1
|
Saha SN, Ballav N, Baidya M. Palladium(II)-Catalyzed Regioselective Hydroamination of Allylamines to N-Alkyl Sulfoximines. Org Lett 2025; 27:1999-2004. [PMID: 39950747 DOI: 10.1021/acs.orglett.5c00316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
An intermolecular coupling between sulfoximines and allyl amines, linked to the picolinamide directing group, is developed by leveraging a nucleopalladation-guided regioselective hydroamination strategy, enabling the production of a range of valuable N-alkyl sulfoximines in high yields. The protocol features operational simplicity and a broad substrate scope and was also amenable to aniline nucleophiles. Synthetic utilities were showcased through scale-up reactions and product diversifications, leading to biorelevant molecules.
Collapse
Affiliation(s)
- Shib Nath Saha
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Nityananda Ballav
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| | - Mahiuddin Baidya
- Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, Tamil Nadu, India
| |
Collapse
|
2
|
Adam Elzubier Adam H, Zhou S, Zeng Q. Advances in cross-coupling and oxidative coupling reactions of NH-sulfoximines - a review. Chem Commun (Camb) 2025; 61:1934-1943. [PMID: 39757832 DOI: 10.1039/d4cc05308g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Due to the special structure and physicochemical properties of sulfoximines, research on sulfoximines has achieved great progress in recent decades, especially in chemical and medicinal fields. This review highlights recent advancements in the N-functionalization of NH-sulfoximines, focusing on classical cross-coupling reactions with electrophilic agents and oxidative coupling reactions with extensive organic compounds, including specific (hetero)arenes, alkenes (1,4-naphthoquinones), alkanes (cyclohexanes), nucleophiles (thiols, disulfides, sulfinates, diarylphosphine oxides), organyl boronic acids, and arylhydrazines. Transition metal-catalyzed, metal-free, electrochemical and radical oxidative coupling reactions are discussed. This review also reports and discusses the mechanistic pathways of some typical reactions.
Collapse
Affiliation(s)
- Hala Adam Elzubier Adam
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Sihan Zhou
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China.
| |
Collapse
|
3
|
Rathod NB, Patel RN, Patel SD, Patel DM, Sonawane MA, Thakur DG, Ghosh SC. Cobalt-Catalyzed Regioselective C8-H Sulfoxamination of 1-Naphthylamine Derivatives with NH-Sulfoximines. J Org Chem 2024; 89:18436-18444. [PMID: 39556517 DOI: 10.1021/acs.joc.4c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2024]
Abstract
A simple cobalt-catalyzed, picolinamide-directed C8-H sulfoxamination of 1-naphthalamides with NH-sulfoximines has been developed. This cross-dehydrogenative C-H/N-H coupling reaction offers a facile route to N-arylated sulfoximines, exhibiting high yields, a broad substrate scope, and excellent functional group tolerance and scalability.
Collapse
Affiliation(s)
- Nileshkumar B Rathod
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raj N Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sachinkumar D Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dharmik M Patel
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahesh A Sonawane
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Dinesh Gopichand Thakur
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Subhash Chandra Ghosh
- Natural Products and Green Chemistry Division, Central Salt and Marine Chemicals Research Institute (CSIR), G. B. Marg, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Hajra AK, Ghosh P, Paul P, Kundu M, Das S. Copper(II)-Mediated, Site-Selective C(sp 2)-H Sulfonamidation of 1-Naphthylamines. J Org Chem 2023. [PMID: 38048479 DOI: 10.1021/acs.joc.3c01852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023]
Abstract
An operationally simple and efficient protocol for copper(II)-mediated, picolinamido-directed C8-H sulfonamidation of 1-naphthylamine derivatives with various sulfonamides has been developed. Remarkably, this cross-dehydrogenative C-H/H-N coupling reaction exhibits a broad substrate scope with excellent functional group tolerance, is scalable, and enables an expeditious route to a library of unsymmetrical N-arylated sulfonamides in good to excellent yields with exclusive site selectivity.
