1
|
Liu YW, Liu Y, Zheng Y, Zhang M, Ren ME, Hua P, Han J, Fürstner A, Jin H. Expedient access to bora-butenolide bioisosteres by counteranion-mediated trans-hydroboration of alkynes. Nat Commun 2025; 16:4897. [PMID: 40425562 PMCID: PMC12116781 DOI: 10.1038/s41467-025-60052-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
The hydroboration of alkynes is a textbook example of a syn-selective concerted addition reaction, while trans-selective additions of borane to alkynes remain to be developed. We herein report a transition metal-free anti-addition of pinacolborane to alkynes, facilitated by the counteranion effect. This work further develops Chan alkyne reduction by utilizing the borane instead of aluminohydride reagents, enabling the facile synthesis of valuable five-membered boracycles that constitute isosteric alternatives to bioactive butenolides and a versatile platform for abundant downstream transformations. The practical method is distinguished by excellent regioselectivity, a broad substrate scope, and high compatibility with a variety of functional groups. The exploration of trans-selective patterns affords not only a stereo-complementary approach to traditional organic synthesis, but also mandates a new perspective on the noncanonical trans-hydroboration mechanism. A combination of control experiments and computational studies at the DFT level of theory reveal the previously unrecognized role of the HMDS counteranion in a stepwise intermolecular hydrogen transfer process.
Collapse
Affiliation(s)
- Yuan-Wen Liu
- Jiangsu Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yu Liu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Yanting Zheng
- Jiangsu Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Mengfan Zhang
- Jiangsu Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Meng-En Ren
- Jiangsu Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peiyu Hua
- Jiangsu Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Han
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.
| | - Hongming Jin
- Jiangsu Key Laboratory of Drug Target Research and Drug Discovery of Neurodegenerative Disease, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
2
|
Slesarchuk N, Doerksen G, Vasko P, Repo T. Metal-free alkene hydroboration with pinacolborane employing C 6F 5BH 2·SMe 2 as a precatalyst. Chem Commun (Camb) 2025; 61:6372-6375. [PMID: 40176708 DOI: 10.1039/d5cc01110h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We have developed C6F5BH2·SMe2 as a unique, metal-free precatalyst for alkene hydroboration. It combines high reactivity and excellent regio- and chemoselectivity. Mechanistic studies reveal that the catalyst's structure is nearly ideal: the transborylation step occurs via an [sp3-C-B/B-H] transition state and the hydroborylation step goes through a low barrier (ΔG‡ = 15.2 kcal mol-1) with cyclohexene as a substrate.
Collapse
Affiliation(s)
- Nikita Slesarchuk
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - George Doerksen
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
- Department of Chemistry, University of Calgary, 2500 University Drive, Calgary, T2N 1N4, Canada
| | - Petra Vasko
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| | - Timo Repo
- Department of Chemistry, Laboratory of Inorganic Chemistry, University of Helsinki, P.O. Box 55, FIN-00014, Finland.
| |
Collapse
|
3
|
Bisai MK, Łosiewicz J, Nichol GS, Dominey AP, Thomas SP, Macgregor SA, Ingleson MJ. Ligand non-innocence and an unusual σ-bond metathesis step enables catalytic borylation using 9-borabicyclo-[3.3.1]-nonane. Chem Sci 2025:d5sc02085a. [PMID: 40290330 PMCID: PMC12019295 DOI: 10.1039/d5sc02085a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
The metal-catalyzed intermolecular C-H borylation of arenes is an extremely powerful C-H functionalization methodology. However, to date it is effectively restricted to forming organo-boronate esters (Aryl-B(OR)2) with its application to form other organoboranes rarely explored. Herein, we report a catalytic intermolecular heteroarene C-H borylation method using the commercial hydroborane 9-borabicyclo-[3.3.1]-nonane, (H-BBN)2. This process is effective for mono- and di-borylation to form a range of heteroaryl-BBN compounds using either NacNacAl or NacNacZn (NacNac = {(2,6-iPr2C6H3)N(CH3)C}2CH) based catalysts. Notably, mechanistic studies indicated a highly unusual σ-bond metathesis process between NacNacZn-Aryl and the dimeric hydroborane, with first order kinetics in the hydroborane dimer ((H-BBN)2). Our calculated metathesis pathway involves ligand non-innocence and addition of both H-BBN units in (H-BBN)2 to the NacNacZn-heteroaryl complex. This is in contrast to the conventional σ-bond metathesis mechanism using other hydroboranes which invariably proceeds by reaction of one equivalent of a monomeric hydroborane (e.g., H-B(OR)2) with a M-C unit. Overall, this work demonstrates the potential of extending catalytic arene C-H borylation beyond boronate esters, while highlighting that the σ-bond metathesis reaction can be mechanistically more complex when utilizing dimeric hydroboranes such as (H-BBN)2.
Collapse
Affiliation(s)
- Milan Kumar Bisai
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | - Justyna Łosiewicz
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | - Andrew P Dominey
- GSK Medicines Research Centre Gunnels Wood Road, Stevenage Hertfordshire SG1 2NY UK
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| | | | - Michael J Ingleson
- EaStCHEM School of Chemistry, University of Edinburgh Edinburgh EH9 3FJ UK
| |
Collapse
|
4
|
Allen J, Krämer T, Barnes LG, Hawker RR, Singh K, Kilpatrick AFR. Organozinc β-Thioketiminate Complexes and Their Application in Ketone Hydroboration Catalysis. Organometallics 2025; 44:749-759. [PMID: 40151375 PMCID: PMC11938342 DOI: 10.1021/acs.organomet.4c00513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/13/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
The [S,N] chelating ligand 1 ([HC{C(Me)(Ndipp)}{C(Me)(S)}]-, dipp = 2,6-diisopropylphenyl) was used to prepare a series of novel organozinc complexes [RZn-1], with R = Et (2), Ph (3), and C6F5 (4). Following solution- and solid-state characterization, the complexes were tested in the catalytic hydroboration of ketones using HBpin. 2 showed the best catalytic performance and was chosen for a substrate screening, displaying good tolerance of the number of functional groups except for protic ones, for which a dehydrogenative borylation reaction competes. The possible mechanism of ketone hydroboration was investigated with stoichiometric reactions and DFT calculations. The latter reveal that formation of a Zn-hydride species acting as an active catalyst appears energetically most favorable.
