1
|
Li K, Liang Y, Cui Y, Liu C. Samarium Diiodide/Samarium-Promoted Deoxygenative Dimerization of Unactivated Aldehydes and Ketones to Construct Internal Alkenes via C═O Bond Cleavage. J Org Chem 2025. [PMID: 40491385 DOI: 10.1021/acs.joc.5c00010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
A samarium diiodide/samarium-promoted deoxygenative dimerization of unactivated aldehydes and ketones to construct alkenes under ligand-free and base-free conditions via C═O bond cleavage has been reported. Readily available unactivated aldehydes and ketones have been employed as substrates for preparing highly valuable internal alkenes. Wide substrate range and excellent functional group tolerance have been demonstrated to be a broad and robust method for the preparation of highly valuable alkenes.
Collapse
Affiliation(s)
- Kexin Li
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yongqi Liang
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Yongmei Cui
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| | - Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
| |
Collapse
|
2
|
Wang X, Chen W, Chen W. Pd/NHCs-Catalyzed Denitrative/Dechlorinated N-Arylation of Nitroarenes/Chloroarenes to Hydrazine Derivatives. Chem Asian J 2025; 20:e202401902. [PMID: 39950363 DOI: 10.1002/asia.202401902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/26/2025]
Abstract
Palladium-catalyzed denitrative/dechlorinated C-N coupling reactions of nitroaromatics/chloroarenes with hydrazines/hydrazones were performed using sterically bulky N-heterocyclic ligands (NHC=2-aryl-5-(2,4,6-triisopropylphenyl)-2,3-imidazolylidene[1,5-a]pyridines). A range of N-arylbenzophenone hydrazones/hydrazine derivatives were obtained in good to excellent yields. This protocol provides an efficient method for the preparation of hydrazones/hydrazines via C-N coupling of inexpensive nitroarenes and chloroarenes.
Collapse
Affiliation(s)
- Xuejie Wang
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Wei Chen
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, 310023, China
| | - Wanzhi Chen
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
3
|
Martina K, Tagliapietra S, Calsolaro F, Paraschiv A, Sacco M, Picollo F, Sturari S, Aprà P, Mino L, Barge A, Cravotto G. Covalent Functionalisation of rGO and Nanodiamonds: Complementary Versatility and Applicability of Azomethine Ylide, Nitrile Oxide and Nitrone. Chempluschem 2025; 90:e202400510. [PMID: 39668110 DOI: 10.1002/cplu.202400510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/10/2024] [Accepted: 12/11/2024] [Indexed: 12/14/2024]
Abstract
The existing synthetic protocols for the direct functionalization of carbon-based nanomaterials often entail limitations due to their harsh reaction conditions, which require the use of high temperatures for extended periods. This study aims to overcome these limitations by developing mild and efficient synthetic protocols around 1,3-dipolar cycloaddition. Beginning with the well-established azomethine ylide derivatization, we progress to the utilization of nitrile oxide, and of nitrone derivatives for the functionalization of reduced graphene oxide (rGO) as well as of nanodiamonds (NDs). This comparative work employs both classical heating and microwave activation with the aim of reducing reaction times and enhancing efficacy. Results demonstrate that nitrone can react at 60 °C and that the reaction temperature may be decreased to 30 °C with nitrile oxide. Excellent progress was made in reducing the large excess of dipoles typically required for derivatization. Nitrile oxide was proved to be the most efficient in terms of derivatization degree, while nitrone was the most versatile reagent, facilitating the decoration of the carbon nanolayer with disubstituted dihydroisoxazole. To accurately assess the degree of functionalization, the reaction products underwent characterization using various spectroscopic and analytical techniques. Additionally, an indirect evaluation of the reaction outcome was conducted through Fmoc deprotection and quantification.
