therapeutics and is considered to be a growing area of investigation. This interest extends beyond the regioselective Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) method that involves the trapping of Cu(I)-triazole with suitable precursors. In this Perspective, we highlight the growing impact of postclick strategies in organic synthesis required for the late-stage functionalization of 1,2,3-triazoles with a hope that this emerging concept may provide ample opportunities in modern organic synthesis of notable applications in medicinal chemistry, biology, and materials science.
Collapse
Affiliation(s)
- Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sumit K Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Anindra Sharma
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
- Department of Chemistry, A.P.S.M. College, Barauni, Begusarai, Bihar 851112, India
| | - Mayank Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
2
|
Gorachand B, Lakshmi PR, Ramachary DB. Direct organocatalytic chemoselective synthesis of pharmaceutically active benzothiazole/benzoxazole-triazoles. Org Biomol Chem 2025; 23:2142-2152. [PMID: 39849920 DOI: 10.1039/d4ob01527d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
Benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles are well known for their wide range of applications in pharmaceutical and medicinal chemistry, but their high-yielding metal-free selective synthesis has always remained challenging as no comprehensive simple protocol has been outlined to date. Owing to their structural and medicinal importance, herein, we synthesized various benzothiazole and benzoxazole heterocyclic ring-containing 1,4,5-trisubstituted-1,2,3-triazoles in high to excellent yields with chemo-/regioselectivity from the library of benzothiazole/benzoxazole-ketones and aryl/alkyl-azides through an enolate-mediated organocatalytic azide-ketone [3 + 2]-cycloaddition under ambient conditions in a few hours. The commercial availability or quick synthesis of the starting materials and catalysts, a diverse substrate scope, chemo-/regioselectivity, quick synthesis of pharmaceutically active known compounds and their analogues, and numerous medicinal applications of functionalized benzothiazole/benzoxazole-triazoles are the key attractions of this metal-free organo-click reaction.
Collapse
Affiliation(s)
- Badaraita Gorachand
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | - Pandhiti R Lakshmi
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad-500 046, India.
| | | |
Collapse
|
3
|
Kumar N, Kumar A. Enzyme-Catalyzed Regioselective Synthesis of 4-Hetero-Functionalized 1,5-Disubstituted 1,2,3-Triazoles. Org Lett 2024; 26:7514-7519. [PMID: 39230948 DOI: 10.1021/acs.orglett.4c02341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Enzyme-catalyzed novel protocols for the regioselective construction of fully substituted 1,2,3-triazoles by employing 2-azido-1,3,5-triazine (ADT) as a 1,3-dipole for the cycloaddition reaction with the activated alkene in an aqueous medium have been developed. Various 4-heterosubstituted-1,2,3-triazoles were readily assembled in good to excellent yields with high regioselectivity. This reaction also features wide substrate scope, strong functional group tolerance, gram-scale synthesis, and an environmentally friendly process.
Collapse
Affiliation(s)
- Navaneet Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Picnic Spot Road, Lucknow 226015, India
| | - Atul Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Genoux A, Severin K. Nitrous oxide as diazo transfer reagent. Chem Sci 2024:d4sc04530k. [PMID: 39156938 PMCID: PMC11323477 DOI: 10.1039/d4sc04530k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Nitrous oxide, commonly known as "laughing gas", is formed as a by-product in several industrial processes. It is also readily available by thermal decomposition of ammonium nitrate. Traditionally, the chemical valorization of N2O is achieved via oxidation chemistry, where N2O acts as a selective oxygen atom transfer reagent. Recent results have shown that N2O can also function as an efficient diazo transfer reagent. Synthetically useful methods for synthesizing triazenes, N-heterocycles, and azo- or diazo compounds were developed. This review article summarizes significant advancements in this emerging field.
