1
|
Hu Z, Sang JW, Xie S, Song Y, Li Q, Wang B, Xu ZY, Zhang Y, Liu R, Zhang WD, Wang J. A General Direct Aldehyde C-H Alkylation via TBADT-Nickel Synergistic Catalysis. Org Lett 2025; 27:4675-4681. [PMID: 40275633 DOI: 10.1021/acs.orglett.5c00949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Herein, we present a nickel/tetrabutylammonium decatungstate (TBADT)-catalyzed protocol for general C-H alkylation of aldehydes, enabling the efficient synthesis of aliphatic ketones through ligand-controlled cross-coupling. This mild and cost-effective methodology demonstrates broad substrate compatibility with various commercially available aldehydes and both activated and unactivated alkyl bromides, delivering target products in high yields. Notably, the practical utility of this catalytic system has been highlighted through a concise two-step synthesis of the commercially valuable musk odorant Aurelione from readily available starting materials.
Collapse
Affiliation(s)
- Zhimin Hu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Ji-Wei Sang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Shize Xie
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yujia Song
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Qiuhao Li
- Asymchem Laboratories (Tianjin) Co., Ltd., Tianjin 300462, China
| | - Bing Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Zheng-Yang Xu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Yu Zhang
- Asymchem Laboratories (Tianjin) Co., Ltd., Tianjin 300462, China
| | - Runhui Liu
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| | - Wei-Dong Zhang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
- Asymchem Laboratories (Tianjin) Co., Ltd., Tianjin 300462, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jinxin Wang
- Department of Phytochemistry, School of Pharmacy, Second Military Medical University, Shanghai 200433, China
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Hu T, Beluze C, Fagué V, Kambire OE, Bouyssi D, Monteiro N, Amgoune A. Nickel-Catalyzed Photoredox Allenylation of Alkyl Halides. Org Lett 2024; 26:9519-9524. [PMID: 39454201 DOI: 10.1021/acs.orglett.4c03512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2024]
Abstract
We report a dual Ni/photoredox-catalyzed cross-coupling method for propargyl carbonates and nonactivated alkyl bromides, facilitating the synthesis of a variety of substituted allenes under mild and practical conditions. Mechanistically, the reaction integrates Ni-catalyzed activation of the propargyl electrophile via SN2' oxidative addition at Ni(I) with silyl radical-induced activation of the alkyl halide through halogen-atom transfer. This methodology provides a gentle approach for introducing allenyl groups into complex halogenated aliphatic molecules, offering further opportunities for derivatization.
Collapse
Affiliation(s)
- Tingjun Hu
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Camille Beluze
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Vincent Fagué
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Oho Eliantine Kambire
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Universite Claude Bernard Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS. 1, rue Victor Grignard, 69100 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
4
|
Charboneau DJ, Huang H, Barth EL, Deziel AP, Germe CC, Hazari N, Jia X, Kim S, Nahiyan S, Birriel-Rodriguez L, Uehling MR. Homogeneous Organic Reductant Based on 4,4'- tBu 2-2,2'-Bipyridine for Cross-Electrophile Coupling. Tetrahedron Lett 2024; 145:155159. [PMID: 39036418 PMCID: PMC11258959 DOI: 10.1016/j.tetlet.2024.155159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The synthesis of a new homogeneous reductant based on 4,4'-tBu2-2,2'-bipyridine, tBu-OED4, is reported. tBu-OED4 was prepared on a multigram scale in two steps from inexpensive and commercially available starting materials, with no chromatography required for purification. tBu-OED4 has a reduction potential of -1.33 V (vs Ferrocenium/Ferrocene) and is soluble in a range of common organic solvents. We demonstrate that tBu-OED4 can facilitate Ni/Co dual-catalyzed C(sp2)-C(sp3) cross-electrophile coupling reactions and is highly functional group tolerant. tBu-OED4 is expected to be a valuable addition to the set of homogeneous reductants available for organic transformations.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Haotian Huang
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Emily L Barth
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Anthony P Deziel
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Cameron C Germe
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Nilay Hazari
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Xiaofan Jia
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Seoyeon Kim
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | - Sheikh Nahiyan
- Department of Chemistry, Yale University, P. O. Box 208107, New Haven, Connecticut, 06520, USA
