1
|
Mandal PK, Katukojvala S. Synergistic Rh(II)- and Zn(II)-Catalyzed [3 + 3] Annulation of Diazoenals and α-Hydroxy Ketones for the Direct Synthesis of 2 H-Pyrans, A Gateway Toward γ-Pyrones. Org Lett 2024; 26:9227-9232. [PMID: 39432665 DOI: 10.1021/acs.orglett.4c03329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
A new synergistic Rh(II)/Zn(II)-catalyzed [3 + 3] annulation has been developed between diazoenals and α-hydroxy ketones enabling the direct synthesis of 4-formyl-2H-pyrans. The reaction involves the formation of protic oxonium ylides from highly electrophilic Rh-enalcarbenoids followed by Zn-templated regioselective intramolecular aldol condensation. Subsequent investigations demonstrated that 4-formyl-2H-pyrans are unique precursors of γ-pyrones. The γ-pyrones were obtained via Et3N-mediated oxidative deformylation. Further, the triflic-acid-promoted double Schmidt reaction of 4-formyl-2H-pyrans provides synthetically important carboxamide-substituted 4-cyano 2H-pyrans.
Collapse
Affiliation(s)
- Pratap Kumar Mandal
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| | - Sreenivas Katukojvala
- Department of Chemistry, Indian Institute of Science Education & Research Bhopal, Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
2
|
Li P, Shi M, Yang K, Jing T, Kang Z, Hu W, Qian Y. Diastereoselective Synthesis of 4-Hydroxy-2-quinolinones via Formal [2 + 4] Cycloaddition Reactions Using α-Diazo Pyrazoleamides as C2 Synthons. Org Lett 2024; 26:5554-5559. [PMID: 38912750 DOI: 10.1021/acs.orglett.4c01956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
A rhodium-catalyzed highly stereoselective formal [2 + 4]-cycloaddition reaction of α-diazo pyrazoleamides and 2-aminophenyl ketones that produces 4-hydroxy-2-quinolinones in good yields with excellent diastereoselectivities has been developed. A pyrazolium ylide species that is generated from α-diazo pyrazoleamides is used as a C2 synthon for this cycloaddition. This protocol offers an efficient approach to a variety of 4-hydroxy-2-quinolinones featuring sequential quaternary centers.
Collapse
Affiliation(s)
- Pei Li
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Maoqing Shi
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kaixin Yang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tongfei Jing
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Zhenghui Kang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Wenhao Hu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yu Qian
- State Key Laboratory of Anti-Infective Drug Discovery and Development, Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
3
|
Kamlar M, Urban M, Veselý J. Enantioselective Synthesis of Spiro Heterocyclic Compounds Using a Combination of Organocatalysis and Transition-Metal Catalysis. CHEM REC 2023:e202200284. [PMID: 36703545 DOI: 10.1002/tcr.202200284] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/30/2022] [Indexed: 01/28/2023]
Abstract
Over the last ten years, the combination of organocatalysis with transition metal (TM) catalysis has become one of the most important toolboxes used for synthesizing optically pure compounds containing chiral quaternary centers, including spiro heterocyclic molecules. The dominant method in the enantioselective synthesis of spiro heterocyclic compounds based on synergistic catalysis includes chiral aminocatalysis and NHC catalysis, as already established covalent organocatalytic strategies. Another area of organocatalysis widely combined with TM catalysis producing enantiomerically enriched spiro heterocyclic compounds is non-covalent catalysis, dominated by chiral phosphoric acids, thiourea, and squaramide derivatives. This review article aims to summarize enantioselective methods used for constructing spirocyclic heterocycles based on a combination of organocatalysis and transition metal catalysis.