Collapse
Affiliation(s)
- Katia Martina
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Silvia Tagliapietra
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federica Calsolaro
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Andrei Paraschiv
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Mirko Sacco
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Federico Picollo
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Sofia Sturari
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Pietro Aprà
- Department of Physics and "NIS Inter-departmental Centre", National Institute of Nuclear Physics, University of Turin, 10125, Torino, Italy
| | - Lorenzo Mino
- Department of Chemistry and NIS Interdepartmental Centre, University of Turin, Via Pietro Giuria 7, 10125, Turin, Italy
| | - Alessandro Barge
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| | - Giancarlo Cravotto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125, Turin, Italy
| |
Collapse
|
4
|
Iizumi K, Yamaguchi J. Transformative reactions in nitroarene chemistry: C-N bond cleavage, skeletal editing, and N-O bond utilization. Org Biomol Chem 2025; 23:1746-1772. [PMID: 39831336 DOI: 10.1039/d4ob01928h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Nitroarenes are highly versatile building blocks in organic synthesis, playing a pivotal role in various reactions. Common transformations involving nitroarenes include nucleophilic aromatic substitution (SNAr) reactions, where the nitro group functions both as a potent electron-withdrawing group that activates the aromatic ring and as a leaving group facilitating the substitution. Additionally, the direct transformation of nitro groups, such as reduction-driven syntheses of amines and carboxylic acids, as well as ipso-substitution SNAr reactions, have been extensively explored. Interactions between ortho-nitro groups and neighboring substituents also provide unique opportunities for selective transformations. However, beyond these well-established processes, direct transformations of nitro groups have been relatively limited. In recent years, significant advancements have been made in alternative methodologies for nitro group transformations. This review focuses on the latest progress in novel transformations of nitroarenes, with emphasis on three major categories: (i) functional group transformations involving C-N bond cleavage in nitroarenes, (ii) skeletal editing via nitrene intermediates generated by N-O bond cleavage, and (iii) the utilization of nitroarenes as an oxygen source through N-O bond cleavage. These developments under-score the expanding utility of nitroarenes in modern organic synthesis.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan.
| |
Collapse
|
5
|
Tang S, Xu W, Zhang H. Transition-metal-free photochemical reductive denitration of nitroarenes. Chem Commun (Camb) 2024; 60:13754-13757. [PMID: 39495076 DOI: 10.1039/d4cc04982a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
We have developed a simple and mild photochemical process for the reductive denitration of nitroarenes under transition-metal-free conditions. This method is compatible with a broad range of functional groups, providing a practical and efficient approach for converting nitroarenes into denitrated arenes. The utility of this protocol is demonstrated through the prompt synthesis of dibenzoxepane.
Collapse
Affiliation(s)
- Shuai Tang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.
| | - Weidong Xu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.
| | - Hua Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education and Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, P. R. China.
| |
Collapse
|
6
|
Yao J, Xiao Y, Li H, Yang X, Du J, Yin Y, Feng L, Duan W, Yu L. Palladium-Catalyzed Denitrative α-Arylation of Heteroarenes with Nitroarenes via C-H and C-NO 2 Bond Activations. Org Lett 2024; 26:7307-7312. [PMID: 39172691 DOI: 10.1021/acs.orglett.4c02340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
A general approach for the α-arylation of heteroarenes with nitroarenes via denitrative coupling is reported for the first time. Various heteroarenes, including derivatives of furan, benzofuran, pyrrole, indole, thiophene, and benzothiophene, can be arylated at the α-position in moderate to good yields. Mechanistic studies demonstrate that the reaction proceeds via a CMD pathway, with C-H bond activation as the rate-determining step. Furthermore, the scalability and applicability in the synthesis of a drug molecule exemplify the utility of this protocol.
