1
|
Konidena RK, Justin Thomas KR, Park JW. Recent Advances in the Design of Multi‐Substituted Carbazoles for Optoelectronics: Synthesis and Structure‐Property Outlook. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - K R Justin Thomas
- Indian Institute of Technology Roorkee Department of Chemistry Haridwar Road 247667 Roorkee INDIA
| | - Jong Wook Park
- Kyunghee University College of Engineering Chemical Engineering INDIA
| |
Collapse
|
2
|
Konidena RK, Oh S, Kang S, Park SS, Lee H, Park J. Indolo[3,2,1- jk]carbazole-Derived Narrowband Violet-Blue Fluorophores: Tuning the Optical and Electroluminescence Properties by Chromophore Juggling. J Org Chem 2022; 87:6668-6679. [PMID: 35512315 DOI: 10.1021/acs.joc.2c00322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The development of rigid polyaromatic building blocks for narrowband violet fluorophores has received tremendous attention. Herein, we designed and synthesized two new triangle-shaped rigid building blocks, namely, 2,5-di-tert-butylindolo[3,2,1-jk]carbazole (tBuICz) and 2,11-di-tert-butylindolo[3,2,1-jk]carbazole-4-carbonitrile (tBuICzCN), and tethered them with different chromophores to yield a series of violet-blue fluorophores, viz., ICzTPA-ICzPICN, and studied their structure-function relationship. The appended chromophores and cyano unit played a vital role in controlling the optical and electrical properties of the compounds. Except triphenylamine-substituted derivatives, the compounds showed pure violet emission (λem ≤ 403 nm). Intriguingly, the compounds exhibited narrow-band emission with a full-width at half-maximum ≤ 40 nm, attributed to the rigidity of the ICz core. The emission of the compounds displayed positive solvatochromism, which is ascribed to the photoinduced intramolecular charge transfer in the excited state. The compounds revealed excellent thermal robustness with T5d ≥ 363 °C. The triphenylamine-featuring derivatives displayed a high-lying HOMO compared to their congeners due to their electron-rich nature. When we applied these materials in organic light-emitting diodes, ICzPI outperformed in the series with an EQEmax of 3.07% and a current efficiency of 1.04 cd/A. Notably, its CIEy ∼ 0.046 precisely matched with the Rec.2020 standard of deep-blue color (CIEy ∼ 0.046).
Collapse
Affiliation(s)
| | - Seyoung Oh
- Department of Chemical Engineering, Kyunghee University, Suwon 17104, Republic of Korea
| | - Seokwoo Kang
- Department of Chemical Engineering, Kyunghee University, Suwon 17104, Republic of Korea
| | - Sang-Shin Park
- Department of Chemical Engineering, Kyunghee University, Suwon 17104, Republic of Korea
| | - Hayoon Lee
- Department of Chemical Engineering, Kyunghee University, Suwon 17104, Republic of Korea
| | - Jongwook Park
- Department of Chemical Engineering, Kyunghee University, Suwon 17104, Republic of Korea
| |
Collapse
|
3
|
Mentado-Morales J, Ximello-Hernández A, Salinas-Luna J, Freitas VLS, Ribeiro da Silva MDMC. A Promising Thermodynamic Study of Hole Transport Materials to Develop Solar Cells: 1,3-Bis( N-carbazolyl)benzene and 1,4-Bis(diphenylamino)benzene. Molecules 2022; 27:381. [PMID: 35056694 PMCID: PMC8779908 DOI: 10.3390/molecules27020381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
The thermochemical study of the 1,3-bis(N-carbazolyl)benzene (NCB) and 1,4-bis(diphenylamino)benzene (DAB) involved the combination of combustion calorimetric (CC) and thermogravimetric techniques. The molar heat capacities over the temperature range of (274.15 to 332.15) K, as well as the melting temperatures and enthalpies of fusion were measured for both compounds by differential scanning calorimetry (DSC). The standard molar enthalpies of formation in the crystalline phase were calculated from the values of combustion energy, which in turn were measured using a semi-micro combustion calorimeter. From the thermogravimetric analysis (TGA), the rate of mass loss as a function of the temperature was measured, which was then correlated with Langmuir's equation to derive the vaporization enthalpies for both compounds. From the combination of experimental thermodynamic parameters, it was possible to derive the enthalpy of formation in the gaseous state of each of the title compounds. This parameter was also estimated from computational studies using the G3MP2B3 composite method. To prove the identity of the compounds, the 1H and 13C spectra were determined by nuclear magnetic resonance (NMR), and the Raman spectra of the study compounds of this work were obtained.