| | | | - Mycah R Uehling
- Merck & Co., Inc., Discovery Chemistry, HTE and Lead Discovery Capabilities, Rahway, New Jersey, 07065, USA
| |
Collapse
|
5
|
Tripathy A, Bisoyi A, P A, Venugopal S, Yatham VR. Synergistic Merger of Ketone, Halogen Atom Transfer (XAT), and Nickel-Mediated C(sp 3)-C(sp 2) Cross-Electrophile Coupling Enabled by Light. ACS ORGANIC & INORGANIC AU 2024; 4:229-234. [PMID: 38585508 PMCID: PMC10996044 DOI: 10.1021/acsorginorgau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 11/30/2023] [Accepted: 12/01/2023] [Indexed: 04/09/2024]
Abstract
In the present manuscript, we have developed a unique catalytic system by merging photoexcited ketone catalysis, halogen atom transfer (XAT), and nickel catalysis to forge C(sp3)-C(sp2) cross-electrophile coupling products from unactivated iodoalkanes and (hetero)aryl bromides. The synergistic catalytic system works under mild reaction conditions and tolerates a variety of functional groups; moreover, this strategy allows the late-stage modification of medicinally relevant molecules. Preliminary mechanistic studies reveal the role of the α-aminoalkyl radical, which further participates in the XAT process with alkyl iodides to generate the desired alkyl radical, which eventually intercepts with the nickel catalytic cycle to liberate the products in good to excellent yields.
Collapse
Affiliation(s)
- Alisha
Rani Tripathy
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Akash Bisoyi
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Arya P
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Sreelakshmi Venugopal
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School
of Chemistry, Indian Institute of Science
Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
6
|
Mouat JM, Widness JK, Enny DG, Meidenbauer MT, Awan F, Krauss TD, Weix DJ. CdS Quantum Dots for Metallaphotoredox-Enabled Cross-Electrophile Coupling of Aryl Halides with Alkyl Halides. ACS Catal 2023; 13:9018-9024. [PMID: 38283073 PMCID: PMC10812861 DOI: 10.1021/acscatal.3c01984] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Semiconductor quantum dots (QDs) offer many advantages as photocatalysts for synthetic photoredox catalysis, but no reports have explored the use of QDs with nickel catalysts for C-C bond formation. We show here that 5.7 nm CdS QDs are robust photocatalysts for photoredox-promoted cross-electrophile coupling (40 000 TON). These conditions can be utilized on small scale (96-well plate) or adapted to flow. NMR studies show that triethanolamine (TEOA) capped QDs are the active catalyst and that TEOA can displace native phosphonate and carboxylate ligands, demonstrating the importance of QD surface chemistry.
Collapse
Affiliation(s)
- Julianna M. Mouat
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | - Jonas K. Widness
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | - Daniel G. Enny
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| | | | - Farwa Awan
- Department of Chemistry, University of Rochester, Rochester, NY 14627 USA
| | - Todd D. Krauss
- Department of Chemistry, University of Rochester, Rochester, NY 14627 USA
- Institute of Optics, University of Rochester, Rochester, NY 14627 USA
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave, Madison, WI 53706 USA
| |
Collapse
|
7
|
Wu A, Yamamoto H. Super silyl-based stable protecting groups for both the C- and N-terminals of peptides: applied as effective hydrophobic tags in liquid-phase peptide synthesis. Chem Sci 2023; 14:5051-5061. [PMID: 37206381 PMCID: PMC10189889 DOI: 10.1039/d3sc01239e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 04/14/2023] [Indexed: 05/21/2023] Open
Abstract
Tag-assisted liquid-phase peptide synthesis (LPPS) is one of the important processes in peptide synthesis in pharmaceutical discovery. Simple silyl groups have positive effects when incorporated in the tags due to their hydrophobic properties. Super silyl groups contain several simple silyl groups and play an important role in modern aldol reactions. In view of the unique structural architecture and hydrophobic properties of the super silyl groups, herein, two new types of stable super silyl-based groups (tris(trihexylsilyl)silyl group and propargyl super silyl group) were developed as hydrophobic tags to increase the solubility in organic solvents and the reactivity of peptides during LPPS. The tris(trihexylsilyl)silyl group can be installed at the C-terminal of the peptides in ester form and N-terminal in carbamate form for peptide synthesis and it is compatible with hydrogenation conditions (Cbz chemistry) and Fmoc-deprotection conditions (Fmoc chemistry). The propargyl super silyl group is acid-resistant, which is compatible with Boc chemistry. Both tags are complementary to each other. The preparation of these tags requires less steps than previously reported tags. Nelipepimut-S was synthesized successfully with different strategies using these two types of super silyl tags.