Collapse
Affiliation(s)
- Jiaxin Yao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Xun Yang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Ying Yin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Lin Feng
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
7
|
Sarmah D, Choudhury A, Bora U. Palladium nanoparticle catalyzed synthesis of indoles via intramolecular Heck cyclisation. Org Biomol Chem 2024; 22:6419-6431. [PMID: 39069947 DOI: 10.1039/d4ob01177e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
A system utilizing palladium(II)-PEG has been devised for the intramolecular Heck cyclization of N-vinyl and N-allyl-2-haloanilines. The synthesis of a variety of indoles, including 2,3-diester substituted ones and 3-methyl indoles, has been accomplished using this catalytic system. The N-vinyl starting materials are obtained by the aza-Michael addition of 2-haloanilines with alkynecarboxylate esters, which, upon cyclization, yield ester-substituted indoles. Conversely, N-allyl-2-haloanilines yield 3-methylated indoles as the major products. The high activity of the system is owed to the in situ generation of Pd nanoparticles.
Collapse
Affiliation(s)
- Debasish Sarmah
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
- Department of Chemistry, Dakshin Kamup College, Mirza, Kamrup, Assam, India
| | - Anup Choudhury
- Department of Chemistry, Handique Girls' College, Guwahati, Assam, India
| | - Utpal Bora
- Dept of Chemical Sciences, Tezpur University, Napam, Sonitpur, Assam, India.
| |
Collapse
|
8
|
Iizumi K, Tanaka H, Muto K, Yamaguchi J. Palladium-Catalyzed Denitrative Synthesis of Aryl Nitriles from Nitroarenes and Organocyanides. Org Lett 2024; 26:3977-3981. [PMID: 38683691 DOI: 10.1021/acs.orglett.4c01118] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
A denitrative cyanation of nitroarenes using organocyanides and a palladium catalyst was developed. The key for this reaction was the utilization of an aminoacetonitrile as a cyano source to avoid the generation of stoichiometric metal- and halogen-containing chemical waste. A wide range of nitroarenes, including heteroarenes and pharmaceutical molecules, can be converted into aryl nitriles.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Hiroki Tanaka
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
9
|
Nan J, Xiao H, Ma Y, Fan L, Wang J. Palladium-Catalyzed Domino Conversion of Aryl-Thianthreniums with Anhydrides: Rapidly Building Highly Functionalized Fluorenones. Org Lett 2024. [PMID: 38619225 DOI: 10.1021/acs.orglett.4c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
As a class of rising electrophilic coupling reagents, aryl-thianthreniums (aryl-TTs) have been gaining immense attention. Herein, a novel palladium-catalyzed domino annulation of aryl-TTs with anhydrides is proposed to rapidly assemble a collection of highly functionalized fluorenones. This finding presents an innovative reaction pattern of aryl-TTs wherein the domino annulation version is first involved. Heavily compared with the existing conversions with aryl-TTs, this identified process successively functions as four aryl C-H bonds.
Collapse
Affiliation(s)
- Jiang Nan
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- Xi'an Key Laboratory of Antiviral and Antimicrobial-Resistant Bacteria Therapeutics Research, School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haiyan Xiao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yangmin Ma
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Liangxin Fan
- College of Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing Wang
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
10
|
Lei Z, Yao J, Xiao Y, Liu WH, Yu L, Duan W, Li CJ. Dual role of nitroarenes as electrophiles and arylamine surrogates in Buchwald-Hartwig-type coupling for C-N bond construction. Chem Sci 2024; 15:3552-3561. [PMID: 38455022 PMCID: PMC10915857 DOI: 10.1039/d3sc06618e] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/24/2024] [Indexed: 03/09/2024] Open
Abstract
One of the most widely utilized methods for the construction of C(sp2)-N bonds is the transition-metal-catalyzed cross-coupling of aryl halides/boronic acids with amines, known as Ullmann condensation, Buchwald-Hartwig amination, and Chan-Lam coupling. However, aryl halides/boronic acids often require multi-step preparation while generating a large amount of corrosive and toxic waste, making the reaction less attractive. Herein, we present an unprecedented method for the C(sp2)-N formation via Buchwald-Hartwig-type reactions using synthetically upstream nitroarenes as the sole starting materials, thus eliminating the need for arylhalides and pre-formed arylamines. A diverse range of symmetrical di- and triarylamines were obtained in a single step from nitroarenes, and more importantly, various unsymmetrical di- and triarylamines were also highly selectively synthesized in a one-pot/two-step process. Furthermore, the success of the scale-up experiments, the late-stage functionalization of a drug intermediate, and the rapid preparation of hole-transporting material TCTA showcased the utility and practicality of this protocol in synthetic chemistry. Mechanistic studies indicate that this transformation may proceed via an arylamine intermediate generated in situ from the reduction of nitroarenes, which is followed by a denitrative Buchwald-Hartwig-type reaction with another nitroarene to form a C-N bond.