Collapse
Affiliation(s)
- Arun Kumar Hajra
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City,Kolkata700091,India
- Department of Chemistry, University of North Bengal, Darjeeling734013,India
| | - Prasanjit Ghosh
- Department of Chemistry, University of North Bengal, Darjeeling734013,India
| | - Priyanka Paul
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City,Kolkata700091,India
| | - Mrinalkanti Kundu
- TCG Lifesciences Pvt. Ltd., BN-7, Sector-V, Salt Lake City,Kolkata700091,India
| | - Sajal Das
- Department of Chemistry, University of North Bengal, Darjeeling734013,India
| |
Collapse
|
5
|
Nozawa-Kumada K, Hayashi M, Kwon E, Shigeno M, Yada A, Kondo Y. Copper-Catalyzed Intramolecular Olefinic C(sp 2)-H Amidation for the Synthesis of γ-Alkylidene- γ-lactams. Molecules 2023; 28:6682. [PMID: 37764458 PMCID: PMC10537769 DOI: 10.3390/molecules28186682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Herein, we report the copper-catalyzed dehydrogenative C(sp2)-N bond formation of 4-pentenamides via nitrogen-centered radicals. This reaction provides a straightforward and efficient preparation method for γ-alkylidene-γ-lactams. Notably, we could controllably synthesize α,β-unsaturated- or α,β-saturated-γ-alkylidene-γ-lactams depending on the reaction conditions.
Collapse
Affiliation(s)
- Kanako Nozawa-Kumada
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Masahito Hayashi
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| | - Eunsang Kwon
- Endowed Research Laboratory of Dimensional Integrated Nanomaterials, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan;
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Miyagi, Japan
| | - Masanori Shigeno
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
- Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), Kawaguchi 332-0012, Saitama, Japan
| | - Akira Yada
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Central 5, 1-1-1 Higashi, Tsukuba 305-8565, Ibaraki, Japan;
| | - Yoshinori Kondo
- Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Miyagi, Japan (M.S.); (Y.K.)
| |
Collapse
|
6
|
Wang J, Hu D, Sun X, Hong H, Shi Y. Pd-Catalyzed Aryl C-H Amination with Diaziridinone. Org Lett 2023; 25:2006-2011. [PMID: 36926923 DOI: 10.1021/acs.orglett.3c00189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
This work describes an efficient Pd-catalyzed ortho-C-H amination of N-(quinolin-8-yl)benzamides with di-t-butyldiaziridinone, providing a variety of anthranilic amides in good yields. The reaction likely involves the formation of a pallada(II)heterocycle via aryl C-H activation and subsequent amination with di-t-butyldiaziridinone.
Collapse
Affiliation(s)
- Jianjun Wang
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Daguo Hu
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Xiaofeng Sun
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Huiying Hong
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| | - Yian Shi
- Institute of Natural and Synthetic Organic Chemistry, Changzhou University, Changzhou 213164, China
| |
Collapse
|
7
|
Nie H, Xiong Z, Hu M, Zhang S, Qin C, Wang S, Ji F, Jiang G. Copper-Catalyzed Sulfonylation Reaction of NH-Sulfoximines with Aryldiazonium Tetrafluoroborates and Sulfur Dioxide: Formation of N-Sulfonyl Sulfoximines. J Org Chem 2023; 88:2322-2333. [PMID: 36701768 DOI: 10.1021/acs.joc.2c02742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An efficient and practical SO2 insertion protocol of NH-sulfoximines with aryldiazonium tetrafluoroborates and DABSO toward N-sulfonyl sulfoximines has been developed under mildly basic conditions. This transformation features easy operation, readily available substrates, and mild conditions. A tentative mechanism is proposed, which indicates that the aryldiazonium tetrafluoroborates would be radical donors under standard reaction conditions. The aryl radical produced in situ from diazonium salts would be trapped by SO2 to generate an arylsulfonyl radical and then undergo further transformation to generate the final N-sulfonyl sulfoximines.