Collapse
Affiliation(s)
- An Wu
- Peptide Research Centre, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| | - Hisashi Yamamoto
- Peptide Research Centre, Chubu University 1200 Matsumoto-cho Kasugai Aichi 487-8501 Japan
| |
Collapse
|
8
|
Wang J, Ehehalt LE, Huang Z, Beleh OM, Guzei IA, Weix DJ. Formation of C(sp 2)-C(sp 3) Bonds Instead of Amide C-N Bonds from Carboxylic Acid and Amine Substrate Pools by Decarbonylative Cross-Electrophile Coupling. J Am Chem Soc 2023; 145:9951-9958. [PMID: 37126234 PMCID: PMC10175239 DOI: 10.1021/jacs.2c11552] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Carbon-heteroatom bonds, most often amide and ester bonds, are the standard method to link together two complex fragments because carboxylic acids, amines, and alcohols are ubiquitous and the reactions are reliable. However, C-N and C-O linkages are often a metabolic liability because they are prone to hydrolysis. While C(sp2)-C(sp3) linkages are preferable in many cases, methods to make them require different starting materials or are less functional-group-compatible. We show here a new, decarbonylative reaction that forms C(sp2)-C(sp3) bonds from the reaction of activated carboxylic acids (via 2-pyridyl esters) with activated alkyl groups derived from amines (via N-alkyl pyridinium salts) and alcohols (via alkyl halides). Key to this process is a remarkably fast, reversible oxidative addition/decarbonylation sequence enabled by pyridone and bipyridine ligands that, under reaction conditions that purge CO(g), lead to a selective reaction. The conditions are mild enough to allow coupling of more complex fragments, such as those used in drug development, and this is demonstrated in the coupling of a typical Proteolysis Targeting Chimera (PROTAC) anchor with common linkers via C-C linkages.
Collapse
Affiliation(s)
| | | | - Zhidao Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Omar M. Beleh
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
9
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
10
|
Chen Q, You J, Tian T, Li Z, Kashihara M, Mori H, Nishihara Y. Nickel-Catalyzed Decarbonylative Reductive Alkylation of Aroyl Fluorides with Alkyl Bromides. Org Lett 2022; 24:9259-9263. [PMID: 36516299 DOI: 10.1021/acs.orglett.2c03823] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
This paper describes the nickel-catalyzed reductive alkylation of aroyl fluorides with alkyl bromides in a decarbonylative manner. In this reaction, various functional groups are well tolerated and the C(sp2)-C(sp3) bond can be constructed directly without the use of organometallic reagents. The present reaction is a cross-electrophile coupling via the radical pathway, affording the corresponding alkylarenes in moderate to good yields.
Collapse
Affiliation(s)
- Qiang Chen
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Jingwen You
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Tian Tian
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Zhenyao Li
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Myuto Kashihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mori
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Yasushi Nishihara
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
11
|
Jones A, Williams MTJ, Morrill LC, Browne DL. Mechanical Activation of Zero-Valent Metal Reductants for Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2022; 12:13681-13689. [PMID: 36366760 PMCID: PMC9638985 DOI: 10.1021/acscatal.2c03117] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/27/2022] [Indexed: 12/04/2022]
Abstract
The cross-electrophile coupling of either twisted-amides or heteroaryl halides with alkyl halides, enabled by ball-milling, is herein described. The operationally simple nickel-catalyzed process has no requirement for inert atmosphere or dry solvents and delivers the corresponding acylated or heteroarylated products across a broad range of substrates. Key to negating the necessity of inert reaction conditions is the mechanical activation of the raw metal terminal reductant: manganese in the case of twisted amides and zinc for heteroaryl halides.