Collapse
Affiliation(s)
- Zhiguo Lei
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Jiaxin Yao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Electrochemical Energy Materials, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University East Daxue Road Nanning Guangxi 530004 P. R. China
| | - Chao-Jun Li
- Department of Chemistry and FRQNT Center for Green Chemistry and Catalysis, McGill University 801 Sherbrooke Street West Montreal Quebec H3A 0B8 Canada
| |
Collapse
|
11
|
Dahiya A, Schoetz MD, Schoenebeck F. Orthogonal Olefination with Organogermanes. Angew Chem Int Ed Engl 2023; 62:e202310380. [PMID: 37698171 DOI: 10.1002/anie.202310380] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/13/2023]
Abstract
Reported herein is a fully orthogonal olefination, which involves the site- and E-selective coupling of aryl germanes with alkenes, tolerating otherwise widely employed coupling handles such as aromatic (pseudo)halogens (C-I, C-Br, C-Cl, C-F, C-OTf, C-OSO2 F), silanes and boronic acid derivatives as well as alternative functionalities. This unprecedented [Ge]-based oxidative Heck coupling proceeds at room temperature with high speed (10 min to 2 hours) and operational simplicity owing to its base-free and air-tolerant features.
Collapse
Affiliation(s)
- Amit Dahiya
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Markus D Schoetz
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074, Aachen, Germany
| |
Collapse
|
12
|
Zhang F, Wang F, Zhao Y, Chen R, Wu X. Denitrative Mizoroki–Heck reaction of unactivated alkenes. Org Chem Front 2023. [DOI: 10.1039/d3qo00132f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
A general palladium-catalyzed denitrative Mizoroki–Heck reaction of unactivated alkenes has been developed with high E/Z selectivity.
Collapse
|
13
|
Electrochemical borylation of nitroarenes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1470-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Markham TE, Duggan PJ, Johnston MR. Heck arylation of the natural pyrethrins. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
Mohammad Ghadiri A, Farhang M, Hassani P, Salek A, Talesh Ramezani A, Reza Akbarzadeh A. Recent advancements review Suzuki and Heck reactions catalyzed by metalloporphyrins. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Peng Y, Li Z, Hu J, Wu T. Palladium-Catalyzed Denitrative Mizoroki–Heck Reactions of Aryl or Alkyl Olefins with Nitrobenzenes. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022120168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
17
|
Zhou T, Gao P, Bisz E, Dziuk B, Lalancette R, Szostak R, Szostak M. Well-Defined, Air- and Moisture-Stable Palladium-Imidazo[1,5- a]pyridin-3-ylidene Complexes: A Versatile Catalyst Platform for Cross-Coupling Reactions by L-Shaped NHC Ligands. Catal Sci Technol 2022; 12:6581-6589. [PMID: 38045636 PMCID: PMC10691866 DOI: 10.1039/d2cy01136k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe the development of [(NHC)Pd(cinnamyl)Cl] complexes of ImPy (ImPy = imidazo[1,5-a]pyridin-3-ylidene) as a versatile class of precatalysts for cross-coupling reactions. These precatalysts feature fast activation to monoligated Pd(0) with 1:1 Pd to ligand ratio in a rigid imidazo[1,5-a]pyridin-3-ylidene template. Steric matching of the C5-substituent and N2-wingtip in the catalytic pocket of the catalyst framework led to the discovery of ImPyMesDipp as a highly reactive imidazo[1,5-a]pyridin-3-ylidene ligand for Pd-catalyzed cross-coupling of nitroarenes by challenging C-NO2 activation. Kinetic studies demonstrate fast activation and high reactivity of this class of well-defined ImPy-Pd catalysts. Structural studies provide full characteristics of this new class of imidazo[1,5-a]pyridin-3-ylidene ligands. Computational studies establish electronic properties of sterically-restricted imidazo[1,5-a]pyridin-3-ylidene ligands. Finally, a scalable synthesis of C5-substituted imidazo[1,5-a]pyridin-3-ylidene ligands through Ni-catalyzed Kumada cross-coupling is disclosed. The method obviates chromatographic purification at any of the steps, resulting in a facile and modular access to ImPy ligands. We anticipate that well-defined [Pd-ImPy] complexes will find broad utility in organic synthesis and catalysis for activation of unreactive bonds.
