1
|
Yu YX, Qiao JF, Wang TZ, Guan YQ, Liang YF. Nickel-Catalyzed Reductive Alkylation of Pyridines via C-N Bond Activation. Org Lett 2025. [PMID: 40375545 DOI: 10.1021/acs.orglett.5c01418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
In this work, we utilized 2-pyridylpyridones as substrates for a reductive transformation with alkyl bromides via C-N bond activation through a Ni-catalyzed cross-electrophile coupling platform to efficiently construct 2-alkylpyridines at room temperature. The reaction allowed the use of a variety of sensitive electronic substituents on both coupling agents. Yields up to 95% can be achieved using a wide array of pyridylpyridones as pyridyl precursors. In addition, applications in the late-stage functionalization of natural products and drugs enhanced its potential.
Collapse
Affiliation(s)
- Ya-Xin Yu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jia-Fan Qiao
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Qiu Guan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Han XW, He Y, Gui C, Chu XQ, Zhao XF, Hu XH, Zhou X, Rao W, Shen ZL. Magnesium-Mediated Cross-Electrophile Couplings of Aryl 2-Pyridyl Esters with Aryl Bromides for Ketone Synthesis through In Situ-Formed Arylmagnesium Intermediates. J Org Chem 2024; 89:13661-13668. [PMID: 39250179 DOI: 10.1021/acs.joc.4c01851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Aryl 2-pyridyl esters could efficiently undergo cross-electrophile couplings with aryl bromides with the aid of magnesium as a reducing metal in the absence of a transition-metal catalyst, leading to the unsymmetrical diaryl ketones in modest to good yields with wide functionality compatibility. In addition, the reaction could be easily scaled up and applied in the late-stage modification of biologically active molecules. Preliminary mechanistic study showed that the coupling reaction presumably proceeds through the in situ formation of arylmagnesium reagents as key intermediates.
Collapse
Affiliation(s)
- Xiao-Wei Han
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yuan He
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Chao Gui
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Fei Zhao
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xu-Hong Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
4
|
Mehta R, Kumar R, Singh S, Appayee C. Asymmetric Synthesis of α-Arylcyclohexenones Catalyzed by Diphenylprolinol Silyl Ether. J Org Chem 2024; 89:10892-10902. [PMID: 39042572 DOI: 10.1021/acs.joc.4c01234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
A general methodology for the asymmetric synthesis of α-arylcyclohexeneones from arylacetones and α,β-unsaturated aldehydes catalyzed by diphenylprolinol silyl ether followed by p-TSA-mediated cyclization is developed. A variety of arylacetones and α,β-unsaturated aldehydes were successfully converted to α-arylcyclohexeneones in 34-67% yield, 10:1-100:0 dr, and 81-99% ee. The scalability of this methodology by a gram-scale synthesis and their utility by converting the product to the corresponding epoxide, alcohol, and diol are demonstrated.
Collapse
Affiliation(s)
- Ronak Mehta
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Rohtash Kumar
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Suraj Singh
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| | - Chandrakumar Appayee
- Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar, Gujarat 382055, India
| |
Collapse
|
5
|
Chandrasekaran R, Selvam K, Rajeshkumar T, Chinnusamy T, Maron L, Rasappan R. Anti-Selective Carbosilylation: Nickel-Catalyzed Multicomponent Reaction of Solid Me 3SiZnI. Angew Chem Int Ed Engl 2024; 63:e202318689. [PMID: 38547324 DOI: 10.1002/anie.202318689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 04/25/2024]
Abstract
The stereodefined and highly substituted vinylsilanes are essential building blocks for constructing complex organic molecules. Transition metal-mediated silylmetalation of alkynes was developed to overcome the limitations of conventional hydrosilylations; however, a very limited study was carried out to utilize transient vinylmetal species in cross-coupling reactions. Moreover, they produce syn-adduct, and the anti-selective cross-coupling is still unknown and highly desired. Silylzinc reagents are highly functional group tolerant, however, their synthesis from pyrophoric silyllithium and dissolved lithium salts hampers cross-coupling reactions. Our novel solid silylzinc reagents circumvent these constraints are employed in the anti-selective synthesis of vinylsilanes via a multi-component reaction involving Me3SiZnI, terminal alkynes, and activated alkyl halides. An intensive computational and experimental investigation of the mechanism reveals an equilibrium between the intermediate syn- and anti-adducts; the greater barrier at the single electron reduction of alkyl halides and the thermodynamic stability of the Ni(III) adduct determine the anti-selectivity.