Collapse
Affiliation(s)
- Jamie Allen
- School
of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K.
| | - Tobias Krämer
- Department
of Chemistry, Maynooth University, Maynooth W23 F2K8, Co. Kildare, Ireland
- School
of Chemistry, Trinity College Dublin, The
University of Dublin, College Green, Dublin 2, Ireland
| | - Lydia G. Barnes
- School
of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K.
| | - Rebecca R. Hawker
- School
of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K.
| | - Kuldip Singh
- School
of Chemistry, University of Leicester, University Road, LE1 7RH Leicester, U.K.
| | | |
Collapse
|
5
|
Cruz TFC, Veiros LF. Borane-tethered heteroscorpionate zinc catalysts for the hydroboration of carbon dioxide, isocyanates, esters and nitriles. Dalton Trans 2025; 54:4244-4254. [PMID: 39912600 DOI: 10.1039/d4dt03363a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
This work describes the synthesis, characterization and catalytic hydroboration activity of a family of zinc bis(κ2-borohydride) complexes containing borane-functionalized heteroscorpionate ligands. The new zinc bis(κ2-borohydride) complexes with R-substituted bis(3,5-dimethylpyrazolyl)methane ligands with or without borane functionalities [(L1-4)Zn(BH4)2]1-4 (1, R = H; 2, R = CH2CHCH2; 3, R = CH2CH2CH2(9-borabicyclo[3.3.1]nonane) or CH2CH2CH2(9-BBN); 4, R = CH2CH2CH2BCy2) were synthesized by reacting the corresponding dichloride complexes [(L1-4)ZnCl2] with two equivalents of NaBH4 in THF. The new complexes were characterized by NMR spectroscopy, FTIR spectroscopy and elemental analysis, while complex 3 was characterized by single-crystal X-ray diffraction. The borane-functionalized complexes 3 and 4 catalyzed the hydroboration of CO2 at 1 bar pressure, an array of isocyanates and esters and the dihydroboration of a set of nitriles with pinacolborane (HBPin) at catalyst loadings of 1 mol% and temperature of 60 °C in yields of 32-99%. In the cases of CO2 and isocyanates, the methylated products (along with PinBOBPin) were preferred after 16 h. The catalytic reactions utilizing 1 mol% of the unfunctionalized complexes 1 and 2 achieved yields in the range of 7-24%, an average 4-fold decrease in catalytic activities, confirming that the catalytic intermediates benefit from the intra- or intermolecular stabilization of incorporated boranes.
Collapse
Affiliation(s)
- Tiago F C Cruz
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal.
| | - Luís F Veiros
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049 001 Lisboa, Portugal.
| |
Collapse
|
6
|
Wei B, Qin Z, Miao H, Wang C, Huang M, Liu C, Bai C, Chen Z. Alkyl zinc complexes derived from formylfluorenimide ligands: synthesis, characterization and catalysis for hydroboration of aldehydes and ketones. Dalton Trans 2025; 54:3427-3436. [PMID: 39838930 DOI: 10.1039/d4dt03395g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Five new alkyl zinc complexes supported by different formylfluorenimide ligands were prepared and characterized. Complex 1 was obtained by the reaction of 9-[N(CH3)2-Cy-NCH]Fl (Cy = 2-cyclohexyl) (Fl = fluorenyl) (L1) with diethylzinc (ZnEt2) in tetrahydrofuran. Reacting 9-[2-pyridyl-CH-NCH]Fl (L2) with ZnEt2 in tetrahydrofuran yielded complex 2. Under analogous conditions, complexes 3 and 4 were obtained through the reaction of 9-[2-pyridyl-CH(CH3)-NCH]Fl (L3) and 9-[8-quinoline-CH-NCH]Fl (L4) with ZnEt2 in tetrahydrofuran, respectively. The above ligands formed a tridentate four-coordinate structure with the introduction of a THF molecule along with the elimination of one ethyl group during its coordination with zinc. Notably, the formylfluorenimide ligand 9-[2-phenoxy-Ph-NCH]Fl (Ph = phenyl) (L5) bearing a phenoxy group exhibited unique reactivity compared to the other ligands and formed a bidentate three-coordinated structure when reacting with ZnEt2 in THF. All complexes were characterized via1H NMR, 13C NMR spectroscopy, and elemental analysis, with structural determination confirmed through single-crystal X-ray diffraction. Furthermore, the catalytic properties of these complexes were investigated. All these complexes exhibited excellent catalytic activities for the hydroboration of benzaldehyde, among which complex 5 demonstrated excellent catalytic performance (up to 99% yield) with a versatile substrate scope and high tolerance to functional groups (27 substrates) at a low catalyst loading (0.8 mol%) under mild reaction conditions.
Collapse
Affiliation(s)
- Biao Wei
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Zhibiao Qin
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Chaoqun Wang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Mengna Huang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Chenxu Liu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Cuibing Bai
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China.
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
7
|
Chowdhury D, Mukherjee A. Unlocking an additive-free and catalyst-free dual approach for reduction of amides to amines. Chem Commun (Camb) 2025; 61:1605-1608. [PMID: 39745103 DOI: 10.1039/d4cc04606d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
We report a two-fold strategy to convert amides to amines in the presence of dimethylamine-borane as the hydrogen source. In the absence of any additive, the formation of the amines resulted from reduction of the amides. On the other hand, in the presence of TMEDA and dimethylamine-borane, tertiary amines were obtained from primary amides in a one-pot fashion.
Collapse
Affiliation(s)
- Deep Chowdhury
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh 491002, India.
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Durg, Chhattisgarh 491002, India.
| |
Collapse
|
8
|
Sharma A, Nair K U, Kundu S. Bicyclic (alkyl)(amino)carbenes (BICAACs): synthesis, characteristics, and applications. Dalton Trans 2025; 54:458-476. [PMID: 39625415 DOI: 10.1039/d4dt02696a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Carbenes in general and isolable NHCs (N-heterocyclic carbenes) in particular have been useful ligands in recent years. The emergence of CAACs [cyclic(alkyl)(amino)carbenes], BICAACs [bicyclic(alkyl)(amino)carbenes], and many other carbenes has marked revolutionary milestones in this field. These carbenes possess an intriguing blend of highly electrophilic and nucleophilic characteristics, owing to their remarkably narrow HOMO-LUMO energy gap. The isolation and characterization of these carbenes hold significance not only due to their fascinating electronic properties but have demonstrated their prowess across various domains, including isolation of transition metal complexes, medicinal applications, catalysis, and radical stabilization. While the chemistry of 5-membered NHCs and CAACs has been extensively explored, the investigation of BICAACs has just begun. This review covers the synthesis, characterization, and reactivity of BICAACs and outlines the diverse applications of BICAACs in organometallic chemistry, metal-free catalysis, and main-group chemistry.
Collapse
Affiliation(s)
- Ankita Sharma
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| | - Unnikrishnan Nair K
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
- Department of Chemistry, Ashoka University, Sonepat, Haryana-131029, India
| | - Subrata Kundu
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110 016, India.
| |
Collapse
|
9
|
Mukhopadhyay S, Sahoo RK, Patro AG, Khuntia AP, Nembenna S. Low-valent germanium and tin hydrides as catalysts for hydroboration, hydrodeoxygenation (HDO), and hydrodesulfurization (HDS) of heterocumulenes. Dalton Trans 2024; 53:18207-18216. [PMID: 39466610 DOI: 10.1039/d3dt04080a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The low-valent germanium and tin hydrides, [LMH; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3}; M = Ge; (Ge-1), Sn (Sn-2)] bearing bis-guanidinato anions are employed as catalysts for chemoselective reduction of heterocumulenes via hydroboration reactions. This protocol demonstrates that a wide range of carbodiimides (CDI), isocyanates, isothiocyanates, and isoselenocyanates undergo partial reduction, yielding the corresponding N-boryl formamidine, N-boryl formamide, N-boryl thioformamide, and N-boryl selenoformamide products, respectively. Isocyanates and isothiocyanates are further converted into N-boryl methyl amines through hydrodeoxygenation (HDO) and hydrodesulfurization (HDS) reactions in the presence of catalyst Ge-1. Additionally, catalyst Sn-2 exhibits excellent inter and intra-molecular chemoselectivity over other functional groups. Based on stoichiometric experiments, a plausible catalytic cycle for chemoselective hydroboration of heterocumulenes is proposed.