Collapse
Affiliation(s)
- Andrew
C. Jones
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Matthew T. J. Williams
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Louis C. Morrill
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K.
| | - Duncan L. Browne
- School
of Pharmacy, University College London, 29-39 Brunswick Square, Bloomsbury, London, WC1N 1AX, U.K.
| |
Collapse
|
12
|
Kerackian T, Bouyssi D, Pilet G, Médebielle M, Monteiro N, Vantourout JC, Amgoune A. Nickel-Catalyzed Electro-Reductive Cross-Coupling of Aliphatic N-Acyl Imides with Alkyl Halides as a Strategy for Dialkyl Ketone Synthesis: Scope and Mechanistic Investigations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Taline Kerackian
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Didier Bouyssi
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Guillaume Pilet
- Université Lyon, Université Lyon 1, Laboratoire des Multimatériaux et Interfaces (LMI, UMR 5615 du CNRS), 6 rue Victor Grignard, 69100 Villeurbanne, France
| | - Maurice Médebielle
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Nuno Monteiro
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Julien C. Vantourout
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
| | - Abderrahmane Amgoune
- Université Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), 1 rue Victor Grignard, 69100 Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231 Paris, France
| |
Collapse
|
13
|
Luridiana A, Mazzarella D, Capaldo L, Rincón JA, García-Losada P, Mateos C, Frederick MO, Nuño M, Jan Buma W, Noël T. The Merger of Benzophenone HAT Photocatalysis and Silyl Radical-Induced XAT Enables Both Nickel-Catalyzed Cross-Electrophile Coupling and 1,2-Dicarbofunctionalization of Olefins. ACS Catal 2022; 12:11216-11225. [PMID: 36158902 PMCID: PMC9486949 DOI: 10.1021/acscatal.2c03805] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Indexed: 12/17/2022]
Abstract
![]()
A strategy for both
cross-electrophile coupling and 1,2-dicarbofunctionalization
of olefins has been developed. Carbon-centered radicals are generated
from alkyl bromides by merging benzophenone hydrogen atom transfer
(HAT) photocatalysis and silyl radical-induced halogen atom transfer
(XAT) and are subsequently intercepted by a nickel catalyst to forge
the targeted C(sp3)–C(sp2) and C(sp3)–C(sp3) bonds. The mild protocol is fast
and scalable using flow technology, displays broad functional group
tolerance, and is amenable to a wide variety of medicinally relevant
moieties. Mechanistic investigations reveal that the ketone catalyst,
upon photoexcitation, is responsible for the direct activation of
the silicon-based XAT reagent (HAT-mediated XAT) that furnishes the
targeted alkyl radical and is ultimately involved in the turnover
of the nickel catalytic cycle.
Collapse
Affiliation(s)
- Alberto Luridiana
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Daniele Mazzarella
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Luca Capaldo
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Juan A. Rincón
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Pablo García-Losada
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Carlos Mateos
- Centro de Investigación Lilly S.A., Avda. de la Industria 30, Alcobendas-Madrid 28108, Spain
| | - Michael O. Frederick
- Small Molecule Design and Development, Eli Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Manuel Nuño
- Vapourtec Ltd. Park Farm Business Centre, Fornham St Genevieve, Bury St Edmunds, Suffolk IP28 6TS, U.K
| | - Wybren Jan Buma
- Molecular Photonics, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Timothy Noël
- Flow Chemistry Group, Van’t Hoff Institute for Molecular Sciences (HIMS), University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
14
|
Ben-Tal Y, Lloyd-Jones GC. Kinetics of a Ni/Ir-Photocatalyzed Coupling of ArBr with RBr: Intermediacy of ArNi II(L)Br and Rate/Selectivity Factors. J Am Chem Soc 2022; 144:15372-15382. [PMID: 35969479 PMCID: PMC9413222 DOI: 10.1021/jacs.2c06831] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
The Ni/Ir-photocatalyzed coupling of an aryl bromide
(ArBr) with
an alkyl bromide (RBr) has been analyzed using in situ LED-19F NMR spectroscopy. Four components (light, [ArBr],
[Ni], [Ir]) are found to control the rate of ArBr consumption, but
not the product selectivity, while two components ([(TMS)3SiH], [RBr]) independently control the product selectivity, but not
the rate. A major resting state of nickel has been identified as ArNiII(L)Br, and 13C-isotopic entrainment is used to
show that the complex undergoes Ir-photocatalyzed conversion to products
(Ar-R, Ar-H, Ar-solvent) in competition with the release of ArBr.