Collapse
Affiliation(s)
- Juan Mentado-Morales
- Instituto de Industrias, Universidad del Mar, Puerto Ángel, San Pedro Pochutla 70902, Oaxaca, Mexico
| | - Arturo Ximello-Hernández
- Procesos Bioalimentarios, Universidad Tecnológica de Tehuacán, Prolongación de la 1 Sur 1101, San Pablo Tepetzingo, Tehuacán 75859, Puebla, Mexico
| | - Javier Salinas-Luna
- Instituto de Ecología, Universidad del Mar, Puerto Ángel, San Pedro Pochutla 70902, Oaxaca, Mexico;
| | - Vera L. S. Freitas
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal; (V.L.S.F.); (M.D.M.C.R.d.S.)
| | - Maria D. M. C. Ribeiro da Silva
- Centro de Investigação em Química da Universidade do Porto (CIQUP), Department of Chemistry and Biochemistry, Faculty of Science, University of Porto, Rua do Campo Alegre, P-4169-007 Porto, Portugal; (V.L.S.F.); (M.D.M.C.R.d.S.)
| |
Collapse
|
4
|
Li X, Zhang Q, Zhang X. Deep-blue-emitting nanoaggregates from carbazole-based dyes in water. Chem Commun (Camb) 2021; 58:104-107. [PMID: 34875676 DOI: 10.1039/d1cc05441d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
New amphiphilic carbazole-based dyes assemble in water into deep-blue-emitting, highly fluorescent helical aggregates as observed by transmission electron microscopy and atomic force microscopy. Single crystal X-ray diffraction and NMR spectroscopy reveal that self-complementary, antiparallel H-bonding and π-π stacking interactions are the driving forces for the formation of these dye aggregates.
Collapse
Affiliation(s)
- Xiaohui Li
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Qi Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin University, Tianjin, 300072, China.
| | - Xin Zhang
- School of Chemical Engineering and Technology, Collaborative Innovation Center of Chemistry Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
5
|
Fadeev AA, Makarov AS, Uchuskin MG. Acid-Catalyzed Cascade Reaction of 2-Alkylfurans with α,β-Unsaturated Ketones: A Shortcut to 2,3,5-Trisubstituted Furans. J Org Chem 2021; 86:17362-17370. [PMID: 34784209 DOI: 10.1021/acs.joc.1c01692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The convergent one-pot method toward trisubstituted furans has been developed. The key transformation behind the synthetic protocol comprises the cascade acid-catalyzed conjugated addition of furans to commercially available or easily accessible α,β-unsaturated ketones followed by the rearrangement of the intermediate Michael adducts into isomeric furans. The prospect of utilizing the target products as building blocks for the preparation of potential functional molecules for organic electronics has been demonstrated.
Collapse
Affiliation(s)
- Alexander A Fadeev
- Department of Organic Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12800, Czech Republic
| | - Anton S Makarov
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| | - Maxim G Uchuskin
- Department of Chemistry, Perm State University, Bukireva 15, Perm, 614990, Russia
| |
Collapse
|
6
|
Dong Y, Mei T, Luo QQ, Feng Q, Chang B, Yang F, Zhou HW, Shi ZC, Wang JY, He B. t-BuOK mediated oxidative coupling amination of 1,4-naphthoquinone and related 3-indolylnaphthoquinones with amines. RSC Adv 2021; 11:6776-6780. [PMID: 35423184 PMCID: PMC8694889 DOI: 10.1039/d1ra00193k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
The transition-metal free amination of 1,4-naphthoquinone and related 3-indolylnaphthoquinones with amines, such as various (hetero)aromatic amine and aliphatic amine via t-BuOK-mediated oxidative coupling at room temperature has been developed. This reaction provides efficient access to the biologically important and synthetically useful 2-amino-1,4-naphthoquinones and 2-amino-3-indolylnaphthoquinones with good yields under mild conditions. The present protocol is simple, practical and shows good functional group tolerance. In addition, the obtained 2-amino-3-indolylnaphthoquinones were further transformed to synthesize polycyclic N-heterocycles.
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Ting Mei
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Qi-Qi Luo
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Qiang Feng
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Bo Chang
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Fan Yang
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Hong-Wei Zhou
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University Chengdu 610041 P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences Chengdu 610041 P. R. China
| | - Bing He
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University Chengdu 611130 P. R. China
| |
Collapse
|
7
|
Dong Y, Mei T, Ye JX, Chen XL, Jiang H, Chang B, Wang ZF, Shi ZC, Li ZH, He B. Assembly of polycyclic N-heterocycles via copper-catalyzed cycloamination of indolylquinones and aromatic amines. Org Biomol Chem 2021; 19:4593-4598. [PMID: 33961001 DOI: 10.1039/d1ob00666e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The copper-catalyzed cycloamination of indolylquinones and various (hetero)aromatic amines under ligand-free conditions for the synthesis of polycyclic N-heterocycles has been developed. This method allows facile access to polycyclic N-heterocycles with the tolerance of chloride, bromide, amino, thio, etc. groups in moderate to high yields (60-89%).