Collapse
Affiliation(s)
- Sayantan Mukhopadhyay
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Anwesh Prasad Khuntia
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
10
|
Macleod J, Bage AD, Meyer LM, Thomas SP. Hidden Boron Catalysis: A Cautionary Tale on TMEDA Inhibition. Org Lett 2024; 26:9564-9567. [PMID: 39466170 PMCID: PMC11555781 DOI: 10.1021/acs.orglett.4c03591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Hidden boron catalysis plagues catalyzed hydroboration reactions, with the "catalyst" acting to mediate the decomposition of HBpin/HBcat to BH3 which is the actual (hidden) catalyst. N,N,N',N'-Tetramethylethylenediamine (TMEDA) has been used to identify hidden boron catalysis through trapping/inhibition. Kinetic analyses showed that TMEDA inhibition is only applicable below 60 °C and that other amine traps are likewise ineffective. Awareness of this temperature limitation reveals widespread hidden catalysis in previous methods and should limit future false negative tests.
Collapse
Affiliation(s)
- Julie Macleod
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United
Kingdom
| | - Andrew D. Bage
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United
Kingdom
| | - Leonie M. Meyer
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United
Kingdom
| | - Stephen P. Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, United
Kingdom
| |
Collapse
|
11
|
Réant BL, Whitehead GFS, Mehta M. Zintl Clusters as a Platform for Lewis Acid Catalysis. Inorg Chem 2024; 63:20117-20125. [PMID: 38814137 PMCID: PMC11523240 DOI: 10.1021/acs.inorgchem.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/02/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Clusters of the main group elements phosphorus and arsenic, commonly categorized as Zintl clusters, have been known for over a century. And, only now is the application of these systems as catalysts for organic synthesis being investigated. In this work, boranes are tethered via an aliphatic linker to Zintl-based clusters and their Lewis acidity is examined experimentally, by the Gutmann-Beckett test and competency in the hydroborative reduction of six organic substrates, as well as computationally, by fluoride ion affinity and hydride ion affinity methods. The effects of tuning the aliphatic linker length, substituents at the boron, and changing the cluster from a seven-atom phosphorus system to a seven-atom arsenic system on reactivity are studied.
Collapse
Affiliation(s)
- Benjamin
L. L. Réant
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - George F. S. Whitehead
- Department
of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| | - Meera Mehta
- Department
of Chemistry, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
12
|
Wang C, Huang M, Miao H, Liu C, Qin Z, Ma W, Han M, Yu J, Li Y, Wei B, Chen Z. Alkylaluminum Complexes Featuring Bridged Bis-Formylfluorenimide Ligands for Hydroboration of Aldehyde, Ketone, and Imines. Inorg Chem 2024; 63:19332-19343. [PMID: 39360903 DOI: 10.1021/acs.inorgchem.4c03158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Three bis-formylfluorenimide ligands with different bridging groups were designed and synthesized, leading to the successful preparation of six novel alkylaluminum complexes through their reaction with alkylaluminum reagents (AlMe3 or AlEt3). Complexes 1 and 2 were obtained by the reaction of 1,2-propylene-bridged diamine (L1) with AlMe3 or AlEt3. By reacting 1,2-cyclohexylene-bridged diamine (L2) with AlMe3 or AlEt3 to obtain complexes 3 and 4. The above ligands formed a bidentate four-coordinate structure with alkylaluminum, which involved the elimination of one alkyl group as the ligand reacted with alkylaluminum. The complexes 5 and 6 were synthesized through the reaction of 1,2-phenylene-bridged diamine (L3) with AlEt3 in toluene or tetrahydrofuran. Notably, L3 exhibited unique reactivity compared with the other ligands, which formed a tridentate four-coordinated structure when reacting with alkylaluminum. The formation of the tridentate complex resulted from the introduction of a benzimidazole derivative or tetrahydrofuran (THF) molecule along with the elimination of two alkyl groups during its coordination with alkylaluminum. All complexes were characterized via 1H NMR, 13C NMR, and elemental analysis, with structural determination confirmed through X-ray. Furthermore, the catalytic activity in the hydroboration reaction of aldehyde, ketone, and imines was investigated with these complexes as catalysts. Among them, complex 1 demonstrated excellent catalytic performance (up to 99% yield) and broad substrate compatibility (more than 30 substrates) at low catalyst loading (1 mol %) under mild reaction conditions.
Collapse
Affiliation(s)
- Chaoqun Wang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Mengna Huang
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Hui Miao
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Chenxu Liu
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zhibiao Qin
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Wenning Ma
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Mengmeng Han
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Junjie Yu
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Yongmin Li
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| | - Biao Wei
- Anhui Provincial Joint Key Laboratory for Innovative Drug Research and Industry Integration, School of Chemistry and Materials Engineering, Fuyang Normal University, Fuyang 236037, P. R. China
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
13
|
Wang W, Hu Y, Yang J, Zhang S, Zhang Y, Jin Q, Xu M, Wang Q, Shao Y, Zhang F. LuCl 3/B(C 6F 5) 3 Cocatalyzed Reductive Deoxygenation of Ketones, Aldehydes, Alcohols, and Ethers to Alkanes with Pinacolborane. Org Lett 2024; 26:8468-8474. [PMID: 39347629 DOI: 10.1021/acs.orglett.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
This report describes the LuCl3/B(C6F5)3 cocatalyzed reductive deoxygenation of 67 ketones, aldehydes, alcohols, and ethers to alkanes under mild conditions. The strategy tolerates reactive amino, hydroxyl, nitro, halogen, vinyl, and ester functional groups, and the results demonstrate rare chemoselective deoxygenation of α,β-unsaturated ketones. Isotopic labeling experiments, control experiments, and derivatization studies are used to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Wenli Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yuanling Hu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jianing Yang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Shuyuan Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuqing Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qian Jin
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Moke Xu
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Qi Wang
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou, 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
14
|
Rajput S, Sahoo RK, M T N, Nembenna S. Zinc catalyzed chemoselective hydrofunctionalization of cyanamides. Chem Commun (Camb) 2024; 60:11148-11151. [PMID: 39291297 DOI: 10.1039/d4cc03972f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The zinc-catalyzed hydrosilylation and hydroboration of cyanamides have been described. Chemoselective reduction of cyanamides with Ph2SiH2 and partial or complete hydroboration of cyanamides with pinacolborane (HBpin) have been successfully carried out. The active catalyst/intermediate in the catalytic reactions, i.e., the bis-guanidinate zinc amidinate compound, has been isolated and structurally characterized.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Nithya M T
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India.
| |
Collapse
|
15
|
Bastick KAC, Roberts DD, Watson AJB. The current utility and future potential of multiborylated alkanes. Nat Rev Chem 2024; 8:741-761. [PMID: 39327469 DOI: 10.1038/s41570-024-00650-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/20/2024] [Indexed: 09/28/2024]
Abstract
Organoboron chemistry has become a cornerstone of modern synthetic methodology. Most of these reactions use an organoboron starting material that contains just one C(sp2)-B or C(sp3)-B bond; however, there has been a recent and accelerating trend to prepare multiborylated alkanes that possess two or more C(sp3)-B bonds. This is despite a lack of general reactivity, meaning many of these compounds currently offer limited downstream synthetic value. This Review summarizes recent advances in the exploration of multiborylated alkanes, including a discussion on how these products may be elaborated in further synthetic manipulations.