Collapse
Affiliation(s)
- Hongsheng Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Zhicheng Xiong
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Meiqian Hu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shuai Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Changsheng Qin
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, People's Republic of China
| |
Collapse
|
8
|
Kumar M, Rastogi A, Raziullah, Ahmad A, Gangwar MK, Koley D. Cu(II)-Catalyzed, Site Selective Sulfoximination to Indole and Indolines via Dual C-H/N-H Activation. Org Lett 2022; 24:8729-8734. [PMID: 36444657 DOI: 10.1021/acs.orglett.2c02817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A copper-catalyzed protocol furnishing N-arylated sulfoximines has been developed via dual N-H/C-H activation. Arylalkyl- and less reactive diarylsulfoximines were efficiently coupled with privileged scaffolds like indolines, indoles, and N-Ar-7-azaindoles. Sulfoximines based on medicinally relevant scaffolds (phenothiazine, dibenzothiophene, thioxanthenone) were also well tolerated. Detailed mechanistic studies indicate that the deprotometalation and protodemetalation step is the reversible step.
Collapse
Affiliation(s)
- Mohit Kumar
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Anushka Rastogi
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Raziullah
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ashfaq Ahmad
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Manoj Kumar Gangwar
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Dipankar Koley
- Medicinal and Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
9
|
Ding Y, Pedersen SS, Lin A, Qian R, Ball ZT. Direct formation and site-selective elaboration of methionine sulfoximine in polypeptides. Chem Sci 2022; 13:14101-14105. [PMID: 36540816 PMCID: PMC9728511 DOI: 10.1039/d2sc04220g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/13/2022] [Indexed: 08/15/2024] Open
Abstract
Sulfoximines are emerging moieties for medicinal and biological chemistry, due in part to their efficacy in selective inhibition of amide-forming enzymes such as γ-glutamylcysteine synthetase. While small-molecule sulfoximines such as methionine sulfoximine (MSO) and its derivatives are well studied, structures with methionine sulfoximine residues within complex polypeptides have been generally inaccessible. This paper describes a straightforward means of late-stage one-step oxidation of methionine residues within polypeptides to afford NH-sulfoximines. We also present chemoselective subsequent elaboration, most notably by copper(ii)-mediated N-H cross-coupling at methionine sulfoximine residues with arylboronic acid reagents. This development serves as a strategy to incorporate diverse sulfoximine structures within natural polypeptides, and also identifies the methionine sulfoximine residue as a new site for bioorthogonal, chemoselective bioconjugation.
Collapse
Affiliation(s)
- Yuxuan Ding
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Simon S Pedersen
- Department of Chemistry, Rice University Houston Texas 77005 USA
- Carbon Dioxide Activation Center (CADIAC), Interdisciplinary Nanoscience Center, Department of Chemistry, Aarhus University Gustav Wieds Vej 14 8000 Aarhus C Denmark
| | - Alex Lin
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Ruoyu Qian
- Department of Chemistry, Rice University Houston Texas 77005 USA
| | - Zachary T Ball
- Department of Chemistry, Rice University Houston Texas 77005 USA
| |
Collapse
|
10
|
Tong Z, Peng X, Tang Z, Yang W, Deng W, Yin SF, Kambe N, Qiu R. DTBP-mediated cross-dehydrogenative coupling of 3-aryl benzofuran-2(3 H)-ones with toluenes/phenols for all-carbon quaternary centers. RSC Adv 2022; 12:35215-35220. [PMID: 36540229 PMCID: PMC9732748 DOI: 10.1039/d2ra06231c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/02/2022] [Indexed: 12/28/2024] Open
Abstract
We have developed a transition-metal free protocol for efficient cross-dehydrogenative coupling of 3-aryl benzofuran-2(3H)-ones and toluenes/phenols using DTBP as an oxidant. A diverse range of 3-aryl benzofuran-2(3H)-ones, toluenes, and phenols undergo C-H bond cleavage to generate all-carbon quaternary centers in good yields, making this protocol useful for the synthesis of complex molecules. A gram scale experiment was performed in good yield.