Collapse
Affiliation(s)
- Alexandre Genoux
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
5
|
Talukdar V, Mondal K, Kumar Dhaked D, Das P. CuI/DMAP-Catalyzed Oxidative Alkynylation of 7-Azaindoles: Synthetic Scope and Mechanistic Studies. Chem Asian J 2024:e202300987. [PMID: 38258444 DOI: 10.1002/asia.202300987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
An efficient and practical method for the N-alkynylation of 7-azaindoles has been established by using CuI/DMAP catalytic system at room temperature and in open air. This simple protocol has been successfully employed in the synthesis of a wide range of N-alkynylated 7-azaindoles with good yields. Also, this approach is well-suited for large-scale N-alkynylation reactions. The designed N-alkynylated 7-azaindoles were further subjected to Cu-/Ir-catalyzed alkyne-azide cycloaddition (CuAAC/IrAAC) or "click" reaction for the rapid synthesis of 1,4-/1,5 disubstituted 1,2,3-triazole decorated 7-azaindoles. A mechanistic study based on density functional theory (DFT) calculations and ultraviolet-visible (UV) spectroscopic studies revealed that the CuI and DMAP combination formed a [CuII (DMAP)2 I2 ] species, which acts as an active catalyst. The DFT method was used to assess the energetic viability of an organometallic in the C-N bond formation pathway originating from the [CuII (DMAP)2 I2 ] complex. We expect that the newly designed Cu/DMAP/alkyne system will offer valuable insights into the field of Cu-catalyzed transformations.
Collapse
Affiliation(s)
- Vishal Talukdar
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| | - Krishanu Mondal
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| | - Devendra Kumar Dhaked
- Department of Pharmacoinformatics, National Institute of Pharmaceutical Education and Research, (NIPER) Kolkata, 700054, Kolkata, India
| | - Parthasarathi Das
- Department of Chemistry and Chemical Biology, Indian Institution of Technology (Indian School of Mines), Dhanbad, 826004, Dhanbad (Jharkhand), India
| |
Collapse
|
6
|
Guo H, Zhou B, Chang J, Chang W, Feng J, Zhang Z. Multicomponent cyclization with azides to synthesize N-heterocycles. Org Biomol Chem 2023; 21:8054-8074. [PMID: 37801029 DOI: 10.1039/d3ob01115a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Heterocyclic compounds, both naturally derived and synthetically produced, constitute a wide variety of biologically active and industrially important compounds. The synthesis and application of heterocyclic compounds have garnered significant attention and experienced rapid growth in recent decades. Organic azides, due to their unique properties and distinctive reactivity, have become a convenient chemical tool for achieving a wide range of heterocycles such as triazoles and tetrazoles. Importantly, the field of multicomponent reaction (MCR) chemistry provides a convergent approach to access various N-heterocyclic scaffolds, offering novelty, diversity, and complexity. However, the exploration of MCR pathways to N-heterocyclic compounds remains incomplete. Here, we review the use of multicomponent reactions for the preparation of N-heterocycles. A wide range of reactions based on azides for the synthesis of various types of N-heterocyclic systems have been developed.
Collapse
Affiliation(s)
- Hong Guo
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Bei Zhou
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jingjing Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Wenxu Chang
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Jiyao Feng
- College of Science, China Agricultural University, Beijing 100193, China.
| | - Zhenhua Zhang
- College of Science, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Ye P, Li HL, Pu J, Chen L, Wang S, Xu ZY, Lou SJ, Xu DQ. Iridium-catalysed thioether-directed regioselective cycloaddition of internal alkynes with azides. Org Biomol Chem 2023; 21:1389-1394. [PMID: 36655625 DOI: 10.1039/d2ob02082c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We report herein a cationic iridium-catalysed thioether-directed alkyne-azide cycloaddition reaction. Diverse 2-alkynyl phenyl sulfides can undergo cycloaddition with different azides in a regioselective fashion. The reaction features high efficiency, a short reaction time, and a broad substrate scope, providing modular access to complex S-containing triazoles.
Collapse
Affiliation(s)
- Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Lei Chen
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shuang Wang
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Chen WY, Lin WH, Kuo CJ, Liang CF. Base-mediated ketenimine formation from N-sulfonylthioimidates for the synthesis of 5-amino-1-vinyl/aryl-1,2,3-triazoles. Chem Commun (Camb) 2023; 59:1297-1300. [PMID: 36633138 DOI: 10.1039/d2cc06708k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
N-Sulfonylthioimidate was converted to ketenimine under basic conditions. The reaction with vinyl/aryl azides was induced to cause dipolar cycloaddition to form 5-amino-1-vinyl/aryl-1,2,3-triazoles. The advantages of this method are high efficiency, structural diversity of products favorable yields and applicability to gram-scale operations.