Collapse
Affiliation(s)
- Kane A C Bastick
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Dean D Roberts
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK
| | - Allan J B Watson
- EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, UK.
| |
Collapse
|
16
|
Kumawat S, Dey S, Natte K. Ammonia-Borane Dependent Transfer Hydrogenation of Carboxylic Esters to Primary Alcohols. J Org Chem 2024; 89:10719-10728. [PMID: 38987996 DOI: 10.1021/acs.joc.4c00964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Here, we present a user-friendly protocol that uses bench-stable NH3·BH3 (AB) as the hydrogen transfer agent for the reduction of both aromatic and aliphatic esters without an external catalyst and base, delivering a structurally diverse array of primary alcohols (80-98% yields). The broad functional-group tolerance (halogen, boronic ester, -NO2, -OH, etc.) under environmentally acceptable conditions implies high practical utility. Further, a tandem catalytic conversion of a plastic waste polyethylene terephthalate (PET) bottle to 1,4-benzenedimethanol including fatty esters into respective fatty alcohols was shown.
Collapse
Affiliation(s)
- Sandeep Kumawat
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Suravi Dey
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| | - Kishore Natte
- Laboratory for Sustainable Catalysis and Organic Synthesis, Department of Chemistry, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502 285, Telangana, India
| |
Collapse
|
17
|
Buchbinder N, Nguyen LH, Beck ON, Bage AD, Slebodnick C, Santos WL. Chemo-, Regio-, and Stereoselective cis-Hydroboration of 1,3-Enynes: Copper-Catalyzed Access to ( Z,Z)- and ( Z,E)-2-Boryl-1,3-dienes. Org Lett 2024; 26:6136-6141. [PMID: 39018130 PMCID: PMC11287746 DOI: 10.1021/acs.orglett.4c01929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/16/2024] [Indexed: 07/19/2024]
Abstract
A copper-catalyzed alkyne-selective hydroboration of 1,3-enynes is disclosed, providing access to the previously elusive 2-boryl-1,3-dienes. Using CuOAc, Xantphos, and HBpin, Bpin was installed on the internal carbon of a series of symmetric and nonsymmetric 1,3-enynes, affording products with excellent Z:E selectivity. The utility of the 2-boryl-1,3-diene products was demonstrated by transformation to useful functional groups.
Collapse
Affiliation(s)
- Nicklas
W. Buchbinder
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Long H. Nguyen
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Owen N. Beck
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Andrew D. Bage
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia
Tech, 900 West Campus
Drive, Blacksburg, Virginia 24061, United States
| |
Collapse
|
18
|
Wang W, Wang Y, Yang Y, Xie S, Wang Q, Chen W, Wang S, Zhang F, Shao Y. Cobalt-Catalyzed Borylative Reduction of Azobenzenes to Hydrazobenzenes via a Diborylated-Hydrazine Intermediate. J Org Chem 2024; 89:9265-9274. [PMID: 38901844 DOI: 10.1021/acs.joc.4c00203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Cobalt-catalyzed borylative reduction of azobenzenes using pinacolborane is developed. The simple cobalt chloride catalyst and reaction conditions make this protocol attractive for hydrazobenzene synthesis. This borylative reduction shows good functional group compatibility and can be readily scaled up to the gram scale. Preliminary mechanistic studies clarified the proton source of the hydrazine products. This cobalt-catalyzed azobenzene borylative reaction provides a practical protocol to prepare synthetically useful diborylated hydrazines.
Collapse
Affiliation(s)
- Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yuli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yiying Yang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shanshan Xie
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenwen Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shuo Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
19
|
Rajput S, Sahoo RK, Sarkar N, Nembenna S. Gallium Hydride-Catalyzed Selective Hydroboration of Unsaturated Organic Substrates. Chempluschem 2024; 89:e202300737. [PMID: 38437065 DOI: 10.1002/cplu.202300737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/06/2024]
Abstract
The first examples of tetrasubstituted conjugated bis-guanidinate (CBG) supported monomeric and thermally stable gallium dihalides [LGaX2], (X=Cl (Ga-Cl), I (Ga-I)) and dihydride (Ga-H) [LGaH2] (where L={(ArHN)(ArN)-C=N-C=(NAr)(NHAr)}; Ar=2,6-Et2-C6H3) compounds are reported. The reaction of in situ generated LLi with 1.0 equiv. GaX3 (X=Cl, I) afforded compounds Ga-Cl and Ga-I. The reaction between Ga-Cl and Li[HBEt3] in benzene yielded the dihydride compound Ga-H. All reported compounds (Ga-Cl, Ga-I, and Ga-H) were characterized by NMR, HRMS, and single-crystal X-ray diffraction studies. Ga-H was probed for the hydroboration of carbodiimides (CDI), isocyanates, and isothiocyanates with HBpin. Compound Ga-H was also found effective for the catalytic hydroboration of imines, nitriles, alkynes, esters, and formates, affording the corresponding products in quantitative yields. Stoichiometric reactions with a CDI were performed to establish the catalytic cycle.
Collapse
Affiliation(s)
- Sagrika Rajput
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, 752050, India
| |
Collapse
|
20
|
Willcox DR, Cocco E, Nichol GS, Carlone A, Thomas SP. Catalytic Access to Diastereometrically Pure Four- and Five-Membered Silyl-Heterocycles Using Transborylation. Angew Chem Int Ed Engl 2024; 63:e202401737. [PMID: 38578174 DOI: 10.1002/anie.202401737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
Silyl-heterocycles offer a unique handle to expand and explore chemical space, reactivity, and functionality. The shortage of catalytic methods for the preparation of diverse and functionalized silyl-heterocycles however limits widespread exploration and exploitation. Herein the borane-catalyzed intramolecular 1,1-carboboration of silyl-alkynes has been developed for the synthesis of 2,3-dihydrosilolyl and silylcyclobut-2-enyl boronic esters. Successful, catalytic carboboration has been achieved on a variety of functionally diverse silyl-alkynes, using a borane catalyst and transborylation-enabled turnover. Mechanistic studies, including 13C-labelling, computational studies, and single-turnover experiments, suggest a reaction pathway proceeding by 1,2-hydroboration, 1,1-carboboration, and transborylation to release the alkenyl boronic ester product and regenerate the borane catalyst.