A range of competing absorption and quenching effects lead to complex
correlations between the Ir and Ni catalyst loadings and the reaction
rate. Differences in the Ir/Ni Beer–Lambert absorption profiles
allow the rate to be increased by the use of a shorter-wavelength
light source without compromising the selectivity. A minimal kinetic
model for the process allows simulation of the reaction and provides
insights for optimization of these processes in the laboratory.
Collapse
Affiliation(s)
- Yael Ben-Tal
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Guy C Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|
15
|
Geniller L, Taillefer M, Jaroschik F, Prieto A. Photo‐Induced Halogen‐Atom Transfer: Generation of Halide Radicals for Selective Hydrohalogenation Reactions. Chemistry 2022; 28:e202201495. [PMID: 35612405 PMCID: PMC9401045 DOI: 10.1002/chem.202201495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Indexed: 01/08/2023]
Abstract
The first photo‐mediated process enabling the generation of halide radicals by Halogen‐Atom Transfer (XAT) is described. Contrary to radical transformations involving XAT reactivity, which exploit stable carbon radicals, this unique approach uses 1,2‐dihaloethanes for the generation of unstable carbon radicals by XAT. These transient radicals then undergo β‐scission with release of ethylene and formation of more stable halide radicals which have been used in selective hydrohalogenations of a large number of unsaturated hydrocarbons, including Michael acceptors, unactivated alkenes and alkynes. This hydrohalogenation is tolerant of a broad range of functionalities and is believed to proceed through a radical‐chain manifold that propagates by the use of silane derivatives.
Collapse
Affiliation(s)
| | - Marc Taillefer
- ICGM Univ Montpellier, CNRS, ENSCM 34000 Montpellier France
| | | | - Alexis Prieto
- ICGM Univ Montpellier, CNRS, ENSCM 34000 Montpellier France
| |
Collapse
|
16
|
Zhou X, Guo L, Zhang H, Xia RY, Yang C, Xia W. Nickel‐Catalyzed Reductive Acylation of Carboxylic Acids with Alkyl Halides and
N
‐Hydroxyphthalimide Esters Enabled by Electrochemical Process. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Zhou
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Haoxiang Zhang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Raymond Yang Xia
- The Affiliated International School of Shenzhen University Shenzhen 518054 People's Republic of China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
17
|
Mechanochemical Solvent‐Free Suzuki–Miyaura Cross‐Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
18
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox‐Assisted Reductive Acyl Cross‐Coupling Strategy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202114731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials Ministry of Education College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica School of Chemistry and Chemical Engineering Huazhong University of Science and Technology (HUST) 1037 Luoyu Road Wuhan 430074 P. R. China
| |
Collapse
|
19
|
Qu CH, Huang R, Liu Y, Liu T, Song GT. Bromine-radical-induced C sp2–H difluoroalkylation of quinoxalinones and hydrazones through visible-light-promoted C sp3–Br bond homolysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00710j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromine radicals derived from photo-induced Csp3–Br bond homolysis can mediate H abstraction/imine radical formation from quinoxalinones and hydrazones, which in turn quench the in situ-generated difluoroalkyl radicals to furnish the products.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
20
|
Sustainable radical approaches for cross electrophile coupling to synthesize trifluoromethyl- and allyl-substituted tert-alcohols. iScience 2021; 24:103388. [PMID: 34841228 PMCID: PMC8605352 DOI: 10.1016/j.isci.2021.103388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 09/14/2021] [Accepted: 10/27/2021] [Indexed: 10/27/2022] Open
Abstract
Trifluoromethylated molecules have gained privileged recognition among the medicinal and pharmaceutical chemists. Sustainable photoredox- and electrochemical processes were employed to facilitate the relatively less explored radical cross-electrophile coupling to access trifluoromethyl- and allyl-substituted tert-alcohols. Reactions proceed through trifluoromethyl ketyl radical and allyl radical intermediates, which undergo challenging radical-radical cross-coupling. The developed transformations are mild and chemo-selective to give cross-coupled products and deliver a wide range of valuable trifluoromethyl- and allyl-containing tertiary alcohols. Both processes can also be applied for the synthesis of amine variant containing trifluoromethyl and allyl moiety, which is considered as amide bioisostere.