Collapse
Affiliation(s)
- Yu Dong
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Ting Mei
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Ji-Xian Ye
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Xiang-Long Chen
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Hui Jiang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Bo Chang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Zhi-Fan Wang
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhong-Hui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| | - Bing He
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, 611130, P. R. China.
| |
Collapse
|
8
|
Konidena RK, Thomas KRJ, Dubey DK, Sahoo S, Jou J. Fine‐Tuning the Physicochemical and Electroluminescence Properties of Multiply‐Substituted Bipolar Carbazoles by Functional Group Juggling. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rajendra Kumar Konidena
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 India
| | - K. R. Justin Thomas
- Organic Materials Laboratory Department of Chemistry Indian Institute of Technology Roorkee Roorkee 247 667 India
| | - Deepak Kumar Dubey
- Department of Material Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Snehasis Sahoo
- Department of Material Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| | - Jwo‐Huei Jou
- Department of Material Science and Engineering National Tsing Hua University Hsinchu 30013 Taiwan
| |
Collapse
|
9
|
Godumala M, Hwang J, Kang H, Jeong JE, Harit AK, Cho MJ, Woo HY, Park S, Choi DH. High-Performance, Solution-Processable Thermally Activated Delayed Fluorescent Organic Light-Emitting Diodes Realized via the Adjustment of the Composition of the Organoboron Acceptor Monomer in Copolymer Host Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35300-35310. [PMID: 32654477 DOI: 10.1021/acsami.0c10293] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic polymers that exhibit features pertinent to functioning as host materials for thermally activated delayed fluorescence (TADF) emitters have considerable potential in solution-processable organic light-emitting diodes (OLEDs), allowing simple, low-cost, and large-area applications. In particular, polymer hosts have superior characteristics, including facile functionality to introduce various electron donor and acceptor entities, the ability to uniformly disperse and contain small molecular dopants, and the ability to produce more smooth and homogeneous films, compared to those of their small-molecule counterparts. This manuscript describes the design and development of three new styrene-based copolymers (ABP91, ABP73, and ABP55) bearing diphenylacridine as the electron donor and 2,12-di-tert-butyl-7-phenyl-5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene as the electron acceptor. In particular, ABP91, ABP73, and ABP55 were synthesized via variations in the ratio of donor to acceptor monomers to substantiate their influence in OLED applications. With the ability of the styrene backbone of interrupting the direct electronic coupling between the adjacent electron donor and acceptor entities through non-conjugated linkages, high triplet energy can be inherited by the resulting polymers (>2.70 eV). Furthermore, these materials manifest thermal robustness through high decomposition temperatures (between 348 and 366 °C) and high glass transition temperatures (between 234 and 277 °C). Consequently, solution-processable OLEDs fabricated using the newly synthesized copolymers as host materials and the familiar t4CzIPN as a green-emissive TADF dopant deliver state-of-the-art performance with maximum external quantum efficiencies of 21.8, 22.2, and 19.7% for ABP91, ABP73, and ABP55, respectively. To our knowledge, this is, to date, the best performance reported when organic polymers are used as host materials in solution-processable TADF OLEDs. The pragmatic outcomes obtained in this study can provide useful insights into the structure-property relationship to the OLED community for the further development of efficient polymer hosts for use in solution-processable TADF OLEDs.
Collapse
Affiliation(s)
- Mallesham Godumala
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Jinhyo Hwang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hyunchul Kang
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Ji-Eun Jeong
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Amit Kumar Harit
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Min Ju Cho
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Sungnam Park
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Dong Hoon Choi
- Department of Chemistry, Research Institute for Natural Sciences, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
10
|
Dong Y, Yang J, Zhang H, Zhan XY, He S, Shi ZC, Zhang XM, Wang JY. Cobalt-Catalyzed Cycloamination: Synthesis and Photophysical Properties of Polycyclic N-Heterocycles. Org Lett 2020; 22:5151-5156. [DOI: 10.1021/acs.orglett.0c01753] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yu Dong
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jian Yang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiao-Yu Zhan
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai He
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiao-Mei Zhang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| | - Ji-Yu Wang
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
| |
Collapse
|