1
|
Feng T, Biremond T, Jubault P, Poisson T. Electrochemical synthesis of allenyl silanes and allenyl boronic esters. Nat Commun 2025; 16:4593. [PMID: 40382354 PMCID: PMC12085657 DOI: 10.1038/s41467-025-59033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 04/08/2025] [Indexed: 05/20/2025] Open
Abstract
Allenyl silanes and boronates are pivotal building blocks in organic synthesis. Nevertheless, their synthesis requires the manipulation of transition metal or highly reactive species. Hence, the development of more sustainable protocol is highly sought after. Here we show the electrochemical synthesis of allenyl silanes and allenyl boronic esters. This catalyst-free method proceeds under mild reaction conditions. The protocol for the synthesis of allenyl silanes shows an excellent efficiency and a good functional group tolerance. The allenyl silanes are isolated in good yields (28 examples, 45-95% yields) without the use of a transition metal catalyst and under mild reaction conditions. A similar protocol is developed for the synthesis of allenyl boronates, which are obtained in low to moderate yields (13 examples, 5-55% yields). Finally, a mechanism based on an oxidative generation of the silyl and boryl radicals is suggested to access these classes of allenes.
Collapse
Affiliation(s)
- Tingting Feng
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., Institut CARMeN UMR 6064, F-76000, Rouen, France
| | - Tony Biremond
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., Institut CARMeN UMR 6064, F-76000, Rouen, France
| | - Philippe Jubault
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., Institut CARMeN UMR 6064, F-76000, Rouen, France
| | - Thomas Poisson
- INSA Rouen Normandie, Univ. Rouen Normandie, CNRS, Normandie Univ., Institut CARMeN UMR 6064, F-76000, Rouen, France.
| |
Collapse
|
2
|
Guo Z, Zhang Z, Huang Y, Lin T, Guo Y, He LN, Liu T. CO 2 Valorization in Deep Eutectic Solvents. CHEMSUSCHEM 2024; 17:e202400197. [PMID: 38629214 DOI: 10.1002/cssc.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/28/2024] [Indexed: 05/18/2024]
Abstract
The deep eutectic solvent (DES) has emerged in recent years as a valuable medium for converting CO2 into valuable chemicals because of its easy availability, stability, and safety, and its capability to dissolve carbon dioxide. CO2 valorization in DES has evolved rapidly over the past 20 years. As well as being used as solvents for acid/base-promoted CO2 conversion for the production of cyclic carbonates and carbamates, DESs can be used as reaction media for electrochemical CO2 reduction for formic acid and CO. Among these products, cyclic carbonates can be used as solvents and electrolytes, carbamate derivatives include the core structure of many herbicides and pesticides, and formic acid and carbon monoxide, the C1 electrochemical products, are essential raw materials in the chemical industries. An overview of the application of DESs for CO2 valorization in recent years is presented in this review, followed by a compilation and comparison of product types and reaction mechanisms within the different types of DESs, and an outlook on how CO2 valorization will be developed in the future.
Collapse
Affiliation(s)
- Zhenbo Guo
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Zhicheng Zhang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Yuchen Huang
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Tianxing Lin
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Yixin Guo
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Liang-Nian He
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
| | - Tianfei Liu
- State Key Laboratory of Elemento-organic Chemistry, College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin, 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
3
|
Li W, Wu R, Ruan H, Xiao B, Gao X, Jiang H, Chen K, Sun TY, Zhu S. Axial Ligand Enables Synthesis of Allenylsilane through Dirhodium(II) Catalysis. Angew Chem Int Ed Engl 2024; 63:e202409332. [PMID: 38887822 DOI: 10.1002/anie.202409332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/20/2024]
Abstract
Described herein is a dirhodium(II)-catalyzed silylation of propargyl esters with hydrosilanes, using tertiary amines as axial ligands. By adopting this strategy, a range of versatile and useful allenylsilanes can be achieved with good yields. This reaction not only represents a SN2'-type silylation of the propargyl derivatives bearing a terminal alkyne moiety to synthesize allenylsilanes from simple hydrosilanes, but also represents a new application of dirhodium(II) complexes in catalytic transformation of carbon-carbon triple bond. The highly functionalized allenylsilanes that are produced can be transformed into a series of synthetically useful organic molecules. In this reaction, an intriguing ON-OFF effect of the amine ligand was observed. The reaction almost did not occur (OFF) without addition of Lewis base amine ligand. However, the reaction took place smoothly (ON) after addition of only catalytic amount of amine ligand. Detailed mechanistic studies and density functional theory (DFT) calculations indicate that the reactivity can be delicately improved by the use of tertiary amine. The fine-tuning effect of the tertiary amine is crucial in the formation of the Rh-Si species via a concerted metalation deprotonation (CMD) mechanism and facilitating β-oxygen elimination.