Collapse
Affiliation(s)
- Revathi Chandrasekaran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Keerthika Selvam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Thayalan Rajeshkumar
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| | - Laurent Maron
- Laboratoire de Physique et Chimie des Nano-objets, Institut National des Sciences Appliquées, 31077, Toulouse, Cedex 4, France
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India
| |
Collapse
|
6
|
Chindan B, Syam A, Mahendran H, Rasappan R. Synthesis of α-Vinyltrialkoxysilanes via Nickel-Mediated Cross-Electrophile Coupling Reactions. Org Lett 2023; 25:7751-7756. [PMID: 37844143 DOI: 10.1021/acs.orglett.3c03206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2023]
Abstract
Vinyltrialkoxysilanes are indispensable for organic synthesis, particularly cross-coupling reactions. Hydrosilylation of alkynes inevitably yields α- and β-isomers of vinyltrialkoxysilanes even with complex ligands and catalysts, limiting its usage in organic synthesis. We report the synthesis of α-vinyltrialkoxysilanes via cross-electrophile C(sp2)-C(sp2) coupling of bromoalkenes. The method is quite compatible with functional groups under milder reaction conditions. The gram-scale synthesis of most substrates is impressive. The intermediacy of vinyl iodide and radical escape rebound path are supported by mechanistic studies.
Collapse
Affiliation(s)
- Bincy Chindan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anagha Syam
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Hariharan Mahendran
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
7
|
Chattapadhyay D, Aydogan A, Doktor K, Maity A, Wu JW, Michaudel Q. Harnessing Sulfur(VI) Fluoride Exchange Click Chemistry and Photocatalysis for Deaminative Benzylic Arylation. ACS Catal 2023; 13:7263-7268. [PMID: 37655265 PMCID: PMC10468006 DOI: 10.1021/acscatal.3c01981] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/07/2023] [Indexed: 09/02/2023]
Abstract
While among the most common functional handles present in organic molecules, amines are a widely underutilized linchpin for C-C bond formation. To facilitate C-N bond cleavage, large activating groups are typically used but result in the generation of stoichiometric amounts of organic waste. Herein, we report an atom-economic activation of benzylic primary amines relying on the Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry and the aza-Ramberg-Bäcklund reaction. This two-step sequence allows the high-yielding generation of 1,2-dialkyldiazenes from primary amines via loss of SO2. Excitation of the diazenes with blue light and an Ir photocatalyst affords radical pairs upon expulsion of N2, which can be coaxed into the formation of C(sp3)-C(sp2) bonds upon diffusion and capture by a Ni catalyst. This arylative strategy relying on a traceless click approach was harnessed in a variety of examples and its mechanism was investigated.
Collapse
Affiliation(s)
| | | | - Katarzyna Doktor
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Arunava Maity
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Jiun Wei Wu
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| | - Quentin Michaudel
- Department of Chemistry, Texas
A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
8
|
Dherange BD, Yuan M, Kelly CB, Reiher CA, Grosanu C, Berger KJ, Gutierrez O, Levin MD. Direct Deaminative Functionalization. J Am Chem Soc 2023; 145:17-24. [PMID: 36548788 PMCID: PMC10245626 DOI: 10.1021/jacs.2c11453] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Selective functional group interconversions in complex molecular settings underpin many of the challenges facing modern organic synthesis. Currently, a privileged subset of functional groups dominates this landscape, while others, despite their abundance, are sorely underdeveloped. Amines epitomize this dichotomy; they are abundant but otherwise intransigent toward direct interconversion. Here, we report an approach that enables the direct conversion of amines to bromides, chlorides, iodides, phosphates, thioethers, and alcohols, the heart of which is a deaminative carbon-centered radical formation process using an anomeric amide reagent. Experimental and computational mechanistic studies demonstrate that successful deaminative functionalization relies not only on outcompeting the H-atom transfer to the incipient radical but also on the generation of polarity-matched, productive chain-carrying radicals that continue to react efficiently. The overall implications of this technology for interconverting amine libraries were evaluated via high-throughput parallel synthesis and applied in the development of one-pot diversification protocols.