Collapse
Affiliation(s)
- Wan-Yu Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wei-Han Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chia-Jou Kuo
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
9
|
Zeng L, Zhang F, Cui S. Construction of Axial Chirality via Click Chemistry: Rh-Catalyzed Enantioselective Synthesis of 1-Triazolyl-2-Naphthylamines. Org Lett 2023; 25:443-448. [PMID: 36627257 DOI: 10.1021/acs.orglett.2c04247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
A modular and practical click chemistry for atroposelective synthesis of 1-triazolyl-2-naphthylamines is developed. In this protocol, a variety of aromatic or aliphatic azides, and 1-alkynyl-2-naphthylamines could be assembled into valuable 1-triazlyl-2-naphthylamine scaffolds via a [3 + 2] cycloaddition under Rh-catalysis. This asymmetric click technology features easily accessible starting materials, mild reaction conditions, facile scalability, and good enantioselectivity. The good thermostability of products showcases great applicable potential, and the synthetic transformations further expand the molecular diversity of atropisomers.
Collapse
Affiliation(s)
- Linwei Zeng
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, China.,School of Pharmacy, Hangzhou Medical College, Hangzhou 310013, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
Bormann CT, Mathew C, António MM, Trotti A, Fadaei-Tirani F, Severin K. Synthesis and Reactivity of a Terminal 1-Alkynyl Triazene. J Org Chem 2022; 87:16882-16886. [PMID: 36459616 DOI: 10.1021/acs.joc.2c02121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
1-Alkynyl triazenes are versatile reagents in synthetic organic chemistry, but the structural diversity of this compound class has so far been limited. Herein, we describe the synthesis of a terminal 1-alkynyl triazene. Subsequent functionalization allows the preparation of 1-alkynyl triazenes with a range of functional groups including esters, alcohols, cyanides, phosphonates, and amides. Furthermore, the terminal 1-alkynyl triazene can be used for the synthesis of di- and triynes and for the preparation of (hetero)aromatic triazenes in metal-catalyzed cyclization reactions.
Collapse
Affiliation(s)
- Carl T Bormann
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Christeena Mathew
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Margarida M António
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aude Trotti
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Farzaneh Fadaei-Tirani
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Kay Severin
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Discovery of triazenyl triazoles as Na v1.1 channel blockers for treatment of epilepsy. Bioorg Med Chem Lett 2022; 75:128946. [PMID: 35985458 DOI: 10.1016/j.bmcl.2022.128946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022]
Abstract
The voltage-gated sodium (Nav) channel is one of most important targets for treatment of epilepsy, and rufinamide is an approved third-generation anti-seizure drug as Nav1.1 channel blocker. Herein, by triazenylation of rufinamide, we reported the triazenyl triazoles as new Nav1.1 channel blocker for treatment of epilepsy. Through the electrophysiological activity assay, compound 6a and 6e were found to modulate the inactivation voltage of Nav 1.1 channel with shift of -10.07 mv and -11.28 mV, respectively. In the pentylenetetrazole (PTZ) mouse model, 6a and 6e reduced the seizure level, prolonged seizure latency and improved the survival rate of epileptic mice at an intragastric administration of 50 mg/kg dosage. In addition, 6a also exhibited promising effectiveness in the maximal electroshock (MES) mouse model and possessed moderate pharmacokinetic profiles. These results demonstrated that 6a was a novel Nav1.1 channel blocker for treatment of epilepsy.
Collapse
|
12
|
Bao X, Zeng L, Jin J, Cui S. Facile Synthesis of γ-Butenolides and Maleic Anhydrides via Annulation of α-Keto Acids and Triazenyl Alkynes. J Org Chem 2022; 87:2821-2830. [DOI: 10.1021/acs.joc.1c02727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xiaodong Bao
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Linwei Zeng
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Jin
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
13
|
López Ortiz F, Navarro Y, Heras Jiménez I, Iglesias MJ. Synthesis of Diethoxy Arylphosphoryl Functionalized, Fully Substituted 5-Triazenyl-1,2,3-triazoles via Chelation-Assisted Interrupted Domino Reaction of ortho-Azidophosphonates with Copper(I) Alkynes. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1577-5999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
AbstractWe describe the synthesis of 1,4-disubstituted 5-triazenyl-1,2,3-triazoles bearing diethoxy arylphosphoryl moieties via a domino reaction between ortho-azidophosphonates and premade copper(I) alkynides involving chelation-assisted [3+2] cycloaddition followed by interception of the copper(I) triazolide generated by the azide. A resulting dicopper(I) triazoletriazenide complex has been characterized through X-ray diffraction.