Collapse
Affiliation(s)
- Wendeng Li
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Rui Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hao Ruan
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Bo Xiao
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
| | - Xiang Gao
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, P. R. China
| | - Tian-Yu Sun
- Key Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, P. R. China
- Institute of Molecular Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, P. R. China
| | - Shifa Zhu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
4
|
Delgado A, Orlando P, Lanzi M, Benet-Buchholz J, Passarella D, Kleij AW. Cu-Catalyzed Asymmetric Synthesis of γ-Amino Alcohols Featuring Tertiary Carbon Stereocenters. Org Lett 2024; 26:7596-7600. [PMID: 39213514 PMCID: PMC11406568 DOI: 10.1021/acs.orglett.4c02682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Alkyne-functionalized oxetanes are presented as versatile substrates that in combination with amine reagents can be transformed into structurally diverse, chiral γ-amino alcohols featuring a tetrasubstituted tertiary stereocenter under Cu catalysis. Control experiments demonstrate the privileged nature of these oxetane precursors in terms of yield and asymmetric induction levels in the developed protocol, and postsynthetic modifications offer an easy way to access more advanced synthons.
Collapse
Affiliation(s)
- Alejandro Delgado
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology (BIST), 43007 - Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Paolo Orlando
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology (BIST), 43007 - Tarragona, Spain
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi, 19, 20133 Milano, Italy
| | - Matteo Lanzi
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology (BIST), 43007 - Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology (BIST), 43007 - Tarragona, Spain
| | - Daniele Passarella
- Department of Chemistry, Università degli Studi di Milano, Via Camillo Golgi, 19, 20133 Milano, Italy
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ-Cerca), the Barcelona Institute of Science and Technology (BIST), 43007 - Tarragona, Spain
- Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
5
|
Jana D, Sontakke GS, Volla CMR. Ru(II)-Catalyzed Decarboxylative (4 + 2)-Annulation of Benzoic Acids and Benzamides with Propargyl Cyclic Carbonates. Org Lett 2024; 26:7590-7595. [PMID: 39226140 DOI: 10.1021/acs.orglett.4c02651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Propargyl cyclic carbonates have emerged as versatile precursors in synthetic chemistry. However, their reactivity has so far been limited to transition metal-catalyzed substitution and cyclization reactions. Herein, we illustrate the successful employment of propargyl cyclic carbonates as coupling partners in Ru(II)-catalyzed C-H annulation of benzoic acids and benzamides. This approach allowed us to access a broad range of biologically relevant isocoumarin and isoquinolinone derivatives in good to excellent yields, utilizing bench-stable and easily accessible precursors. Preliminary mechanistic studies indicated that the C-H metalation step is both reversible and rate-determining in the reaction pathway. Furthermore, the utility of the developed methodology has been illustrated by scale-up and postfunctionalization experiments.
Collapse
Affiliation(s)
- Debasish Jana
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Geetanjali S Sontakke
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
6
|
Wang ZL, Zhu R. Regioselective Condensation Polymerization of Propargylic Electrophiles Enabled by Catalytic Element-Cupration. J Am Chem Soc 2024; 146:19377-19385. [PMID: 38951483 DOI: 10.1021/jacs.4c05524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Here, we report a set of new polymerization reactions enabled by the 1,2-regioselective hydro- and silylcupration of enyne-type propargylic electrophiles. Highly regioregular head-to-tail poly(2-butyne-1,4-diyl)s (HT-PBD), bearing either methyl or silylmethyl side chains, are synthesized for the first time. A rapid entry into carbon-rich copolymers with adjustable silicon content is developed via in situ monomer bifurcation. Furthermore, a one-pot polymerization/semireduction sequence is developed to access a cis-poly(butadiene)-derived backbone by a ligand swap on copper hydride species. Interestingly, borocupration, typically exhibiting identical regioselectivity with its hydro- and silyl analogues, seems to proceed in a 3,4-selective manner. Computational studies suggest the possible role of the propargylic leaving group in this selectivity switch. This work presents a new class of regioregular sp-carbon-rich polymers and meanwhile a novel approach to organosilicon materials.
Collapse
Affiliation(s)
- Zheng-Lin Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
7
|
Li G, Li Y, Sun P, Huang J, Xu T, Zeng F, Hu XP. Copper-Catalyzed Difunctionalization of Propargylic Carbonates through Tandem Nucleophilic Substitution/Boroprotonation. Org Lett 2024; 26:4443-4450. [PMID: 38772011 DOI: 10.1021/acs.orglett.4c01080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Highly functionalized organic molecules are in high demand, but their preparation is challenging. Copper-catalyzed transformation of alkynyl- and allenyl-containing substrates has emerged as a powerful tool to achieve this objective. Herein, an efficient copper-catalyzed difunctionalization of propargylic carbonates through tandem nucleophilic substitution/boroprotonation has been developed, affording the formation of thiol-, selenium-, and boron-functionalized alkenes with high yield and stereoselectivity. Two distinct catalytic mechanisms involving a single reaction without any requirement of catalyst change were successfully demonstrated.