Collapse
Affiliation(s)
- Zhou Tong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Xinju Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Zhi Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Weijun Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Wei Deng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Nobuaki Kambe
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| | - Renhua Qiu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 P. R. China
| |
Collapse
|
11
|
Ghosh S, Pyne P, Ghosh A, Hajra A. Ortho C-H Functionalizations of 2-Aryl-2H-Indazoles. CHEM REC 2022; 22:e202200158. [PMID: 35866505 DOI: 10.1002/tcr.202200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
C-H Functionalization is ubiquitously considered as a powerful, efficient and handy tool for installing various functional groups in complex organic heterocycles in an easier and step-economic way. Similarly, indazole is endowed as a potent heterocycle and is eminent for its profound impact in biological, medicinal and industrial chemistry. In this scenario, C-H functionalization at the selective ortho position of 2-arylindazole in assistance of a metal catalyst is also becoming an appealing approach in synthetic organic chemistry. This review addressed the recent findings and developments on ortho C-H functionalization of 2-aryl-2H-indazazoles with literature coverage extending from 2018 to May 2022.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Pranjal Pyne
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Anogh Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
12
|
Wang J, Tu C, Feng ML, Li N. TEMPO/PhI(OAc) 2-Mediated Direct Sulfoximination of Benzoxazoles under Metal-Free Conditions. CHEM LETT 2022. [DOI: 10.1246/cl.220177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian Wang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| | - Changqing Tu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| | - Mei-Lin Feng
- Key Laboratory of Coarse Cereal Processing of Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu 610106, China
| | - Nan Li
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of pharmacy, Chengdu University, Chengdu, 610106, P. R. China
| |
Collapse
|
13
|
Li X, Wang C, Jia T. Recent Advances in N-Arylation of NH-Sulfoximines and Their Applications. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202110011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Beletskaya IP, Averin AD. Metal-catalyzed reactions for the C(sp2)–N bond formation: achievements of recent years. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review deals with the main catalytic methods for the C(sp2)–N bond formation, including Buchwald–Hartwig palladium-catalyzed amination of aryl and heteroaryl halides, renaissance of the Ullmann chemistry, i.e., the application of catalysis by copper complexes to form the carbon–nitrogen bond, and Chan–Lam reactions of (hetero)arylboronic acids with amines. Also, oxidative amination with C–H activation, which has been booming during the last decade, is addressed. Particular attention is paid to achievements in the application of heterogenized catalysts.
The bibliography includes 350 references.
Collapse
|
15
|
Ghosh S, Laru S, Hajra A. Ortho C-H Functionalization of 2-Arylimidazo[1,2-a]pyridines. CHEM REC 2021; 22:e202100240. [PMID: 34757691 DOI: 10.1002/tcr.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
C-H activation and functionalization is quite promising in recent days as the strategy offers a go-to general method for different bond formations and hence grants synthetic versatility. At the same time, imidazopyridine, a fused bicycle of imidazole moiety with pyridine ring, has a profound impact due to its ubiquitous and prodigious application in medicinal as well as material chemistry. The presence of N-1 atom in 2-arylImidazo[1,2-a]pyridine facilitates the coordination with metal catalysts leading to the formation of ortho-substituted products. This review summarizes all the articles on ortho C-H functionalization of 2-arylImidazo[1,2-a]pyridines published till August 2021.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
16
|
|
17
|
Mitsudo K, Kobashi Y, Nakata K, Kurimoto Y, Sato E, Mandai H, Suga S. Cu-Catalyzed Dehydrogenative C-O Cyclization for the Synthesis of Furan-Fused Thienoacenes. Org Lett 2021; 23:4322-4326. [PMID: 34029106 DOI: 10.1021/acs.orglett.1c01256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The first Cu-catalyzed dehydrogenative C-O cyclization for the synthesis of furan-fused thienoacenes is described. A variety of heteroacenes including a thieno[3,2-b]furan or a thieno[2,3-b]furan skeleton were synthesized by intramolecular C-H/O-H coupling. The use of a mixed solvent of N-methyl-2-pyrrolidone, ethylene glycol monomethyl ether, and toluene was essential for suppressing side reactions and efficiently promoting the reaction. Double C-O cyclization was also conducted to afford highly π-expanded furan-fused thienoacenes.