Collapse
|
14
|
Mao Z, Zeng H. Gold-catalyzed synthesis of oxazoles from alkynyl triazenes and dioxazoles. RSC Adv 2022; 12:24857-24860. [PMID: 36128381 PMCID: PMC9428897 DOI: 10.1039/d2ra04559a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 11/21/2022] Open
Abstract
A gold-catalyzed regioselective [3 + 2] cycloaddition of alkynyl triazenes with 1,2,4-dioxazoles was developed.
Collapse
Affiliation(s)
- Zhenjun Mao
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
| | - Hao Zeng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
15
|
Lv L, Gao G, Luo Y, Mao K, Li Z. Three-Component Reactions of α-CF 3 Carbonyls, NaN 3, and Amines for the Synthesis of NH-1,2,3-Triazoles. J Org Chem 2021; 86:17197-17212. [PMID: 34724616 DOI: 10.1021/acs.joc.1c02288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The development of methods for the assembly of 1,2,3-triazoles is an important topic due to the broad applications of this motif in various scientific fields. In this work, we demonstrate that the three-component assembly of α-CF3 carbonyls, NaN3, and amines was achieved for the selective construction of a variety of 5-amino NH-1,2,3-triazoles under transition-metal-free and open-air conditions. The method provides a general and operationally simple route to functionalized biologically important molecules including carbohydrates, nucleosides, and peptides and exhibits broad substrate scopes. We further demonstrate that the NH-1,2,3-triazoles can be smoothly converted to the regiospecific N-2 alkylated 1,2,3-triazole products. Mechanistic studies based on experiments and density functional theory calculations showed that this transformation proceeds via defluorination-initiated programmed substitution/cyclization/H-transfer to give the 4,5-difunctionalized captodative NH-1,2,3-triazole product.
Collapse
Affiliation(s)
- Leiyang Lv
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Ge Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yani Luo
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Kuantao Mao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Zhiping Li
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
16
|
Duan X, Zheng N, Li M, Sun X, Lin Z, Qiu P, Song W. Remote ether groups-directed regioselective and chemoselective cycloaddition of azides and alkynes. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Phukan P, Kulshrestha A, Kumar A, chakraborti S, Chattopadhyay P, Sarma D. Cu(II) ionic liquid promoted Simple and Economical Synthesis of 1,4-disubstituted-1,2,3-triazoles with Low Catalyst Loading. J CHEM SCI 2021. [DOI: 10.1007/s12039-021-01980-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
|
19
|
Shiri P, Amani AM, Mayer-Gall T. A recent overview on the synthesis of 1,4,5-trisubstituted 1,2,3-triazoles. Beilstein J Org Chem 2021; 17:1600-1628. [PMID: 34354770 PMCID: PMC8290111 DOI: 10.3762/bjoc.17.114] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/29/2021] [Indexed: 12/20/2022] Open
Abstract
Diverse strategies for the efficient and attractive synthesis of a wide variety of relevant 1,4,5-trisubstituted 1,2,3-triazole molecules are reported. The synthesis of this category of diverse fully functionalized 1,2,3-triazoles has become a necessary and unique research subject in modern synthetic organic key transformations in academia, pharmacy, and industry. The current review aims to cover a wide literature survey of numerous synthetic strategies. Recent reports (2017–2021) in the field of 1,4,5-trisubstituted 1,2,3-triazoles are emphasized in this current review.
Collapse
Affiliation(s)
- Pezhman Shiri
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.,Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Thomas Mayer-Gall
- Department of Physical Chemistry and Center of Nanointegration (CENIDE), University of Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.,Deutsches Textilforschungszentrum Nord-West gGmbH, Adlerstr. 1, 47798 Krefeld, Germany
| |
Collapse
|
20
|
Gutiérrez‐González A, Destito P, Couceiro JR, Pérez‐González C, López F, Mascareñas JL. Bioorthogonal Azide-Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angew Chem Int Ed Engl 2021; 60:16059-16066. [PMID: 33971072 PMCID: PMC9545742 DOI: 10.1002/anie.202103645] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Indexed: 01/20/2023]
Abstract
Tailored ruthenium sandwich complexes bearing photoresponsive arene ligands can efficiently promote azide-thioalkyne cycloaddition (RuAtAC) when irradiated with UV light. The reactions can be performed in a bioorthogonal manner in aqueous mixtures containing biological components. The strategy can also be applied for the selective modification of biopolymers, such as DNA or peptides. Importantly, this ruthenium-based technology and the standard copper-catalyzed azide-alkyne cycloaddition (CuAAC) proved to be compatible and mutually orthogonal.