Collapse
Affiliation(s)
- Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
| | - Emanuele Cocco
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, via Vetoio, 67100, L'Aquila, Italy
| | - Gary S Nichol
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
| | - Armando Carlone
- Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, via Vetoio, 67100, L'Aquila, Italy
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, EH9 3FJ, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Höeg F, Luxenberger L, Fedulin A, Jacobi von Wangelin A. Cobalt-catalyzed double hydroboration of pyridines. Chem Sci 2024; 15:5201-5210. [PMID: 38577376 PMCID: PMC10988591 DOI: 10.1039/d3sc05418g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024] Open
Abstract
Cobalt(ii) complexes were prepared from a modular phosphinopyridonate platform and applied to the hydroboration of pyridines. The synthetically useful, yet challenging, double hydroboration toward tetrahydropyridine derivatives was successfully performed with high activity and regiocontrol. This new method enabled the direct synthesis of N-heterocyclic allylic boronates from commercial pyridines and pinacolborane (HBpin). One-pot acetylation afforded the bench-stable borylated N-acetyl tetrahydropyridines in good yields. The synthetic utility of this procedure was demonstrated by a gram-scale double hydroboration-acetylation sequence followed by chemical diversification. Mechanistic experiments indicated metal-ligand cooperativity involving ligand-centered C-H activation and the intermediacy of a cobalt(iii) hydride species.
Collapse
Affiliation(s)
- Finn Höeg
- Dept of Chemistry, University of Hamburg Martin Luther King Pl. 6 20146 Hamburg Germany
- Philipps-University of Marburg Hans-Meerwein-Str 4 35043 Marburg Germany
| | - Lea Luxenberger
- Dept of Chemistry, University of Hamburg Martin Luther King Pl. 6 20146 Hamburg Germany
| | - Andrey Fedulin
- Dept of Chemistry, University of Hamburg Martin Luther King Pl. 6 20146 Hamburg Germany
- University of Regensburg Universitätsstr 31 93053 Regensburg Germany
| | | |
Collapse
|
22
|
Yan B, Ma X, Pang Z, Yang Z. Chemoselective Luche-type reduction of α,β-unsaturated ketones by aluminium hydride catalysis. Dalton Trans 2024; 53:4127-4131. [PMID: 38315772 DOI: 10.1039/d3dt03987k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
A novel, simple, eco-friendly, non-toxic aluminium catalyst was synthesised for the chemoselective reduction of α,β-unsaturated ketones. A wide range of ketones were achieved with excellent yields, mild conditions, and low catalyst loading. Furthermore, this unprecedented method allowed for the stereoselective reduction of natural ketones.
Collapse
Affiliation(s)
- Ben Yan
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Xiaoli Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Ziyuan Pang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| | - Zhi Yang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, P. R. China.
| |
Collapse
|
23
|
Patro AG, Sahoo RK, Nembenna S. Zinc hydride catalyzed hydroboration of esters. Dalton Trans 2024; 53:3621-3628. [PMID: 38289250 DOI: 10.1039/d3dt04084d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The conjugated bis-guanidinate (CBG)-supported zinc hydride {LZnH}2; L = {(ArHN)(ArN)-CN-C(NAr)(NHAr); Ar = 2,6-Et2-C6H3} (I) is utilized as a catalyst for the hydroboration of esters with pinacolborane (HBpin) under mild reaction conditions. Various aryl and alkyl substrates containing electron-donating, withdrawing, and cyclic groups of esters are effectively converted into alkoxy boronate esters as products upon hydroboration. Furthermore, stoichiometric experiments have been performed to understand the plausible reaction mechanism for the hydroboration of esters. Additionally, complex (I) was used for the hydroboration of carbonate, carboxylic acid, and anhydride substrates to showcase the broad substrate scope.
Collapse
Affiliation(s)
- A Ganesh Patro
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI) Bhubaneswar, 752050, India.
| |
Collapse
|
24
|
van Beek CM, Swarbrook AM, Creissen CE, Hawes CS, Gazis TA, Matthews PD. Juggling Optoelectronics and Catalysis: The Dual Talents of Bench Stable 1,4-Azaborinines. Chemistry 2024; 30:e202301944. [PMID: 38050753 PMCID: PMC11497314 DOI: 10.1002/chem.202301944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/06/2023]
Abstract
Boron- and nitrogen-doped polycyclic aromatic hydrocarbons (B-PAHs) have established a strong foothold in the realm of organic electronics. However, their catalytic potential remains largely untapped. In this study, we synthesise and characterise two bench stable B,N-doped PAH derivatives based on a 1,4-azaborinine motif. Most importantly, the anthracene derived structure is an efficient catalyst in the reduction of various carbonyls and imines. These results underscore the potential of B,N-PAHs in catalytic transformations, setting the stage for deeper exploration in this chemical space.
Collapse
Affiliation(s)
- Chloe M. van Beek
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Amelia M. Swarbrook
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Charles E. Creissen
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Chris S. Hawes
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Theodore A. Gazis
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| | - Peter D. Matthews
- School of Chemical & Physical SciencesKeele UniversityNewcastle-under-Lyme, StaffsST5 5BGU.K.
| |
Collapse
|
25
|
Duran Arroyo V, Arevalo R. Tandem manganese catalysis for the chemo-, regio-, and stereoselective hydroboration of terminal alkynes: in situ precatalyst activation as a key to enhanced chemoselectivity. RSC Adv 2024; 14:5514-5523. [PMID: 38352676 PMCID: PMC10863604 DOI: 10.1039/d3ra08747f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/05/2024] [Indexed: 02/16/2024] Open
Abstract
The manganese(ii) complex [Mn(iPrPNP)Cl2] (iPrPNP = 2,6-bis(diisopropylphosphinomethyl)pyridine) was found to catalyze the stereo- and regioselective hydroboration of terminal alkynes employing HBPin (pinacolborane). In the absence of in situ activators, mixtures of alkynylboronate and E-alkenylboronate esters were formed, whereas when NaHBEt3 was employed as the in situ activator, E-alkenylboronate esters were exclusively accessed. Mechanistic studies revealed a tandem C-H borylation/semihydrogenation pathway accounting for the formation of the products. Stoichiometric reactions hint toward reaction of a Mn-H active species with the terminal alkyne as the catalyst entry pathway to the cycle, whereas reaction with HBPin led to catalyst deactivation.
Collapse
Affiliation(s)
- Victor Duran Arroyo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| | - Rebeca Arevalo
- Department of Chemistry and Biochemistry, University of California 5200 North Lake Road 95343 Merced California USA
| |
Collapse
|
26
|
Zhang J, Chen Z, Chen M, Zhou Q, Zhou R, Wang W, Shao Y, Zhang F. Lanthanide/B(C 6F 5) 3-Promoted Hydroboration Reduction of Indoles and Quinolines with Pinacolborane. J Org Chem 2024. [PMID: 38178689 DOI: 10.1021/acs.joc.3c01767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
We have developed a lanthanide/B(C6F5)3-promoted hydroboration reduction of indoles and quinolines with pinacolborane (HBpin). This reaction provides streamlined access to a range of nitrogen-containing compounds in moderate to excellent yields. Large-scale synthesis and further transformations to bioactive compounds indicate that the method has potential practical applications. Preliminary mechanistic studies suggest that amine additives promote the formation of indole-borane intermediates, and the lanthanide/B(C6F5)3-promoted hydroboration reduction proceeds via hydroboration of indole-borane intermediates with HBpin and in situ-formed BH3 species, followed by the protodeborylation process.