Collapse
Affiliation(s)
- Martin Kamlar
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Michal Urban
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| | - Jan Veselý
- Charles University Faculty of Science: Univerzita Karlova Prirodovedecka fakulta, Prague, CZECH REPUBLIC
| |
Collapse
|
4
|
Chiral rhodium(II)-catalyzed asymmetric aldol-type interception of an oxonium ylide to assemble chiral 2,3-dihydropyrans. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1275-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Chakraborty N, Das B, Rajbongshi KK, Patel BK. Combined Power of Organo‐ and Transition Metal Catalysis in Organic Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nikita Chakraborty
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bubul Das
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Kamal K. Rajbongshi
- Indian Institute of Technology Guwahati Chemistry Indian Institute of Technology GuwahatiDepartment of ChemistryNorth Guwahati 781039 Guwahati INDIA
| | - Bhisma K Patel
- Indian Institute of Technology Guwahati Chemistry North Guwahati-781 039 781 039 Guwahati INDIA
| |
Collapse
|
6
|
Huang Z, He Y, Wang L, Li J, Xu BH, Zhou YG, Yu Z. Copper-Catalyzed [4 + 1] Annulation of Enaminothiones with Indoline-Based Diazo Compounds. J Org Chem 2022; 87:4424-4437. [PMID: 35262359 DOI: 10.1021/acs.joc.2c00137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A concise synthetic route to spiroindoline-fused S-heterocycles was developed through copper-catalyzed [4 + 1] annulation using enaminothiones as donor-acceptor synthons. Both 3-diazoindolin-2-imines and 3-diazooxindoles were amenable to work as effective C1 building blocks. The reaction proceeds via a copper-catalyzed cascade process involving the in situ generation of copper(I) carbene and C-S/C-C bond formation. This synthetic protocol features the use of readily available substrates, diverse substituent tolerance, and good to excellent yields.
Collapse
Affiliation(s)
- Zilong Huang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yuan He
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Liandi Wang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jiying Li
- East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Bao-Hua Xu
- Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yong-Gui Zhou
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhengkun Yu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing 100190, P. R. China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, P. R. China
| |
Collapse
|
7
|
Long Y, Wang Y, Chen YY, Han WY, Wan NW, Yuan WC, Chen YZ, Cui BD. Copper-Catalyzed [5 + 1] Cyclization of o-Pyrrolo Anilines and Heterocyclic N-Tosylhydrazones for Access to Spiro-dihydropyrrolo[1,2- a]quinoxaline Derivatives. J Org Chem 2022; 87:4112-4123. [PMID: 35258307 DOI: 10.1021/acs.joc.1c02909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
An inexpensive copper-catalyzed sequential reaction process, proceeding via a nucleophilic attack of amine to Cu-carbene generated in situ from heterocyclic N-tosylhydrazone precursors followed by a 1,2-H shift/oxidative cyclization cascade of N-ylides, has been described, smoothly generating the corresponding structurally various spiro-dihydropyrrolo[1,2-a]quinoxaline derivatives. Furthermore, the significance of this protocol can be also highlighted by its diverse conversions of the synthetic compounds to the potentially bioactive molecules such as the 2-substituted pyrrolo[1,2-a]quinoxalins.
Collapse
Affiliation(s)
- Yan Long
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yue-You Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wen-Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Nan-Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong-Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Bao-Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi 563000, China.,Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
8
|
Lang J, Wang S, He C, Liu X, Feng X. Asymmetric synthesis of isochromanone derivatives via trapping carboxylic oxonium ylides and aldol cascade. Chem Sci 2022; 13:1163-1168. [PMID: 35211283 PMCID: PMC8790771 DOI: 10.1039/d1sc06025b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/27/2021] [Indexed: 11/21/2022] Open
Abstract
An efficient asymmetric synthesis of isochromanone derivatives was realized through Z-selective-1,3-OH insertion/aldol cyclization reaction involving acyclic carboxylic oxonium ylides. The combination of achiral dirhodium salts and chiral N,N′-dioxide–metal complexes, along with the use of α-diazoketones instead of α-diazoesters, enables the cascade reaction efficiently. A variety of benzo-fused δ-lactones bearing vicinal quaternary stereocenters were obtained with good to excellent enantioselectivity, bypassing the competitive 1,1-OH insertion and racemic background aldol reaction. A highly enantioselective cascade Z-selective-1,3-OH insertion/aldol cyclization of ketoacids with diazoketones involving carboxylic oxonium ylides was achieved by using a bimetallic Rh(ii)/chiral N,N′-dioxide-Fe(iii) or Sc(iii) complex catalyst.![]()