Collapse
Affiliation(s)
- Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052, Poland
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373, Poland
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
18
|
Iizumi K, Nakayama KP, Kato K, Muto K, Yamaguchi J. Synthesis and Properties of Pyridine-Fused Triazolylidene-Palladium: Catalyst for Cross-Coupling Using Chloroarenes and Nitroarenes. J Org Chem 2022; 87:11909-11918. [PMID: 36001867 DOI: 10.1021/acs.joc.2c01562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The synthesis and catalytic activity of pyridine-fused triazolylidene as a novel abnormal N-heterocyclic carbene (aNHC) ligand is described. The evaluation of physical properties using X-ray crystallographic analysis and infrared spectroscopy revealed that these triazolylidenes have a high electron-donating ability toward the metal center. The application of this triazolylidene to the palladium-catalyzed cross-coupling of chloroarenes and nitroarenes with arylboronic acids showcased its ability to activate C-Cl and C-NO2 bonds.
Collapse
Affiliation(s)
- Keiichiro Iizumi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Keito P Nakayama
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kenta Kato
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
19
|
Thopate Y, Singh R, Rastogi SK, Sinha AK. Cascade Multicomponent reaction Involving Unprecedented Gould‐Jacobs‐Heck/Suzuki Coupling‐Hydrolysis‐Decarboxylation in one pot: Rapid Synthesis of Hybrid Heterocyclic Molecules. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yogesh Thopate
- CSIR-Central Drug Research Institute: Central Drug Research Institute medicinal and process chemistry INDIA
| | - Richa Singh
- CSIR-Central Drug Research Institute Medicinal and Process Chemistry Division medicinal and process chemistry lucknow INDIA
| | - Sumit K Rastogi
- CSIR-Central Drug Research Institute: Central Drug Research Institute medicinal and process chemistry INDIA
| | - Arun Kumar Sinha
- CSIR-CDRI (Central Drug Research Institute) Medicinal and Process Chemistry Sitapur Road 226031 Lucknow INDIA
| |
Collapse
|
20
|
Feng L, Yao J, Yu L, Duan WG. Palladium-catalyzed denitrative N-arylation of nitroarenes with pyrroles, indoles, and carbazole. Org Chem Front 2022. [DOI: 10.1039/d2qo00010e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed an efficient palladium-catalyzed denitrative N-arylation via cross-coupling of N–H heteroarenes with nitroarenes, one of the most inexpensive and fundamental feedstocks in the chemical industry. A variety of...
Collapse
|
21
|
Zhu B, Li Z, Chen F, Xiong W, Tan X, Lei M, Wu W, Jiang H. Palladium-catalyzed oxidative Heck reaction of non-activated alkenes directed by fluorinated alcohol. Chem Commun (Camb) 2022; 58:12688-12691. [DOI: 10.1039/d2cc04921j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new reactivity pattern for the regio- and stereoselective oxidative arylation of non-activated alkenes by introducing a trifluoromethyl group in the substrate enol has been established.