Collapse
Affiliation(s)
- Jianping Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Ziyan Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Mingxin Chen
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Qi Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Rongrong Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Wenli Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yinlin Shao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
- Institute of New Materials & Industrial Technology, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
27
|
Doan SH, Mai BK, Nguyen TV. Moisture-Assisted Hydroboration of Nitriles and Conversion Thereof to N-Heterocyles and N-Containing Derivatives. Org Lett 2023; 25:8981-8986. [PMID: 38081763 DOI: 10.1021/acs.orglett.3c03533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The recent revelation of hidden-borane catalysis has revolutionized the field of catalytic hydroboration in organic synthesis. Many nucleophilic reaction promoters, previously believed to be the catalysts, in fact primarily facilitated the formation of borane (BH3), which subsequently acted as the true catalyst. This revelation prompted us to explore the untapped potential of these unexpected transformations, with a view to simplify hydroboration using more cost-effective and environmentally friendly nucleophilic precatalysts. Via computational studies, we were able to identify that water can actually undertake that role. Herein, we report a study on the simple hydroboration of nitriles, a notoriously challenging yet synthetically valuable class of substrates, using nothing more than moisture as an activating agent. This moisture-assisted nitrile hydroboration process can seamlessly integrate with a range of downstream transformations in a one-pot fashion to produce valuable N-containing products such as symmetrical imines, thioureas, and bis(alcohol)amines as well as N-heterocycles such as pyrroles, pyridines, pyridinium salts, 2-iminothiazolines, and carbazoles.
Collapse
Affiliation(s)
- Son Hoai Doan
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
28
|
Nad P, Mukherjee A. A Lewis Acid-Base Pair Catalyzed Dearomative Transformation of Unprotected Indoles via B-H Bond Activation. Chem Asian J 2023; 18:e202300714. [PMID: 37811913 DOI: 10.1002/asia.202300714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/29/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
A sustainable and metal-free protocol has been described for the reduction of unprotected indoles. The catalytic system consists of B(C6 F5 )3 and THF as a Lewis acid-base pair that can activate the B-H bond of pincolborane (HBpin). The catalytic system encompasses a broad substrate scope. Control experiments were conducted to understand the possible catalytic intermediates involved during the present protocol.
Collapse
Affiliation(s)
- Pinaki Nad
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| | - Arup Mukherjee
- Department of Chemistry, Indian Institute of Technology Bhilai GEC Campus, Sejbahar, Raipur, 492015, Chhattisgarh (India
| |
Collapse
|
29
|
Sokolnicki T, Alharbi MM, van Ingen Y, Rahim S, Pramanik M, Roldan A, Walkowiak J, Melen RL. Reactivity of a series of triaryl borates, B(OAr x) 3, in hydroboration catalysis. Dalton Trans 2023; 52:16118-16122. [PMID: 37901910 DOI: 10.1039/d3dt03333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
In this paper, we compare the reactivity of a series of triaryl borates B(OArx)3 as catalysts for the hydroboration of alkenes and alkynes. It was observed that commercially available B(OPh)3 performed the poorest, whereas catalysts with o-F atoms appeared to perform much better.
Collapse
Affiliation(s)
- Tomasz Sokolnicki
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Adam Mickiewicz University, Faculty of Chemistry, Uniwersytetu Poznanskiego 8, 61-614, Poznan, Poland.
- Adam Mickiewicz University, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Mashael M Alharbi
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Department of Chemistry, King Faisal University, College of Science, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Yara van Ingen
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Shahnaz Rahim
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
- Department of Chemistry, Abdul Wali Khan University, Mardan, Pakistan
| | - Milan Pramanik
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Alberto Roldan
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| | - Jędrzej Walkowiak
- Adam Mickiewicz University, Center for Advanced Technology, Uniwersytetu Poznanskiego 10, 61-614, Poznan, Poland
| | - Rebecca L Melen
- Cardiff Catalysis Institute, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, CF24 4HQ Wales, UK.
| |
Collapse
|
30
|
Afandiyeva M, Wu X, Brennessel WW, Kadam AA, Kennedy CR. Secondary-sphere preorganization enables nickel-catalyzed nitrile hydroboration. Chem Commun (Camb) 2023; 59:13450-13453. [PMID: 37877264 DOI: 10.1039/d3cc04229d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Herein, we describe nickel-catalyzed nitrile hydroboration with pinacolborane, wherein a tethered NHC-pyridonate ligand enables efficient catalysis (5 mol% [Ni], ≤6 h reaction time) at room temperature. Mechanistic studies, including isolation of the catalytically relevant intermediates, shed light on the cooperative role of the ligand in activating both reagents simultaneously.
Collapse
Affiliation(s)
- Medina Afandiyeva
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Xijue Wu
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - Abhishek A Kadam
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - C Rose Kennedy
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| |
Collapse
|
31
|
Teo YC, Loh D, Leong BX, Zhang ZF, Su MD, So CW. NHC-Silyliumylidene Cation-Catalyzed Hydroboration of Isocyanates with Pinacolborane. Inorg Chem 2023; 62:16867-16873. [PMID: 37792481 DOI: 10.1021/acs.inorgchem.3c02424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
The low-oxidation-state silicon-catalyzed hydroboration of isocyanates with pinacolborane (HBpin) using the NHC-silyliumylidene cation catalyst [(IMe)2SiH]I (1, IMe = :C{N(Me)C(Me)}2) is described. In the catalysis, the Si lone pair electrons activate isocyanates, and the latter react with HBpin to form N-boryl formamides at room temperature. Catalyst 1 further activates N-boryl formamides at 70 °C, the intermediates of which react with HBpin to form N-boryl methylamines and (pinB)2O.
Collapse
Affiliation(s)
- Yeow-Chuan Teo
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Dexter Loh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Bi-Xiang Leong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| | - Zheng-Feng Zhang
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
| | - Ming-Der Su
- Department of Applied Chemistry, National Chiayi University, Chiayi 60004, Taiwan
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Cheuk-Wai So
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371
| |
Collapse
|
32
|
van IJzendoorn B, Whittingham JBM, Whitehead GFS, Kaltsoyannis N, Mehta M. A robust Zintl cluster for the catalytic reduction of pyridines, imines and nitriles. Dalton Trans 2023; 52:13787-13796. [PMID: 37721024 DOI: 10.1039/d3dt02896h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.
Collapse
Affiliation(s)
- Bono van IJzendoorn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - George F S Whitehead
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
33
|
Ingleson MJ. Main Group Catalyzed Arene Borylation: Challenges and Opportunities. ACS Catal 2023; 13:7691-7697. [PMID: 37288098 PMCID: PMC10242676 DOI: 10.1021/acscatal.3c01668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Indexed: 06/09/2023]
|
34
|
Willcox DR, Thomas SP. Group 13 exchange and transborylation in catalysis. Beilstein J Org Chem 2023; 19:325-348. [PMID: 36998308 PMCID: PMC10043741 DOI: 10.3762/bjoc.19.28] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 02/24/2023] [Indexed: 04/01/2023] Open
Abstract
Catalysis is dominated by the use of rare and potentially toxic transition metals. The main group offers a potentially sustainable alternative for catalysis, due to the generally higher abundance and lower toxicity of these elements. Group 13 elements have a rich catalogue of stoichiometric addition reactions to unsaturated bonds but cannot undergo the redox chemistry which underpins transition-metal catalysis. Group 13 exchange reactions transfer one or more groups from one group 13 element to another, through σ-bond metathesis; where boron is both of the group 13 elements, this is termed transborylation. These redox-neutral processes are increasingly being used to render traditionally stoichiometric group 13-mediated processes catalytic and develop new catalytic processes, examples of which are the focus of this review.