Collapse
|
21
|
Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021; 143:21024-21036. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cameron C Germe
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
22
|
Juliá F, Constantin T, Leonori D. Applications of Halogen-Atom Transfer (XAT) for the Generation of Carbon Radicals in Synthetic Photochemistry and Photocatalysis. Chem Rev 2021; 122:2292-2352. [PMID: 34882396 DOI: 10.1021/acs.chemrev.1c00558] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The halogen-atom transfer (XAT) is one of the most important and applied processes for the generation of carbon radicals in synthetic chemistry. In this review, we summarize and highlight the most important aspects associated with XAT and the impact it has had on photochemistry and photocatalysis. The organization of the material starts with the analysis of the most important mechanistic aspects and then follows a subdivision based on the nature of the reagents used in the halogen abstraction. This review aims to provide a general overview of the fundamental concepts and main agents involved in XAT processes with the objective of offering a tool to understand and facilitate the development of new synthetic radical strategies.
Collapse
Affiliation(s)
- Fabio Juliá
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Timothée Constantin
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Daniele Leonori
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
23
|
Zhang J, Zhang P, Shao L, Wang R, Ma Y, Szostak M. Mechanochemical Solvent-Free Suzuki-Miyaura Cross-Coupling of Amides via Highly Chemoselective N-C Cleavage. Angew Chem Int Ed Engl 2021; 61:e202114146. [PMID: 34877756 DOI: 10.1002/anie.202114146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Indexed: 12/14/2022]
Abstract
Although cross-coupling reactions of amides by selective N-C cleavage are one of the most powerful and burgeoning areas in organic synthesis due to the ubiquity of amide bonds, the development of mechanochemical, solid-state methods remains a major challenge. Herein, we report the first mechanochemical strategy for highly chemoselective, solvent-free palladium-catalyzed cross-coupling of amides by N-C bond activation. The method is conducted in the absence of external heating, for short reaction time and shows excellent chemoselectivity for σ N-C bond activation. The reaction shows excellent functional group tolerance and can be applied to late-stage functionalization of complex APIs and sequential orthogonal cross-couplings exploiting double solventless solid-state methods. The results extend mechanochemical reaction environments to advance the chemical repertoire of N-C bond interconversions to solid-state environmentally friendly mechanochemical methods.
Collapse
Affiliation(s)
- Jin Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Pei Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Lei Shao
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ruihong Wang
- Institute of Frontier Science and Technology Transfer, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Yangmin Ma
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey, 07102, United States
| |
Collapse
|
24
|
Xi X, Luo Y, Li W, Xu M, Zhao H, Chen Y, Zheng S, Qi X, Yuan W. From Esters to Ketones via a Photoredox-Assisted Reductive Acyl Cross-Coupling Strategy. Angew Chem Int Ed Engl 2021; 61:e202114731. [PMID: 34783143 DOI: 10.1002/anie.202114731] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Indexed: 12/14/2022]
Abstract
A method was developed for ketone synthesis via a photoredox-assisted reductive acyl cross-coupling (PARAC) using a nickel/photoredox dual-catalyzed cross-electrophile coupling of two different carboxylic acid esters. A variety of aryl, 1°, 2°, 3°-alkyl 2-pyridyl esters can act as acyl electrophiles while N-(acyloxy)phthalimides (NHPI esters) act as 1°, 2°, 3°-radical precursors. Our PARAC strategy provides an alternative and reliable way to synthesize various sterically congested 3°-3°, 3°-2°, and aryl-3° ketones under mild and highly unified conditions, which have been otherwise difficult to access. The combined experimental and computational studies identified a Ni0 /NiI /NiIII pathway for ketone formation.