Collapse
Affiliation(s)
- Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mingbin Yuan
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher B Kelly
- Discovery Process Research, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Christopher A Reiher
- Parallel Medicinal Chemistry, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Cristina Grosanu
- High Throughput Purification, Janssen Research & Development LLC, 1400 McKean Road, Spring House, Pennsylvania 19477, United States
| | - Kathleen J Berger
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Osvaldo Gutierrez
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
9
|
Murugesan V, Muralidharan A, Anantharaj GV, Chinnusamy T, Rasappan R. Photoredox–Ni Dual Catalysis: Chelation-Free Hydroacylation of Terminal Alkynes. Org Lett 2022; 24:8435-8440. [DOI: 10.1021/acs.orglett.2c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anjana Muralidharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Guru Vigknesh Anantharaj
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Tamilselvi Chinnusamy
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
10
|
Balakrishnan V, Ganguly A, Rasappan R. Interception of Nickel Hydride Species and Its Application in Multicomponent Reactions. Org Lett 2022; 24:4804-4809. [PMID: 35758604 DOI: 10.1021/acs.orglett.2c01862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hydrogen borrowing strategy is an economical method for the α-functionalization of ketones. While this strategy is extremely advantageous, it does not lend itself to the synthesis of β,β-disubstituted ketones. This can be achieved, if the in situ generated metal hydride can be intercepted with a nucleophilic coupling partner. We present a multicomponent strategy for the coupling of alcohols, ketones, and boronic acids using only 1 mol % nickel catalyst and without the need for added ligands.
Collapse
Affiliation(s)
- Venkadesh Balakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
11
|
Gao Y, Jiang S, Mao ND, Xiang H, Duan JL, Ye XY, Wang LW, Ye Y, Xie T. Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C-C, C-B, and C-S Bonds. Top Curr Chem (Cham) 2022; 380:25. [PMID: 35585362 DOI: 10.1007/s41061-022-00381-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Since their discovery in 1970s, Katritzky salts have emerged as one of the most important classes of building blocks for use in organic synthesis and drug discovery. These bulky pyridinium salts derived from alkylamine can readily generate alkyl radical and undergo a variety of organic transformation reactions such as alkylation, arylation, alkenylation, alkynylation, carbonylation, sulfonylation, and borylation. Through these transformations, complexed molecules bearing new C-C, C-B, or C-S bonds can be constructed in easy ways and in simple steps. This review aims to summarize recent advances in these versatile building blocks in well-classified categories. Representative examples and their reaction mechanisms are discussed. The hope is to provide the scientific community with convenient access to collective information and accelerate further research.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.,School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510000, Guangdong, China
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| |
Collapse
|
12
|
Zhou X, Guo L, Zhang H, Xia RY, Yang C, Xia W. Nickel‐Catalyzed Reductive Acylation of Carboxylic Acids with Alkyl Halides and
N
‐Hydroxyphthalimide Esters Enabled by Electrochemical Process. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Zhou
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Haoxiang Zhang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Raymond Yang Xia
- The Affiliated International School of Shenzhen University Shenzhen 518054 People's Republic of China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment School of Science Harbin Institute of Technology (Shenzhen) Shenzhen 518055 People's Republic of China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 People's Republic of China
| |
Collapse
|
13
|
Corcé V, Ollivier C, Fensterbank L. Boron, silicon, nitrogen and sulfur-based contemporary precursors for the generation of alkyl radicals by single electron transfer and their synthetic utilization. Chem Soc Rev 2022; 51:1470-1510. [PMID: 35113115 DOI: 10.1039/d1cs01084k] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Recent developments in the use of boron, silicon, nitrogen and sulfur derivatives in single-electron transfer reactions for the generation of alkyl radicals are described. Photoredox catalyzed, electrochemistry promoted or thermally-induced oxidative and reductive processes are discussed highlighting their synthetic scope and discussing their mechanistic pathways.