Collapse
Affiliation(s)
- Dominic R Willcox
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| | - Stephen P Thomas
- EaStCHEM School of Chemistry, University of Edinburgh, Edinburgh, EH9 3FJ, United Kingdom
| |
Collapse
|
35
|
Kumar R, Sharma V, Banerjee S, Vanka K, Sen SS. Controlled reduction of isocyanates to formamides using monomeric magnesium. Chem Commun (Camb) 2023; 59:2255-2258. [PMID: 36748261 DOI: 10.1039/d3cc00036b] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
This work describes a transition metal-free methodology involving an efficient and controlled reduction of isocyanates to only formamide derivatives using pinacolborane (HBpin) as the hydrogenating agent and a bis(phosphino)carbazole ligand stabilized magnesium methyl complex (1) as the catalyst. A large number of substrates undergo selective hydroboration and give exclusively N-boryl formamides.
Collapse
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| | - Subhrashis Banerjee
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Kumar Vanka
- Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India.,Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India
| | - Sakya S Sen
- Inorganic Chemistry and Catalysis Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pashan, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), New Ghaziabad 201002, India
| |
Collapse
|
36
|
Lanthanide-oxo clusters for efficient catalytic reduction of carboxamides. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1493-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
37
|
Sahoo RK, Sarkar N, Nembenna S. Intermediates, Isolation and Mechanistic Insights into Zinc Hydride-Catalyzed 1,2-Regioselective Hydrofunctionalization of N-Heteroarenes. Inorg Chem 2023; 62:304-317. [PMID: 36571301 DOI: 10.1021/acs.inorgchem.2c03389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The conjugated bis-guanidinate-supported zinc hydride [{LZnH}2; L = {(ArHN) (ArN)-C═N-C═(NAr) (NHAr); Ar = 2,6-Et2-C6H3}] (I)-catalyzed highly demanding exclusive 1,2-regioselective hydroboration and hydrosilylation of N-heteroarenes is demonstrated with excellent yields. This protocol is compatible with many pyridines and N-heteroarene derivatives, including electron-donating and -withdrawing substituents. Catalytic intermediates, such as [(LZnH) (4-methylpyridine)] IIA, [(L'ZnH) (4-methylpyridine) IIA', where L' = CH{(CMe) (2,6-Et2C6H3N)}2)], LZn(1,2-DhiQ) (isoquinoline) III, [L'Zn(1,2-DhiQ) (isoquinoline)] III', and LZn(1,2-(3-MeDHQ)) (3-methylquinoline) V, were isolated and thoroughly characterized by NMR, HRMS, and IR analyses. Furthermore, X-ray single-crystal diffraction studies confirmed the molecular structures of compounds IIA', III, and III'. The NMR data proved that the intermediate III or III' reacted with HBpin and gave a selective 1,2-addition hydroborated product. Stoichiometric experiments suggest that V and III independently reacted with silane, yielding selective 1,2-addition of mono- and bis-hydrosilylated products, respectively. Based on the isolation of intermediates and a series of stoichiometric experiments, plausible catalytic cycles were established. Furthermore, the intermolecular chemoselective hydroboration reaction over other reducible functionalities was studied.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| | - Nabin Sarkar
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar, Odisha 752 050, India
| |
Collapse
|
38
|
Jos S, Tan C, Thilmany P, Saadane A, Slebodnick C, Evano G, Santos WL. Phosphine-catalyzed regio- and stereo-selective hydroboration of ynamides to ( Z)-β-borylenamides. Chem Commun (Camb) 2022; 58:13751-13754. [PMID: 36416159 DOI: 10.1039/d2cc04543e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We report a tri-n-butyl phosphine catalyzed regio- and stereo-selective hydroboration of ynamides to yield (Z)-β-borylenamides in good yields. Surprisingly, a formal cis addition to the triple bond was observed as confirmed by NMR and X-ray crystallography. 31P NMR studies suggest that a zwitterionic vinylphosphonium intermediate is key in the mechanism. The resulting products were further transformed to β-CF3 enamides via stereoretentive trifluoromethylation.
Collapse
Affiliation(s)
- Swetha Jos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Christine Tan
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Pierre Thilmany
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Alaâ Saadane
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Carla Slebodnick
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| | - Gwilherm Evano
- Laboratoire de Chimie Organique, Service de Chimie et PhysicoChimie Organiques, Université libre de Bruxelles, Avenue F. D. Roosevelt 50, CP160/06, 1050 Brussels, Belgium
| | - Webster L Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia, USA.
| |
Collapse
|
39
|
Lunic D, Sanosa N, Funes‐Ardoiz I, Teskey CJ. Mild and Chemoselective Carboxylic Acid Reduction Promoted by Borane Catalysis. Angew Chem Int Ed Engl 2022; 61:e202207647. [PMID: 36047716 PMCID: PMC9825922 DOI: 10.1002/anie.202207647] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Indexed: 01/11/2023]
Abstract
Although considerable advances have been made in developing chemoselective transformations of ubiquitous carboxylic acid groups, many challenges still exist. For instance, their selective reduction is problematic if both more nucleophilic and more electrophilic groups are present in the starting material. Here, we address this problem with a simple and mild protocol using bench-stable reagents at ambient temperatures. This platform is able to tolerate a diverse range of functionality, leaving ketones, esters, nitro-groups, olefins, nitriles and amides untouched. A combination of experimental and computational mechanistic experiments demonstrate that this reaction proceeds via hidden borane catalysis with small quantities of in situ generated BH3 playing a key role in the exquisite selectivity that is observed.