Collapse
Affiliation(s)
- Xiaoxiang Xi
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yixin Luo
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weirong Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Minghao Xu
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hongping Zhao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Yukun Chen
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Songlin Zheng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| | - Xiaotian Qi
- Engineering Research Center of Organosilicon Compounds & Materials, Ministry of Education, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Weiming Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, 430074, P. R. China
| |
Collapse
|
25
|
Abstract
In this contribution, we provide a comprehensive overview of acyclic twisted amides, covering the literature since 1993 (the year of the first recognized report on acyclic twisted amides) through June 2020. The review focuses on classes of acyclic twisted amides and their key structural properties, such as amide bond twist and nitrogen pyramidalization, which are primarily responsible for disrupting nN to π*C═O conjugation. Through discussing acyclic twisted amides in comparison with the classic bridged lactams and conformationally restricted cyclic fused amides, the reader is provided with an overview of amidic distortion that results in novel conformational features of acyclic amides that can be exploited in various fields of chemistry ranging from organic synthesis and polymers to biochemistry and structural chemistry and the current position of acyclic twisted amides in modern chemistry.
Collapse
Affiliation(s)
- Guangrong Meng
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jin Zhang
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
- College of Chemistry and Chemical Engineering, Key Laboratory of Chemical Additives for China National Light Industry, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
26
|
Rahman MM, Pyle DJ, Bisz E, Dziuk B, Ejsmont K, Lalancette R, Wang Q, Chen H, Szostak R, Szostak M. Evaluation of Cyclic Amides as Activating Groups in N-C Bond Cross-Coupling: Discovery of N-Acyl-δ-valerolactams as Effective Twisted Amide Precursors for Cross-Coupling Reactions. J Org Chem 2021; 86:10455-10466. [PMID: 34275281 DOI: 10.1021/acs.joc.1c01110] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The development of efficient methods for facilitating N-C(O) bond activation in amides is an important objective in organic synthesis that permits the manipulation of the traditionally unreactive amide bonds. Herein, we report a comparative evaluation of a series of cyclic amides as activating groups in amide N-C(O) bond cross-coupling. Evaluation of N-acyl-imides, N-acyl-lactams, and N-acyl-oxazolidinones bearing five- and six-membered rings using Pd(II)-NHC and Pd-phosphine systems reveals the relative reactivity order of N-activating groups in Suzuki-Miyaura cross-coupling. The reactivity of activated phenolic esters and thioesters is evaluated for comparison in O-C(O) and S-C(O) cross-coupling under the same reaction conditions. Most notably, the study reveals N-acyl-δ-valerolactams as a highly effective class of mono-N-acyl-activated amide precursors in cross-coupling. The X-ray structure of the model N-acyl-δ-valerolactam is characterized by an additive Winkler-Dunitz distortion parameter Σ(τ+χN) of 54.0°, placing this amide in a medium distortion range of twisted amides. Computational studies provide insight into the structural and energetic parameters of the amide bond, including amidic resonance, N/O-protonation aptitude, and the rotational barrier around the N-C(O) axis. This class of N-acyl-lactams will be a valuable addition to the growing portfolio of amide electrophiles for cross-coupling reactions by acyl-metal intermediates.