Collapse
Affiliation(s)
- Alejandro Gutiérrez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Cibran Pérez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
- Misión Biológica de GaliciaConsejo Superior de Investigaciones Científicas (CSIC)36080PontevedraSpain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química OrgánicaUniversidade de Santiago de Compostela15782Santiago de CompostelaSpain
| |
Collapse
|
21
|
Gutiérrez‐González A, Destito P, Couceiro JR, Pérez‐González C, López F, Mascareñas JL. Bioorthogonal Azide–Thioalkyne Cycloaddition Catalyzed by Photoactivatable Ruthenium(II) Complexes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Alejandro Gutiérrez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - José R. Couceiro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cibran Pérez‐González
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Misión Biológica de Galicia Consejo Superior de Investigaciones Científicas (CSIC) 36080 Pontevedra Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
22
|
Sai Allaka B, Basavoju S, Rama Krishna G. A Photoinduced Multicomponent Regioselective Synthesis of 1,4,5‐Trisubstituted‐1,2,3‐Triazoles: Transition Metal‐, Azide‐ and Oxidant‐Free Protocol. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Bhargava Sai Allaka
- Department of Chemistry National Institute of Technology Warangal Warangal-506 004 Telangana India
| | - Srinivas Basavoju
- Department of Chemistry National Institute of Technology Warangal Warangal-506 004 Telangana India
| | - Gamidi Rama Krishna
- Organic Chemistry Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road Pune Maharashtra 411 008 India
| |
Collapse
|
23
|
Vinyl and Alkynyl Triazenes: Synthesis, Reactivity, and Applications. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202011031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
24
|
Pulikkal Veettil S, Pookkandam Parambil S, Van Hoof M, Dehaen W. A Multicomponent Approach toward Angularly Fused/Linear Bitriazoles: A Cascade Cornforth Rearrangement and Triazolization. J Org Chem 2021; 86:4346-4354. [PMID: 33577310 DOI: 10.1021/acs.joc.0c03014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A multicomponent reaction of triazoloketones, primary amines, and 4-nitrophenyl azide was developed for the synthesis of hitherto unknown angularly fused/linear bitriazoles. The two-stage mechanism was well proven by the isolation of the intermediate. This sequential reaction consists of Cornforth rearrangement and triazolization, which has also been demonstrated in a one-pot manner.
Collapse
Affiliation(s)
- Santhini Pulikkal Veettil
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Shandev Pookkandam Parambil
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven B-3001, Belgium
| |
Collapse
|
25
|
Wang C, Lai Z, Xie H, Cui S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β‐Amino Amides. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Chaorong Wang
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
| | - Hujun Xie
- School of Food Science and Biotechnology Zhejiang Gongshang University 18 Xuezheng Street, Xiasha Higher Education Campus, Hangzhou 310018 Zhejiang Province China
| | - Sunliang Cui
- Institute of Drug Discovery and Design College of Pharmaceutical Sciences Zhejiang University 866 Yuhangtang Road, Hangzhou 310058 Zhejiang Province China
- Key Laboratory of Synthetic Chemistry of Natural Substances Shanghai Institute of Organic Chemistry Chinese Academy of Sciences China
| |
Collapse
|
26
|
Gribanov PS, Atoian EM, Philippova AN, Topchiy MA, Asachenko AF, Osipov SN. One‐Pot Synthesis of 5‐Amino‐1,2,3‐triazole Derivatives via Dipolar Azide−Nitrile Cycloaddition and Dimroth Rearrangement under Solvent‐Free Conditions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202001620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Pavel S. Gribanov
- A. N. Nesmeyanov Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Edita M. Atoian
- A. N. Nesmeyanov Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Anna N. Philippova
- A. N. Nesmeyanov Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
| | - Maxim A. Topchiy
- A. V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky Prospect 29 Moscow 119991 Russian Federation
| | - Andrey F. Asachenko
- A. V. Topchiev Institute of Petrochemical Synthesis Russian Academy of Sciences Leninsky Prospect 29 Moscow 119991 Russian Federation
| | - Sergey N. Osipov
- A. N. Nesmeyanov Institute of Organoelement compounds Russian Academy of Sciences Vavilov str. 28 119991 Moscow Russian Federation
- Peoples' Friendship University of Russia (RUDN University) Miklukho-Maklaya Str. 6 117198 Moscow Russian Federation
| |
Collapse
|
27
|
Wang C, Lai Z, Xie H, Cui S. Triazenyl Alkynes as Versatile Building Blocks in Multicomponent Reactions: Diastereoselective Synthesis of β-Amino Amides. Angew Chem Int Ed Engl 2021; 60:5147-5151. [PMID: 33289272 DOI: 10.1002/anie.202014686] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/02/2020] [Indexed: 12/31/2022]
Abstract
Multicomponent reactions (MCRs) are powerful tool for the construction of polyfunctional molecules in an operationally simple and atom-economic manner, and the discovery of novel MCRs requests various building blocks. Herein, triazenyl alkynes were disclosed as versatile building blocks in a multicomponent reaction with carboxylic acids, aldehydes and anilines to furnish β-amino amides with the achievement of high diastereoselectivity and structural diversity. In this process, triazenyl alkynes were bifunctional so that the alkyne moiety acts as C2 fragment and triazene serves as directing group to modulate the transition state thus achieving high diastereoselectivity, in consistence with DFT calculations. Furthermore, the triazenyl group also enables diverse late-stage transformation. This protocol opens a new vision for the discovery of building block and rational design of MCRs.