Collapse
Affiliation(s)
- Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yoshiaki Kobashi
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Kaito Nakata
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Yuji Kurimoto
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Mandai
- Department of Pharmacy, Faculty of Pharmacy, Gifu University of Medical Science, 4-3-3 Nijigaoka, Kani, Gifu 509-0293, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
18
|
|
19
|
Marsicano V, Arcadi A, Chiarini M, Fabrizi G, Goggiamani A, Iazzetti A. Sequential condensation/biannulation reactions of β-(2-aminophenyl)-α,β-ynones with 1,3-dicarbonyls. Org Biomol Chem 2021; 19:5177-5190. [PMID: 34042150 DOI: 10.1039/d1ob00795e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A divergent domino condensation/biannulation reaction of β-(2-aminophenyl) α,β-ynones with 1,3-dicarbonyls to construct a polycyclic 4H-pyrano[3,4-c]quinoline core has been developed. The p-TsOH·H2O catalyzed reaction of β-(2-aminophenyl) α,β-ynones with β-ketoesters in ethanol proceeds with good to excellent yields to provide a simple and effective method for the synthesis of functionalized 4H-pyrano[3,4-c]quinolinones. Further elaboration of these latter derivatives with an excess of 20% NH4OH in EtOH at 50 °C helps achieve the synthesis of the perlodinine analogues benzo[c][2,7]naphthyridin-4(3H)-one derivatives in high yields. Moreover, the p-TsOH·H2O mediated reaction of β-(2-aminophenyl) α,β-ynones with β-di-ketones leads to the formation of a variety of structurally diverse 4H-pyrano[3,4-c]quinoline polycyclic ketals by the incorporation of an alcohol solvent molecule in a cascade fashion.
Collapse
Affiliation(s)
- Vincenzo Marsicano
- Dipartimento di Scienze Fisiche e Chimiche, Università di L'Aquila, Via Vetoio- 67010 Coppito (AQ), Italy.
| | - Antonio Arcadi
- Dipartimento di Scienze Fisiche e Chimiche, Università di L'Aquila, Via Vetoio- 67010 Coppito (AQ), Italy.
| | - Marco Chiarini
- Facoltà di Bioscienze e Tecnologie Agro-alimentari e Ambientali, Università di Teramo, Via R. Balzarini 1, 64100 - Teramo (Te), Italy
| | - Giancarlo Fabrizi
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Goggiamani
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonia Iazzetti
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza, Università di Roma, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
20
|
Shukla P, Asati A, Bhardiya SR, Singh M, Rai VK, Rai A. Metal-free C-H Activation over Graphene Oxide toward Direct Syntheses of Structurally Different Amines and Amides in Water. J Org Chem 2020; 85:15552-15561. [PMID: 33146530 DOI: 10.1021/acs.joc.0c02219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Unprecedented metal-free synthesis of a variety of amines and amides is reported via amination of C(sp3)-H and C(sp2)-H bonds. The strategy involves graphene-oxide/I2-catalyzed nitrene insertion using PhINTs as a nitrene (NT) source in water at room temperature. A wide range of structurally different substrates, viz., cyclohexane, cyclic ethers, arenes, alkyl aromatic systems, and aldehydes/ketones, having an α-phenyl ring have been employed successfully to afford the corresponding nitrene insertion product in good yield, albeit low in few cases. The envisaged method has superiority over others in terms of its operational simplicity, metal-free catalysis, use of water as a solvent, ambient reaction conditions, and reusability of the catalyst.
Collapse
Affiliation(s)
- Prashant Shukla
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| | - Ambika Asati
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Smita R Bhardiya
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Manorama Singh
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Vijai K Rai
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur, Chhattisgarh 495 009, India
| | - Ankita Rai
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi 110 067, India
| |
Collapse
|
21
|
Ghosh P, Ganguly B, Das S. N−H and C−H Functionalization of Sulfoximine: Recent Advancement and Prospects. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000320] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Prasanjit Ghosh
- Department of Chemistry University of North Bengal Darjeeling 734013 West Bengal
| | - Bhaskar Ganguly
- Department of Chemistry University of North Bengal Darjeeling 734013 West Bengal
| | - Sajal Das
- Department of Chemistry University of North Bengal Darjeeling 734013 West Bengal
| |
Collapse
|
22
|
Qi P, Sun F, Chen N, Du H. Cross-Dehydrogenative Coupling of Azoarenes with Dialkyl Disulfides. J Org Chem 2020; 85:8588-8596. [DOI: 10.1021/acs.joc.0c00953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Peng Qi
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Fang Sun
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Ning Chen
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| | - Hongguang Du
- Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, People’s Republic of China
| |
Collapse
|