Collapse
Affiliation(s)
- Vincent Corcé
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Cyril Ollivier
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| | - Louis Fensterbank
- Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire - 4 Place Jussieu, CC 229, F-75252 Paris Cedex 05, France.
| |
Collapse
|
14
|
Charboneau DJ, Huang H, Barth EL, Germe CC, Hazari N, Mercado BQ, Uehling MR, Zultanski SL. Tunable and Practical Homogeneous Organic Reductants for Cross-Electrophile Coupling. J Am Chem Soc 2021; 143:21024-21036. [PMID: 34846142 DOI: 10.1021/jacs.1c10932] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The syntheses of four new tunable homogeneous organic reductants based on a tetraaminoethylene scaffold are reported. The new reductants have enhanced air stability compared to current homogeneous reductants for metal-mediated reductive transformations, such as cross-electrophile coupling (XEC), and are solids at room temperature. In particular, the weakest reductant is indefinitely stable in air and has a reduction potential of -0.85 V versus ferrocene, which is significantly milder than conventional reductants used in XEC. All of the new reductants can facilitate C(sp2)-C(sp3) Ni-catalyzed XEC reactions and are compatible with complex substrates that are relevant to medicinal chemistry. The reductants span a range of nearly 0.5 V in reduction potential, which allows for control over the rate of electron transfer events in XEC. Specifically, we report a new strategy for controlled alkyl radical generation in Ni-catalyzed C(sp2)-C(sp3) XEC. The key to our approach is to tune the rate of alkyl radical generation from Katritzky salts, which liberate alkyl radicals upon single electron reduction, by varying the redox potentials of the reductant and Katritzky salt utilized in catalysis. Using our method, we perform XEC reactions between benzylic Katritzky salts and aryl halides. The method tolerates a variety of functional groups, some of which are particularly challenging for most XEC transformations. Overall, we expect that our new reductants will both replace conventional homogeneous reductants in current reductive transformations due to their stability and relatively facile synthesis and lead to the development of novel synthetic methods due to their tunability.
Collapse
Affiliation(s)
- David J Charboneau
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Haotian Huang
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Emily L Barth
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Cameron C Germe
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Nilay Hazari
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Brandon Q Mercado
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520, United States
| | - Mycah R Uehling
- Discovery Chemistry, HTE and Lead Discovery Capabilities, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| | - Susan L Zultanski
- Department of Process Research and Development, Merck & Co., Inc., Kenilworth, New Jersey 07033, United States
| |
Collapse
|
15
|
Griffiths OM, Esteves HA, Chen Y, Sowa K, May OS, Morse P, Blakemore DC, Ley SV. Photoredox-Catalyzed Dehydrogenative Csp 3-Csp 2 Cross-Coupling of Alkylarenes to Aldehydes in Flow. J Org Chem 2021; 86:13559-13571. [PMID: 34524825 DOI: 10.1021/acs.joc.1c01621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Executing photoredox reactions in flow offers solutions to frequently encountered issues regarding reproducibility, reaction time, and scale-up. Here, we report the transfer of a photoredox-catalyzed benzylic coupling of alkylarenes to aldehydes to a flow chemistry setting leading to improvements in terms of higher concentration, shorter residence times, better yields, ease of catalyst preparation, and enhanced substrate scope. Its applicability has been demonstrated by a multi-gram-scale reaction using high-power light-emitting diodes (LEDs), late-stage functionalization of selected active pharmaceutical ingredients (APIs), and also a photocatalyst recycling method.