Collapse
Affiliation(s)
- Baiyao Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhewei Li
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Fulin Chen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wenfang Xiong
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaobin Tan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Ming Lei
- State Key Laboratory of Chemical Resource Engineering, Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
22
|
Garcia J, Eichwald J, Zesiger J, Beng TK. Leveraging the 1,3-azadiene-anhydride reaction for the synthesis of functionalized piperidines bearing up to five contiguous stereocenters. RSC Adv 2021; 12:309-318. [PMID: 35424477 PMCID: PMC8978715 DOI: 10.1039/d1ra07390g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/10/2021] [Indexed: 12/25/2022] Open
Abstract
A modular and scalable strategy, which remodels 3-methylglutaric anhydride to 2-oxopiperidines bearing at least three contiguous stereocenters is described. The approach relies on the chemoselective and stereocontrolled annulation of 1,3-azadienes with the anhydride component. The resulting acid-tethered allylic 2-oxopiperidines are then engaged in several selective fragment growth processes, including catalytic denitrative alkenylation, halolactonization, and Vilsmeier-Haack functionalization.
Collapse
Affiliation(s)
- Jorge Garcia
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jane Eichwald
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Jayme Zesiger
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| | - Timothy K Beng
- Department of Chemistry, Central Washington University Ellensburg WA 98926 USA
| |
Collapse
|
23
|
Sajedi M, Mansoori Y, Nuri A, Esquivel D, Angeles Navarro M. 2‐Pyridyl‐Benzimidazole‐Pd (II) Complex Supported on Magnetic SBA‐15: An Efficient and Magnetically Retrievable Catalyst for the Heck Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mohammad Sajedi
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Daneshgah St. Ardabil 56199-11367 Iran
| | - Yagoub Mansoori
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Daneshgah St. Ardabil 56199-11367 Iran
- Nanoscience and Nanotechnology Research Group University of Mohaghegh Ardabili 56199-11367 Ardabil Iran
| | - Ayat Nuri
- Department of Applied Chemistry, Faculty of Science University of Mohaghegh Ardabili Daneshgah St. Ardabil 56199-11367 Iran
| | - Dolores Esquivel
- Departamento de Química Orgánica, Instituto Universitario de, Nanoquímica IUNAN, Facultad de Ciencias Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie Córdoba E-14071 España
| | - M. Angeles Navarro
- Departamento de Química Orgánica, Instituto Universitario de, Nanoquímica IUNAN, Facultad de Ciencias Universidad de Córdoba Campus de Rabanales, Edificio Marie Curie Córdoba E-14071 España
| |
Collapse
|
24
|
Abstract
Cross-coupling reactions are powerful synthetic tools to construct diverse chemical bonds often found in, for example, advanced materials and pharmaceuticals. Since their discovery, haloarenes have habitually been used as electrophilic coupling partners both in academic and industrial contexts. However, concerning the efficiency and the often-negative environmental impact of haloarene-based cross-coupling processes, more readily available, inexpensive, and environmentally friendly electrophiles have been explored.Nitroarenes, for example, are obtained from the facile nitration of aromatic compounds and, thus, represent one of the most easy-to-access feedstock electrophiles. Furthermore, their electron-deficient arene core can be functionalized easily and site-selectively through a wide variety of reactions. Yet, despite these advantages and even though the direct transformation of the NO2 group would be an attractive option in cross-coupling chemistry, it has so far remained difficult to convert nitroarenes via a cleavage of the Ar-NO2 bond given the inherent reactivity (or the lack thereof) of the nitro group. Such denitrative conversion has been performed by a conventional sequence of reduction, diazotization, and Sandmeyer reactions, which severely lacks efficiency and generality.This Account summarizes our recent research progress on cross-coupling reactions that employ nitroarenes as electrophiles. First, we developed the Suzuki-Miyaura coupling of nitroarenes using a palladium/BrettPhos catalyst. This reaction proceeds via an (at the time) unprecedented oxidative addition of the Ar-NO2 bond, which was supported by