Collapse
Affiliation(s)
- Jiawen Lang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Siyuan Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Changli He
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 China
| |
Collapse
|
9
|
Bain AI, Chinthapally K, Hunter AC, Sharma I. Dual Catalysis in Rhodium (II) Carbenoid Chemistry. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Anae I Bain
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Kiran Chinthapally
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Arianne C. Hunter
- University of Oklahama Norman Campus: The University of Oklahoma Chemistry and Biochemistry UNITED STATES
| | - Indrajeet Sharma
- University of Oklahoma Chemistry and Biochemistry Stephenson Life Sciences Research Center101 Stephenson Parkway 73019-5251 Norman UNITED STATES
| |
Collapse
|
10
|
Qin H, Xie Q, He L. Diastereoselective synthesis of chroman bearing spirobenzofuranone scaffolds via oxa-Michael/1,6-conjugated addition of para-quinone methides with benzofuranone-type olefins. RSC Adv 2022; 12:16684-16687. [PMID: 35754894 PMCID: PMC9169491 DOI: 10.1039/d2ra03031d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 05/29/2022] [Indexed: 12/17/2022] Open
Abstract
A simple and convenient cyclization of ortho-hydroxyphenyl-substituted para-quinone methides with benzofuran-2-one type active olefins via oxa-Michael/1,6-conjugated addition has been developed, which afforded an easy access to enriched functionalized chroman-spirobenzofuran-2-one scaffolds with good to excellent yields (up to 90%) and diastereoselectivities (up to >19 : 1 dr). This reaction provided an efficient method for constructing desired spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one. Highly diastereoselective synthesis of spirocyclic compounds combining both well-known heterocyclic pharmacophores chroman and benzofuran-2-one.![]()
Collapse
Affiliation(s)
- Hongmei Qin
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang, 550005, P. R. China
| | - Qimei Xie
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P. R. China
| | - Long He
- College of Chemistry and Materials Engineering, Guiyang University, Guiyang, 550005, P. R. China
- College of Chemistry and Chemical Engineering, China West Normal University, Nanchong, 637002, P. R. China
| |
Collapse
|
11
|
Son EC, No J, Kim S. Organocatalytic enantioselective synthesis of phthalans via Wittig/
oxa‐Michael
cascade reaction. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Eun Chae Son
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Jaeeun No
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| | - Sung‐Gon Kim
- Department of Chemistry Kyonggi University Suwon Republic of Korea
| |
Collapse
|
12
|
Gao M, Luo Y, Xu Q, Zhao Y, Gong X, Xia Y, Hu L. A Unified Catalytic Asymmetric (4+1) and (5+1) Annulation Strategy to Access Chiral Spirooxindole‐Fused Oxacycles. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Min Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China
| | - Qianlan Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 China
| | - Yukun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 China
| | - Xiangnan Gong
- Analytical and Testing Center Chongqing University Chongqing 401331 China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering Wenzhou University Wenzhou 325035 China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research School of Pharmaceutical Sciences Chongqing University Chongqing 401331 China
| |
Collapse
|
13
|
Sun SY, Raju S, Vedarethinam G, Chen PL, Chuang SC. TfOH-promoted Classical Nazarov-type Cyclization of Benzofulvenes: Synthesis of Polycyclic 5 H,10' H-spiro[benzo[ k]phenanthridine-5,6'-dibenzopentalenes]. Org Lett 2021; 23:6212-6216. [PMID: 34355911 DOI: 10.1021/acs.orglett.1c01809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The reaction of o-benzofulvene with TfOH leads to intramolecular cyclization through novel C-C and C-N bond formation, resulting in the formation of 5H,10'H-spiro[benzo[k]phenanthridine-5,6'-dibenzopentalene]. This protocol provides a new molecular framework with reasonable to excellent yields and tolerates various electron-withdrawing/donating substituents. This method yields diastereoselectivity of up to >20:1. Furthermore, it is free of bases, oxidants, and metals and proceeds under mild reaction conditions, which are favorable for synthetic organic chemistry.