Collapse
Affiliation(s)
- Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Daniel J Pyle
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland.,Department of Chemistry, Wroclaw University of Science and Technology, Norwida 4/6 14, Wroclaw 50-373, Poland
| | - Krzysztof Ejsmont
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Qi Wang
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Hao Chen
- Department of Chemistry & Environmental Science, New Jersey Institute of Technology, Newark, New Jersey 07102, United States
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
27
|
Zhang XY, Wu XY, Zhang B, Wei Y, Shi M. Silyl Radical-Mediated Carbocyclization of Acrylamide-/Vinyl Sulfonamide-Attached Alkylidenecyclopropanes via Photoredox Catalysis with a Catalytic Amount of Silane Reagent. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00240] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Xiao-Yu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Xiao-Yun Wu
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Bo Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
| | - Yin Wei
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals, School of Chemistry & Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, People’s Republic of China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, University of Chinese Academy of Sciences, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
| |
Collapse
|
28
|
Yu X, Lübbesmeyer M, Studer A. Oligosilanes as Silyl Radical Precursors through Oxidative Si−Si Bond Cleavage Using Redox Catalysis. Angew Chem Int Ed Engl 2020; 60:675-679. [DOI: 10.1002/anie.202011738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/14/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Xiaoye Yu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Maximilian Lübbesmeyer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
29
|
Yu X, Lübbesmeyer M, Studer A. Oligosilanes as Silyl Radical Precursors through Oxidative Si−Si Bond Cleavage Using Redox Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011738] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Xiaoye Yu
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Maximilian Lübbesmeyer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| | - Armido Studer
- Organisch-Chemisches Institut Westfälische Wilhelms-Universität Corrensstrasse 40 48149 Münster Germany
| |
Collapse
|
30
|
Boit TB, Bulger AS, Dander JE, Garg NK. Activation of C-O and C-N Bonds Using Non-Precious-Metal Catalysis. ACS Catal 2020; 10:12109-12126. [PMID: 33868770 PMCID: PMC8049354 DOI: 10.1021/acscatal.0c03334] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Timothy B Boit
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Ana S Bulger
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Jacob E Dander
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| | - Neil K Garg
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
31
|
Amgoune A, Kerackian T, Reina A, Krachko T, Boddaert H, Bouyssi D, Monteiro N. C(sp3)–H Bond Acylation with N-Acyl Imides under Photoredox/ Nickel Dual Catalysis. Synlett 2020. [DOI: 10.1055/s-0040-1707301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA novel Ni/photoredox-catalyzed acylation of aliphatic substrates, including simple alkanes and dialkyl ethers, has been developed. The method combines C–N bond activation of amides with a radical relay mechanism involving hydrogen-atom transfer. The protocol is operationally simple, employs bench-stable N-acyl imides as acyl-transfer reagents, and permits facile access to alkyl ketones under very mild conditions.
Collapse
Affiliation(s)
- Abderrahmane Amgoune
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
- Institut Universitaire de France (IUF)
| | - Taline Kerackian
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
| | - Antonio Reina
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
| | - Tetiana Krachko
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
| | - Hugo Boddaert
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
| | - Didier Bouyssi
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
| | - Nuno Monteiro
- Univ Lyon, Université Lyon 1, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR 5246 du CNRS
| |
Collapse
|
32
|
|
33
|
Parasram M, Shields BJ, Ahmad O, Knauber T, Doyle AG. Regioselective Cross-Electrophile Coupling of Epoxides and (Hetero)aryl Iodides via Ni/Ti/Photoredox Catalysis. ACS Catal 2020; 10:5821-5827. [PMID: 32747870 PMCID: PMC7398156 DOI: 10.1021/acscatal.0c01199] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A cross-electrophile coupling reaction of epoxides and (hetero)aryl iodides that operates via the merger of three catalytic cycles involving a Ni-, Ti-, and organic photoredox catalyst has been developed. Three distinct classes of epoxides, styrene oxides, cyclic epoxides, and terminal aliphatic epoxides, all undergo coupling in moderate to good yield and high regioselectivity with the use of three different nitrogen-based ligands for Ni under otherwise identical reaction conditions. The mild reaction conditions accommodate a broad scope of abundant and complex coupling partners. Mechanistic studies suggest that when styrene oxides are employed radical intermediates are involved via Ti-radical ring-opening of the epoxide. Conversely, for terminal aliphatic epoxides, involvement of an iodohydrin intermediate enables the formation of the unexpected linear product.
Collapse
Affiliation(s)
- Marvin Parasram
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Benjamin J Shields
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Omar Ahmad
- Blueprint Medicines, Cambridge, Massachusetts 02139, United States
| | - Thomas Knauber
- Worldwide Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Abigail G Doyle
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|