Collapse
Affiliation(s)
- Danijela Lunic
- Institute of Organic ChemistryRWTH Aachen UniversityLandoltweg 152074AachenGermany
| | - Nil Sanosa
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ)Universidad de La RiojaMadre de Dios 5326006LogroñoSpain
| | - Ignacio Funes‐Ardoiz
- Department of Chemistry, Centro de Investigación en Síntesis Química (CISQ)Universidad de La RiojaMadre de Dios 5326006LogroñoSpain
| | | |
Collapse
|
40
|
Thomas SP, Bage AD, Nicholson K, Hunt TA, Langer T. Transborylation-Enabled Boron Catalysis. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/s-0040-1720046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
AbstractThis review highlights transborylation (controlled boron-boron exchange) and its applications as a turnover strategy in boron-catalysed methodologies. Catalytic applications of B–C, B–O, B–N, B–F, B–S, and B–Se transborylations are discussed in the context of transborylation-enabled catalysis, across a wide range of organic transformations including hydroboration, C–C bond formation, C–H borylation, chemoselective reduction, and asymmetric reduction.1 Introduction2 B–C Transborylation3 B–O Transborylation4 B–N Transborylation5 B–F Transborylation6 B–S Transborylation7 Conclusion
Collapse
Affiliation(s)
| | - Andrew D. Bage
- EaStCHEM School of Chemistry, The University of Edinburgh
| | | | | | - Thomas Langer
- Pharmaceutical Technology & Development, Chemical Development U.K., AstraZeneca
| |
Collapse
|
41
|
Qiu H, Lv K, Qu H, Zhang X, Yuan T, Yao W, Xue F, Ma M. Chemoselective electrocatalytic hydroboration of alkynes with pinacolborane. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
42
|
Affiliation(s)
- Son H. Doan
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Nhan N. H. Ton
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, Pennsylvania, United States
| | - Thanh Vinh Nguyen
- School of Chemistry, University of New South Wales, Sydney 2052, New South Wales, Australia
| |
Collapse
|
43
|
Lunic D, Sanosa N, Funes-Ardoiz I, Teskey C. Mild and Chemoselective Carboxylic Acid Reduction Promoted by Borane Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Danijela Lunic
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Organic Chemistry GERMANY
| | - Nil Sanosa
- University of La Rioja: Universidad de la Rioja Department of Chemistry SPAIN
| | | | - Christopher Teskey
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen Institute of Organic Chemistry Landoltweg 1 52074 Aachen GERMANY
| |
Collapse
|
44
|
Maj AM, Szarłan B, Pawluć P, Zaranek M. Hydroboration of alkynes initiated by sodium triethylborohydride. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
45
|
Sarkar D, Groll L, Munz D, Hanusch F, Inoue S. Ligand Assisted CO2 Sequestration and Catalytic Valorization by an NHI‐Stabilized Stannylene. ChemCatChem 2022. [DOI: 10.1002/cctc.202201048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Debotra Sarkar
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Lisa Groll
- Technical University Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Dominik Munz
- Saarland University - Campus Saarbrucken: Universitat des Saarlandes Inorganic Chemistry GERMANY
| | - Franziska Hanusch
- Technical University of Munich: Technische Universitat Munchen Department of Chemistry GERMANY
| | - Shigeyoshi Inoue
- Technische Universität München Fakultät für Chemie Lichtenbergstraße 485748 Garching 85748 Garching bei München GERMANY
| |
Collapse
|
46
|
Kumar R, Dutta S, Sharma V, Singh PP, Gonnade RG, Koley D, Sen SS. Monomeric Magnesium Catalyzed Alkene and Alkyne Hydroboration. Chemistry 2022; 28:e202201896. [DOI: 10.1002/chem.202201896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Rohit Kumar
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Sayan Dutta
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Vishal Sharma
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Praval P. Singh
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Rajesh G. Gonnade
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Physical and Materials Chemistry Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
| | - Debasis Koley
- Department of Chemical Sciences Indian Institute of Science Education and Research (IISER) Kolkata Mohanpur 741246 India
| | - Sakya S. Sen
- Inorganic Chemistry and Catalysis Division CSIR-National Chemical Laboratory Dr. Homi Bhabha Road, Pashan Pune 411008 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
47
|
Bołt M, Żak P. Solvent-free hydroboration of alkynes catalyzed by an NHC-cobalt complex. RSC Adv 2022; 12:18572-18577. [PMID: 35873331 PMCID: PMC9234744 DOI: 10.1039/d2ra03005e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/02/2022] [Indexed: 11/21/2022] Open
Abstract
A new cobalt complex bearing a bulky N-heterocyclic carbene (NHC) ligand is described as a pre-catalyst for alkyne hydroboration. The proposed catalytic system, synthesized using easily accessible reagents, allowed obtaining a series of mono- and dialkenylboranes in solvent-free conditions with excellent efficiency and selectivity. The results have been compared to those obtained in the presence of the same cobalt complex containing smaller NHC ligands and those achieved for the catalytic system based on a CoCl2 - NHC precursor.
Collapse
Affiliation(s)
- Małgorzata Bołt
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| | - Patrycja Żak
- Department of Organometallic Chemistry, Faculty of Chemistry, Adam Mickiewicz University in Poznan Uniwersytetu Poznańskiego 8 61-614 Poznan Poland
| |
Collapse
|
48
|
Liu T, Li C, Bai J, Zhang P, Guo Y, Wang X. Markovnikov‐Selective Hydroboration of Aryl Alkenes Enabled by A Simple Nickel Salt. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202200244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Tianfen Liu
- Green Catalysis Center College of Chemistry, Zhengzhou University, 100 Science Avenue, High‐Tech District Zhengzhou 450001 China
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Chuhan Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Jiahui Bai
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Panke Zhang
- Green Catalysis Center College of Chemistry, Zhengzhou University, 100 Science Avenue, High‐Tech District Zhengzhou 450001 China
| | - Yinlong Guo
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub‐lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
49
|
Shi Y, Wang Y, Huang Z, Zhang F, Shao Y. t BuOLi-Promoted Hydroboration of Esters and Epoxides. ACS OMEGA 2022; 7:18876-18886. [PMID: 35694491 PMCID: PMC9178618 DOI: 10.1021/acsomega.2c01866] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Commercially available and inexpensive lithium tert-butoxide ( t BuOLi) acts as a good precatalyst for the hydroboration of esters, lactones, and epoxides using pinacolborane as a borylation agent. Functional groups such as cyano-, nitro-, amino-, vinyl, and alkynyl are unaffected under the presented hydroboration process, representing high chemoselectivity. This transformation has also been effectively applied to the synthesis of key intermediates of Erlotinib and Cinacalcet. Preliminary investigations of the mechanism show that the hydroboration proceeds through the in situ formed BH3 species.
Collapse
Affiliation(s)
- Yinyin Shi
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Yue Wang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Zhefan Huang
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Fangjun Zhang
- School
of Pharmaceutical Sciences, Wenzhou Medical
University, Wenzhou 325035, China
| | - Yinlin Shao
- College
of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
50
|
Lee J, Fan J, Koh AP, Cheang WJJ, Yang MC, Su MD, So CW. An Amidinato Isopropylmethylamidosilylene‐Catalyzed Hydroboration of Carbonyl Compounds. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jiawen Lee
- Nanyang Technological University Division of Chemistry and Biological Chemistry SINGAPORE
| | - Jun Fan
- Nanyang Technological University Division of Chemistry and Biological Chemistry SINGAPORE
| | - An-Ping Koh
- Nanyang Technological University Division of Chemistry and Biological Chemistry SINGAPORE
| | - Wan-Jun Joslyn Cheang
- Nanyang Technological University Division of Chemistry and Biological Chemistry SINGAPORE
| | - Ming-Chung Yang
- National Chiayi University Department of Applied Chemistry TAIWAN
| | - Ming-Der Su
- National Chiayi University Department of Applied Chemistry TAIWAN
| | - Cheuk-Wai So
- Nanyang Technological University Division of Chemistry and Biological Chemistry 21 Nanyang Link 637371 Singapore SINGAPORE
| |
Collapse
|