Collapse
Affiliation(s)
- Oliver M Griffiths
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Henrique A Esteves
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Yiding Chen
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Karin Sowa
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K.,Department of Chemistry, University of Münster, 48149 Münster, Germany
| | - Oliver S May
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| | - Peter Morse
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David C Blakemore
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Steven V Ley
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW Cambridge, U.K
| |
Collapse
|
16
|
Zhang X, Qi D, Jiao C, Liu X, Zhang G. Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN 2 pincer ligand. Nat Commun 2021; 12:4904. [PMID: 34385455 PMCID: PMC8361081 DOI: 10.1038/s41467-021-25222-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
Alkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl-substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synthesis, one-pot transformation, versatile late-stage derivatizations as well as the use of inexpensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals. Alkynes are amongst the most valuable functional groups in organic chemistry, however, the preparation of alkyl-substituted alkynes still remains elusive. Here the authors show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
17
|
Rani S, Dash SR, Bera A, Alam MN, Vanka K, Maity P. Phosphite mediated asymmetric N to C migration for the synthesis of chiral heterocycles from primary amines. Chem Sci 2021; 12:8996-9003. [PMID: 34276927 PMCID: PMC8261767 DOI: 10.1039/d1sc01217g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/27/2021] [Indexed: 11/21/2022] Open
Abstract
A phosphite mediated stereoretentive C-H alkylation of N-alkylpyridinium salts derived from chiral primary amines was achieved. The reaction proceeds through the activation of the N-alkylpyridinium salt substrate with a nucleophilic phosphite catalyst, followed by a base mediated [1,2] aza-Wittig rearrangement and subsequent catalyst dissociation for an overall N to C-2 alkyl migration. The scope and degree of stereoretention were studied, and both experimental and theoretical investigations were performed to support an unprecedented aza-Wittig rearrangement-rearomatization sequence. A catalytic enantioselective version starting with racemic starting material and chiral phosphite catalyst was also established following our understanding of the stereoretentive process. This method provides efficient access to tertiary and quaternary stereogenic centers in pyridine systems, which are prevalent in drugs, bioactive natural products, chiral ligands, and catalysts.
Collapse
Affiliation(s)
- Soniya Rani
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Soumya Ranjan Dash
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune 411008 India
| | - Asish Bera
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Md Nirshad Alam
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad-201002 India
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory Pune 411008 India
| | - Pradip Maity
- Organic Chemistry Division, CSIR-National Chemical Laboratory Pune-411008 India
| |
Collapse
|
18
|
Murugesan V, Ganguly A, Karthika A, Rasappan R. C-H Alkylation of Aldehydes by Merging TBADT Hydrogen Atom Transfer with Nickel Catalysis. Org Lett 2021; 23:5389-5393. [PMID: 34170145 DOI: 10.1021/acs.orglett.1c01716] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Catalyst controlled site-selective C-H functionalization is a challenging but powerful tool in organic synthesis. Polarity-matched and sterically controlled hydrogen atom transfer (HAT) provides an excellent opportunity for site-selective functionalization. As such, the dual Ni/photoredox system was successfully employed to generate acyl radicals from aldehydes via selective formyl C-H activation and subsequently cross-coupled to generate ketones, a ubiquitous structural motif present in the vast majority of natural and bioactive molecules. However, only a handful of examples that are constrained to the use of aryl halides are developed. Given the wide availability of amines, we developed a cross-coupling reaction via C-N bond cleavage using the economic nickel and TBADT catalyst for the first time. A range of alkyl and aryl aldehydes were cross-coupled with benzylic and allylic pyridinium salts to afford ketones with a broad spectrum of functional group tolerance. High regioselectivity toward formyl C-H bonds even in the presence of α-methylene carbonyl or α-amino/oxy methylene was obtained.