Collapse
Affiliation(s)
- Shang-You Sun
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Selvam Raju
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Guganchandar Vedarethinam
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| | - Pei-Lin Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan 30013, ROC
| | - Shih-Ching Chuang
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu, Taiwan 30010, ROC
| |
Collapse
|
14
|
Gao M, Luo Y, Xu Q, Zhao Y, Gong X, Xia Y, Hu L. A Unified Catalytic Asymmetric (4+1) and (5+1) Annulation Strategy to Access Chiral Spirooxindole-Fused Oxacycles. Angew Chem Int Ed Engl 2021; 60:19813-19820. [PMID: 34160121 DOI: 10.1002/anie.202105282] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/10/2021] [Indexed: 12/11/2022]
Abstract
A unified catalytic asymmetric (N+1) (N=4, 5) annulation reaction of oxindoles with bifunctional peroxides has been achieved in the presence of a chiral phase-transfer catalyst (PTC). This general strategy utilizes peroxides as unique bielectrophilic four- or five-atom synthons to participate in the C-C and the subsequent umpolung C-O bond-forming reactions with one-carbon unit nucleophiles, thus providing a distinct method to access the valuable chiral spirooxindole-tetrahydrofurans and -tetrahydropyrans with good yields and high enantioselectivities under mild conditions. DFT calculations were performed to rationalize the origin of high enantioselectivity. The gram-scale syntheses and synthetic utility of the resultant products were also demonstrated.
Collapse
Affiliation(s)
- Min Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yanshu Luo
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qianlan Xu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Yukun Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| | - Xiangnan Gong
- Analytical and Testing Center, Chongqing University, Chongqing, 401331, China
| | - Yuanzhi Xia
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lin Hu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China
| |
Collapse
|
15
|
Son EC, Kim SY, Kim SG. Squaramide-Catalyzed Asymmetric Intramolecular Oxa-Michael Reaction of α,β-Unsaturated Carbonyls Containing Benzyl Alcohol: Construction of Chiral 1-Substituted Phthalans. J Org Chem 2021; 86:6826-6839. [PMID: 33904749 DOI: 10.1021/acs.joc.1c00715] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Organocatalytic enantioselective intramolecular oxa-Michael reactions of benzyl alcohol bearing α,β-unsaturated carbonyls as Michael acceptors are presented herein. Using cinchona squaramide-based organocatalyst, enones as well as α,β-unsaturated esters containing benzyl alcohol provided their corresponding 1,3-dihydroisobenzofuranyl-1-methylene ketones and 1,3-dihydroisobenzofuranyl-1-methylene esters in excellent yields with high enantioselectivities. In addition, enantioenriched 1,3-dihydroisobenzofuranyl-1-methylene ketone could be obtained from the Wittig/oxa-Michael reaction cascade of 1,3-dihydro-2-benzofuran-1-ol.
Collapse
Affiliation(s)
- Eun Chae Son
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Seung Yeon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| | - Sung-Gon Kim
- Department of Chemistry, College of Natural Science, Kyonggi University, 154-42 Gwanggyosan-ro, Yeongtong-gu, Suwon 16227, Republic of Korea
| |
Collapse
|
16
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012678] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
17
|
Sajjad F, Reddy AGK, Xing D, Dong S, Hu W. Ruthenium(II)-catalyzed facile synthesis of 3-(phenylamino)-1H-indole-2-carboxylates from anilines and diazo pyruvates promoted by FeCl3. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Additions of N, O, and S heteroatoms to metal-supported carbenes: Mechanism and synthetic applications in modern organic chemistry. ADVANCES IN ORGANOMETALLIC CHEMISTRY 2021. [DOI: 10.1016/bs.adomc.2021.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Zhou S, Liu Q, Bao M, Huang J, Wang J, Hu W, Xu X. Gold(i)-catalyzed redox transformation of o-nitroalkynes with indoles for the synthesis of 2,3′-biindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00134e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A gold(i)-catalyzed cascade reaction of o-nitroalkynes with indoles has been reported for the rapid assembly of 2-indolyl indolone N-oxides, which exhibit high anticancer potency against SCLC cells.
Collapse
Affiliation(s)
- Su Zhou
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Qianqian Liu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jie Huang
- Guangdong Lung Cancer Institute
- Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer
- Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences
- Guangzhou 510080
- China
| | - Junjian Wang
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Xinfang Xu
- Guangdong Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|
20
|
Li NK, Sun BB, Chen JB, Yang HD, Wang BL, Yu JQ, Wang XW, Wang Z. Box-copper catalyzed asymmetric inverse-electron-demand oxa-hetero-Diels–Alder reaction for efficient synthesis of spiro pyranyl-oxindole derivatives. Org Chem Front 2021. [DOI: 10.1039/d0qo01407a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A chiral Box/Cu catalyzed asymmetric IEDDA reaction between isatin-derived β,γ-unsaturated α-ketoesters and electron-rich olefins was developed, which provided chiral spiro oxindole-pyrans in excellent yields with excellent stereoselectivities.