Collapse
Affiliation(s)
- Chaorong Wang
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Zhencheng Lai
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, 18 Xuezheng Street, Xiasha Higher Education Campus, Hangzhou, 310018, Zhejiang Province, China
| | - Sunliang Cui
- Institute of Drug Discovery and Design, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, Zhejiang Province, China.,Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, China
| |
Collapse
|
28
|
Navarro Y, García López J, Iglesias MJ, López Ortiz F. Chelation-Assisted Interrupted Copper(I)-Catalyzed Azide-Alkyne-Azide Domino Reactions: Synthesis of Fully Substituted 5-Triazenyl-1,2,3-triazoles. Org Lett 2021; 23:334-339. [PMID: 33356329 DOI: 10.1021/acs.orglett.0c03838] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the synthesis of 1,4-(disubstituted)-5-triazenyl-1,2,3-triazoles through a ligand-free domino copper(I)-catalyzed azide-alkyne-azide process of chelating aryl azides bearing N-P═O, P═O, and SO3H groups at the ortho position with a wide variety of acetylenes. DFT calculations reveal that Cu-chelation is a crucial factor in the interception of the CuAAC intermediate by the azide. The crystal structure of the catalytic species has been determined by X-ray diffraction.
Collapse
Affiliation(s)
- Yolanda Navarro
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Jesús García López
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - María José Iglesias
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| | - Fernando López Ortiz
- Área de Química Orgánica, Centro de Investigación CIAIMBITAL, Universidad de Almería, Carretera de Sacramento s/n, 04120 Almería, Spain
| |
Collapse
|
29
|
Wang S, Zhang Y, Liu G, Xu H, Song L, Chen J, Li J, Zhang Z. Transition-metal-free synthesis of 5-amino-1,2,3-triazoles via nucleophilic addition/cyclization of carbodiimides with diazo compounds. Org Chem Front 2021. [DOI: 10.1039/d0qo01288b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A facile and transition-metal-free synthesis of functionalized 5-amino-1,2,3-triazoles with good functional-group tolerance and regioselectivity via nucleophilic addition/cyclization has been described.