Collapse
Affiliation(s)
- Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Anirban Ganguly
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ardra Karthika
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
19
|
Metal-free synthesis of unsymmetrical selenides from pyridinium salts and diselenides catalysed by visible light. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
20
|
Wei W, Yu H, Zangarelli A, Ackermann L. Deaminative meta-C-H alkylation by ruthenium(ii) catalysis. Chem Sci 2021; 12:8073-8078. [PMID: 34194696 PMCID: PMC8208126 DOI: 10.1039/d1sc00986a] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery. Herein, we report a ruthenium-catalyzed meta-C–H deaminative alkylation with easily accessible amino acid-derived Katritzky pyridinium salts. Likewise, remote C–H benzylations were accomplished with high levels of chemoselectivity and remarkable functional group tolerance. The meta-C–H activation approach combined with our deaminative strategy represents a rare example of selectively converting C(sp3)–N bonds into C(sp3)–C(sp2) bonds. Precise structural modifications of amino acids are of importance to tune biological properties or modify therapeutical capabilities relevant to drug discovery.![]()
Collapse
Affiliation(s)
- Wen Wei
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany
| | - Hao Yu
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany
| | - Agnese Zangarelli
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie, Georg-August-Universität Göttingen Tammannstraße 2 37077 Goettingen Germany .,Woehler Research Institute for Sustainable Chemistry (WISCh), Georg-August-Universität Göttingen Tammannstrasse 2 37077 Göttingen Germany
| |
Collapse
|
21
|
Balakrishnan V, Murugesan V, Chindan B, Rasappan R. Nickel-Mediated Enantiospecific Silylation via Benzylic C–OMe Bond Cleavage. Org Lett 2021; 23:1333-1338. [DOI: 10.1021/acs.orglett.0c04316] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Venkadesh Balakrishnan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Vetrivelan Murugesan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Bincy Chindan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| | - Ramesh Rasappan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Vithura, Thiruvananthapuram, Kerala 695551, India
| |
Collapse
|
22
|
Zhu T, Shen J, Sun Y, Wu J. Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chem Commun (Camb) 2021; 57:915-918. [PMID: 33393531 DOI: 10.1039/d0cc07632e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A convenient and efficient approach to (E)-alkylsulfonyl olefins via a metal/light-free three-component reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts is described. This alkylsulfonylation proceeds smoothly with a broad substrate scope, leading to diverse (E)-alkylsulfonyl olefins in moderate to good yields. During the process, excellent functional group tolerance is observed and sodium metabisulfite is used as the source of sulfur dioxide. Mechanistic studies show that the alkyl radical generated in situ from Katritzky salt via a single electron transfer with alkenylboronic acid or DIPEA is the key step for providing an alkyl radical intermediate, which undergoes further alkylsulfonylation with sulfur dioxide.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jia Shen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Yuyuan Sun
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China and School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
23
|
|
24
|
Zubrytski DM, Elek GZ, Lopp M, Kananovich DG. Generation of Mixed Anhydrides via Oxidative Fragmentation of Tertiary Cyclopropanols with Phenyliodine(III) Dicarboxylates. Molecules 2020; 26:molecules26010140. [PMID: 33396847 PMCID: PMC7794720 DOI: 10.3390/molecules26010140] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/24/2020] [Accepted: 12/26/2020] [Indexed: 11/20/2022] Open
Abstract
Oxidative fragmentation of tertiary cyclopropanols with phenyliodine(III) dicarboxylates in aprotic solvents (dichloromethane, chloroform, toluene) produces mixed anhydrides. The fragmentation reaction is especially facile with phenyliodine(III) reagents bearing electron-withdrawing carboxylate ligands (trifluoroacetyl, 2,4,6-trichlorobenzoyl, 3-nitrobenzoyl), and affords 95−98% yields of the corresponding mixed anhydride products. The latter can be straightforwardly applied for the acylation of various nitrogen, oxygen and sulfur-centered nucleophiles (primary and secondary amines, hydroxylamines, primary alcohols, phenols, thiols). Intramolecular acylation yielding macrocyclic lactones can also be performed. The developed transformation has bolstered the synthetic utility of cyclopropanols as pluripotent intermediates in diversity-oriented synthesis of bioactive natural products and their synthetic congeners. For example, it was successfully applied for the last-stage modification of a cyclic peptide to produce a precursor of a known histone deacetylase inhibitor.
Collapse
Affiliation(s)
- Dzmitry M. Zubrytski
- Department of Organic Chemistry, Belarusian State University, Leningradskaya 14, 220050 Minsk, Belarus;
| | - Gábor Zoltán Elek
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (G.Z.E.); (M.L.)
| | - Margus Lopp
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (G.Z.E.); (M.L.)
| | - Dzmitry G. Kananovich
- Department of Chemistry and Biotechnology, School of Science, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia; (G.Z.E.); (M.L.)
- Correspondence: ; Tel.: +372-6204382
| |
Collapse
|
25
|
Haibach MC, Ickes AR, Wilders AM, Shekhar S. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00367] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Michael C. Haibach
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Andrew R. Ickes
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Alison M. Wilders
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| | - Shashank Shekhar
- Process Research and Development, AbbVie Inc., 1 North Waukegan Road, North Chicago, Illinois 60064, United States
| |
Collapse
|