Collapse
Affiliation(s)
- Nai-Kai Li
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Bing-Bing Sun
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jun-Bo Chen
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Hao-Di Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Bai-Lin Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Jie-Qiang Yu
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Xing-Wang Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province
- College of Chemistry
- Chemical Engineering and Materials Science Soochow University
- Suzhou 215123
- China
| | - Zheng Wang
- State Key Laboratory of Organometallic Chemistry
- Center for Excellence in Molecular Synthesis
- Shanghai Institute of Organic Chemistry
- Chinese Academy of Sciences
- Shanghai 200032
| |
Collapse
|
21
|
Guranova N, Kantin G, Dar'in D, Krasavin M. Diazo Glutaconimides: an Unexplored Type of Heterocyclic α‐Diazocarbonyl Compounds Conveniently Evolved into Pyridine‐2,6(1
H
,3
H
)‐diones and Oxazolo[5,4‐
b
]pyridin‐5(4
H
)‐ones. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001451] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Natalia Guranova
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Grigory Kantin
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Dmitry Dar'in
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| | - Mikhail Krasavin
- Department of Natural Products Chemistry, Institute of Chemistry, Saint Petersburg State University 26 Universitetskii prospekt Peterhof 198504 Russian Federation
| |
Collapse
|
22
|
Dong G, Bao M, Xie X, Jia S, Hu W, Xu X. Asymmetric Allylation by Chiral Organocatalyst‐Promoted Formal Hetero‐Ene Reactions of Alkylgold Intermediates. Angew Chem Int Ed Engl 2020; 60:1992-1999. [DOI: 10.1002/anie.202012678] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 09/30/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Guizhi Dong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xiongda Xie
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Shikun Jia
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery School of Pharmaceutical Sciences Sun Yat-sen University Guangzhou 510006 P. R. China
| |
Collapse
|
23
|
Chen J, Liu S, Lv X, Hong K, Lei J, Xu X, Hu W. Blue Light-Promoted Formal [4+1]-Annulation of Diazoacetates with o-Aminoacetophenones: Synthesis of Polysubstituted Indolines and Computational Study. J Org Chem 2020; 85:13920-13928. [PMID: 33034191 DOI: 10.1021/acs.joc.0c01974] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A blue light-promoted formal [4+1]-annulation of diazoacetates with o-aminoacetophenones has been reported, which provides an environmentally friendly method for the synthesis of polysubstituted indoline derivatives in moderate to good yields with excellent diastereoselectivities. Detailed mechanistic studies through density functional theory calculations reveal that the (E)-enol species is the key intermediate in this transformation, and the excellent diastereoselectivity is enabled via H-bonding in the intramolecular Aldol-type addition.
Collapse
Affiliation(s)
- Jinzhou Chen
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuhao Liu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinxin Lv
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Kemiao Hong
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jinping Lei
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xinfang Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
24
|
Yin X, Xu A, Hu J, Bao M, Hu W, Qian Y. A Rh( ii)/phosphoric acid co-catalyzed three-component reaction of diazo-ketones with alcohols and azonaphthalenes: access to indole derivatives via a formal [3 + 2]-cycloaddition. Org Biomol Chem 2020; 18:9805-9809. [DOI: 10.1039/d0ob02189j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Rh(ii)/Phosphoric Acid co-catalyzed muti-component annulation was well established as a new efficient route to construct 1-amino-indole derivatives via dearomatization/rearomatization/cyclization process with in situ formed oxonium ylide.
Collapse
Affiliation(s)
- Xinru Yin
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Aimin Xu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Jidi Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Ming Bao
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Wenhao Hu
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| | - Yu Qian
- Guangdong Provincial Key Laboratory of Chiral Molecule and Drug Discovery
- School of Pharmaceutical Sciences
- Sun Yat-sen University
- Guangzhou 510006
- China
| |
Collapse
|