experimental results and theoretical calculations. A widely accepted catalytic cycle for Pd-catalyzed cross-couplings has since been extended to include nitroarenes as electrophiles, which significantly increases substrate generality. Second, this denitrative coupling protocol was applied to various bond-forming reactions, namely, Buchwald-Hartwig amination, etherification, and hydrogenation reactions. Such diversification has enhanced the utility of nitroarenes as cross-coupling partners. To develop each reaction, it was necessary to modify the reaction conditions as required to overcome the obstacles deriving from nitro functionality including transmetalation and side reactions, as well as oxidative addition. Third, we designed a new Pd/NHC catalyst that exhibits higher activity than Pd/BrettPhos. The improved performance of Pd/NHC system was supported by its strong electron-donicity and structural robustness, and it allows the reduction of the catalyst loading significantly, thus increasing the efficacy and practicality of this method.The field of nitroarene-based cross-coupling has just started to flourish. In addition to our original work, several research groups have already adopted Pd/BrettPhos or Pd/NHC catalysts to develop new denitrative functionalizations. The utility of nitroarenes in the context of organic synthesis should be now revisited.
Collapse
Affiliation(s)
- Myuto Kashihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Majee D, Goud SB, Guin S, Rathor SS, Patel AK, Samanta S. Reversal Reactivity of β‐Alkylnitroalkenes as 1,3‐Binucleophiles: Application to Nitroarenes using Organocatalysis. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Debashis Majee
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - S Banuprakash Goud
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Soumitra Guin
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Shikha S. Rathor
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Ashvani K. Patel
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| | - Sampak Samanta
- Department Chemistry Indian Institute of Technology Indore Simrol 453552 Indore India
| |
Collapse
|
26
|
Affiliation(s)
- Naoki Matsushita
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Myuto Kashihara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Michele Formica
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| | - Yoshiaki Nakao
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Kyoto 615-8510, Japan
| |
Collapse
|
27
|
Li D, Tian Q, Wang X, Wang Q, Wang Y, Liao S, Xu P, Huang X, Yuan J. N-Heterocyclic carbene palladium (II)-pyridine (NHC-Pd (II)-Py) complex catalyzed heck reactions. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1919711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dan Li
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Qingqiang Tian
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xuetong Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Qiang Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Yin Wang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Siwei Liao
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Ping Xu
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Xin Huang
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Jianyong Yuan
- Department of Medicinal Chemistry, College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
28
|
Domingues NLC, dos Santos BF, da Silva BAL, de Oliveira AR, Sarragiotto MH, Rinaldi AW. Palladium Nanoparticles Anchored on Magnesium Organosilicate: An Effective and Selective Catalyst for the Heck Reaction. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0040-1705938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractA new and effective palladium catalyst supported on a magnesium organosilicate for application in the Heck reaction is presented. A group of compounds comprising 22 examples were synthesized in moderate to high yields (up to 99%) within a short time. The palladium supported on magnesium organosilicate catalyst was characterized as an amorphous solid by SEM, containing around 33% of palladium inside the solid, and even with this low quantity of palladium, the catalyst was very efficient in the Heck reaction. Besides, based on the Scherrer equation, the crystallite size of the synthesized palladium nanoparticles was ultrasmall (around 1.3 nm). This strategy is a simple and efficient route for the formation of C–C bonds via the Heck cross-coupling reaction.