Collapse
Affiliation(s)
- Shilong Wang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Yuanyuan Zhang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Guixin Liu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Hui Xu
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Lijuan Song
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Jinchun Chen
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Jiazhu Li
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| | - Zhen Zhang
- College of Chemistry and Chemical Engineering
- Yantai University
- Yantai
- P. R. China
| |
Collapse
|
30
|
Reddy GS, Reddy LM, Kumar AS, Ramachary DB. Organocatalytic Selective [3 + 2] Cycloadditions: Synthesis of Functionalized 5-Arylthiomethyl-1,2,3-triazoles and 4-Arylthio-1,2,3-triazoles. J Org Chem 2020; 85:15488-15501. [DOI: 10.1021/acs.joc.0c02247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- G. Surendra Reddy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - L. Mallikarjuna Reddy
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | - A. Suresh Kumar
- Catalysis Laboratory, School of Chemistry, University of Hyderabad, Hyderabad 500 046, India
| | | |
Collapse
|
31
|
Ma J, Ding S. Transition Metal‐Catalyzed Cycloaddition of Azides with Internal Alkynes. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000486] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jiahao Ma
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering Beijing University of Chemical Technology North Third Ring Road 15 Beijing 100029 P. R. China
| | - Shengtao Ding
- State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering Beijing University of Chemical Technology North Third Ring Road 15 Beijing 100029 P. R. China
| |
Collapse
|
32
|
Suleymanov AA, Severin K. Vinyl and Alkynyl Triazenes: Synthesis, Reactivity, and Applications. Angew Chem Int Ed Engl 2020; 60:6879-6889. [PMID: 33142011 DOI: 10.1002/anie.202011031] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Indexed: 12/15/2022]
Abstract
Aromatic compounds containing triazenyl groups (N3 RR') have a profound impact on synthetic organic and medicinal chemistry. In contrast, the chemistry of vinyl and alkynyl triazenes was a largely uncharted territory until recently. The situation has changed over the last five years, and it has become apparent that vinyl and alkynyl triazenes are highly interesting compounds with a unique reactivity. The electron-donating properties of the triazenyl group provide alkynyl triazenes with an ynamide-like reactivity, which can be exploited in reactions of the triple bond. Vinyl triazenes, on the other hand, can be used for electrophilic vinylation reactions. The foundation for this new triazene chemistry are synthetic pathways which allow preparing vinyl and alkynyl triazenes in few steps from readily available starting materials. In this Minireview, we summarize recent developments in this area.
Collapse
Affiliation(s)
- Abdusalom A Suleymanov
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Kay Severin
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| |
Collapse
|
33
|
Okuda Y, Imafuku K, Tsuchida Y, Seo T, Akashi H, Orita A. Process-Controlled Regiodivergent Copper-Catalyzed Azide-Alkyne Cycloadditions: Tailor-made Syntheses of 4- and 5-Bromotriazoles from Bromo(phosphoryl)ethyne. Org Lett 2020; 22:5099-5103. [PMID: 32525324 DOI: 10.1021/acs.orglett.0c01681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We developed a regiodivergent syntheses of 4- and 5-bromo-substituted 1,2,3-triazoles in copper-catalyzed azide-alkyne cycloadditions (CuAACs) by taking advantage of bromo(phosphoryl)ethyne 1 as a bromoethyne equivalent. A one-shot dephosphorylative CuAAC of 1 afforded 4-bromotriazoles, which was transformed into a histone deacetylase 8 (HDAC8)-selective inhibitor, NCC-149. However, the direct CuAAC catalyzed by CuI/Cu(OAc)2 provided 5-bromo-4-phosphoryltriazoles. The consecutive nucleophilic substitution of the bromo group with thiols followed by MeOK-promoted dephosphorylation gave 5-thio-substituted triazoles.
Collapse
|
34
|
Costa ER, Andrade FCD, de Albuquerque DY, Ferreira LEM, Lima TM, Lima CGS, Silva DSA, Urquieta-González EA, Paixão MW, Schwab RS. Greener synthesis of 1,2,3-triazoles using a copper(i)-exchanged magnetically recoverable β-zeolite as catalyst. NEW J CHEM 2020. [DOI: 10.1039/d0nj02473b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A novel magnetically recoverable Cu(i)-exchanged β-zeolite catalyst was prepared, characterized and applied for the synthesis of 1,2,3-triazoles via the one-pot three-component reaction.
Collapse
Affiliation(s)
- Elizama R. Costa
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem)
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- Rodovia Washington Luís
- São Carlos
| | - Floyd C. D. Andrade
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem)
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- Rodovia Washington Luís
- São Carlos
| | - Danilo Yano de Albuquerque
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem)
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- Rodovia Washington Luís
- São Carlos
| | | | - Thiago M. Lima
- Departamento de Química Inorgânica
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Carolina G. S. Lima
- Departamento de Química Orgânica
- Universidade Federal Fluminense
- Niterói-RJ
- Brazil
| | - Domingos S. A. Silva
- Research Center on Advanced Materials and Energy
- Universidade Federal de São Carlos (DEQ)
- São Carlos
- Brazil
| | | | - Márcio W. Paixão
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem)
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- Rodovia Washington Luís
- São Carlos
| | - Ricardo S. Schwab
- Centre of Excellence for Research in Sustainable Chemistry (CERSusChem)
- Departamento de Química
- Universidade Federal de São Carlos – UFSCar
- Rodovia Washington Luís
- São Carlos
| |
Collapse
|