Collapse
Affiliation(s)
- Nelson Luís C. Domingues
- Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD
| | - Beatriz F. dos Santos
- Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD
| | - Beatriz A. L. da Silva
- Organic Catalysis and Biocatalysis Laboratory – LACOB, Federal University of Grande Dourados – UFGD
| | | | | | | |
Collapse
|
29
|
Li Z, Peng Y, Wu T. Palladium-Catalyzed Denitrative α-Arylation of Ketones with Nitroarenes. Org Lett 2021; 23:881-885. [DOI: 10.1021/acs.orglett.0c04104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Zhirong Li
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Yonggang Peng
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| | - Tao Wu
- The College of Chemistry, Nanchang University, Nanchang, Jiangxi 330031, P. R. China
| |
Collapse
|
30
|
Momin M, Musso JV, Frey W, Buchmeiser MR. Tuning the Latent Behavior of Molybdenum Imido Alkylidene N-Heterocyclic Carbene Complexes in Dicyclopentadiene Polymerization. Organometallics 2021. [DOI: 10.1021/acs.organomet.0c00740] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | | | - Michael R. Buchmeiser
- German Institutes of Textile and Fiber Research (DITF) Denkendorf, Körschtalstraße 26, D-73770 Denkendorf, Germany
| |
Collapse
|
31
|
Maity T, Ghosh P, Das S, Saha D, Koner S. A post-synthetically modified metal–organic framework for copper catalyzed denitrative C–N coupling of nitroarenes under heterogeneous conditions. NEW J CHEM 2021. [DOI: 10.1039/d0nj05711h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Post-synthesis modification of DMOF, afforded a desired material for strategic infusion of catalytically active centers in a porous matrix. The catalyst is capable for denitrative C–N coupling reactions of nitroarenes under heterogeneous conditions.
Collapse
Affiliation(s)
- Tanmoy Maity
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata 700 032
- India
- Solid State and Structural Chemistry Unit
| | - Pameli Ghosh
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata 700 032
- India
| | - Soma Das
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata 700 032
- India
| | - Debraj Saha
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata 700 032
- India
- Department of Chemistry
| | - Subratanath Koner
- Department of Chemistry
- Jadavpur University
- Jadavpur, Kolkata 700 032
- India
| |
Collapse
|
32
|
Asahara KK, Kashihara M, Muto K, Nakao Y, Yamaguchi J. Development of Pd-Catalyzed Denitrative Couplings. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Myuto Kashihara
- Department of Material Chemsitry, Graduate School of Engineering, Kyoto Univeristy
| | - Kei Muto
- Institute for Advanced Study, Waseda University
| | - Yoshiaki Nakao
- Department of Material Chemsitry, Graduate School of Engineering, Kyoto Univeristy
| | | |
Collapse
|
33
|
Affiliation(s)
- Kei Muto
- Waseda Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Toshimasa Okita
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
34
|
Zhou F, Zhou F, Su R, Yang Y, You J. Build-up of double carbohelicenes using nitroarenes: dual role of the nitro functionality as an activating and leaving group. Chem Sci 2020; 11:7424-7428. [PMID: 34123023 PMCID: PMC8159353 DOI: 10.1039/d0sc02058c] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 06/23/2020] [Indexed: 11/21/2022] Open
Abstract
The construction of double carbohelicenes is highly fascinating yet challenging work. Disclosed herein is a streamlined and simplified synthetic route to double carbohelicenes starting from nitroarenes through sequential nitro-activated ortho-C-H arylation, denitrative alkenylation and intramolecular cyclodehydrogenation. In this synthetic strategy, the nitro group plays a dual role namely as a leaving group for the denitrative alkenylation and as an activating group for ortho-C-H arylation, which is distinct from those of aryl halides in a conventional coupling reaction. In this work, the palladium-catalyzed Heck-type alkenylation of nitroarenes has been presented, in which the conventionally inert Ar-NO2 bond is cleaved. This work provides a novel synthetic strategy for polycyclic aromatic hydrocarbons (PAHs).
Collapse
Affiliation(s)
- Fulin Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Fujian Zhou
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Rongchuan Su
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Yudong Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| |
Collapse
|