Collapse
Affiliation(s)
- Guiqin Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Yahui Li
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Peidong Sun
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Jingwen Huang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Tongyu Xu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Fanlong Zeng
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Road, Xi'an 710127, P. R. China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
8
|
Ran Q, Wu KF, Xu YH. Cu-Catalyzed Regioselective Silylation of Chloro-Substituted Allenyl-Bdan. Org Lett 2024; 26:3767-3771. [PMID: 38664947 DOI: 10.1021/acs.orglett.4c00864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
A copper-catalyzed efficient regioselective silylation reaction of chloro-substituted allenyl-Bdan was developed. Under mild reaction conditions, allenyl and propargyl silane compounds can be selectively obtained in moderate to high yields by adjusting the bases and solvents used in the reactions. This study offers direct and efficient methods for synthesizing multifunctionalized allenyl and propargyl silane compounds from the same initial material of chloro-substituted allenyl-Bdan.
Collapse
Affiliation(s)
- Qi Ran
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Ke-Fan Wu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Yun-He Xu
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| |
Collapse
|
9
|
Ghorai D, Tóth BL, Lanzi M, Kleij AW. Vinyl and Alkynyl Substituted Heterocycles as Privileged Scaffolds in Transition Metal Promoted Stereoselective Synthesis. Acc Chem Res 2024; 57:726-738. [PMID: 38387878 PMCID: PMC10918838 DOI: 10.1021/acs.accounts.3c00760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
ConspectusBiologically active compounds and pharmaceutically relevant intermediates often feature sterically congested stereogenic centers, in particular, carbon stereocenters that are either tertiary tetrasubstituted ones or quaternary in nature. Synthons that comprise such bulky and often structurally complex core units are of high synthetic value and represent important incentives for communities connected to drug discovery and development. Streamlined approaches that give access to a diverse set of compounds incorporating acyclic bulky stereocenters are relatively limited, though vital. They enable further exploration of three-dimensional entities that can be designed and implemented in discovery programs, thereby extending the pool of molecular properties that is inaccessible for flat molecules. However, the lack of modular substrates in particular areas of chemical space inspired us to consider functionalized heterocycles known as cyclic carbonates and carbamates as a productive way to create sterically crowded alkenes and stereocenters.In this Account, we describe the major approximations we followed over the course of 8 years using transition metal (TM) catalysis as an instrument to control the stereochemical course of various allylic and propargylic substitution processes and related transformations. Allylic substitution reactions empowered by Pd-catalysis utilizing a variety of nucleophiles are discussed, with amination being the seed of all of this combined work. These procedures build on vinyl-substituted cyclic carbonates (VCCs) that are simple and easy-to-access precursors and highly modular in nature compared to synthetically limited vinyl oxiranes. Overall these decarboxylative conversions take place with either "linear" or "branched" regioselectivities that are ligand controlled and offer access to a wide scope of functional allylic scaffolds. Alternative approaches, including dual TM/photocatalyzed transformations, allowed us to expand the repertoire of challenging stereoselective conversions. This was achieved through key single-electron pathways and via formal umpolung of intermediates, resulting in new types of carbon-carbon bond formation reactions significantly expanding the scope of allylic substitution reactions.Heterocyclic substrate variants that have triple bond functional groups were also designed by us to enable difficult-to-promote stereoselective propargylic substitution reactions through TM catalysis. In these processes, inspired by the Nishibayashi laboratory and their seminal findings in the area, we discovered various new reactivity patterns. This provided access to a range of different stereodefined building blocks such as 1,2-diborylated 1,3-dienes and tetrasubstituted α-allenols under Cu- or Ni-catalysis. In this realm, the use of lactone-derived substrates gives access to elusive chiral γ-amino acids and lactams with high stereofidelity and good structural diversity.Apart from the synthetic efforts, we have elucidated some of the pertinent mechanistic manifolds operative in these transformations to better understand the limitations and opportunities with these specifically functionalized heterocycles that allowed us to create complex synthons. We combined both theoretical and experimental investigations that lead to several unexpected outcomes in terms of enantioinduction models, catalyst preactivation, and intermediates that are intimately connected to rationales for the observed selectivity profiles. The combined work we have communicated over the years offers insight into the unique reactivity of cyclic carbonates/carbamates acting as privileged precursors. It may inspire other members of the synthetic communities to widen the scope of precursors toward novel stereoselective transformations with added value in drug discovery and development in both academic and commercial settings.
Collapse
Affiliation(s)
- Debasish Ghorai
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Balázs L. Tóth
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Matteo Lanzi
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
| | - Arjan W. Kleij
- Institute
of Chemical Research of Catalonia (ICIQ), the Barcelona Institute
of Science and Technology (BIST), Av. Països Catalans 16, 43007 Tarragona, Spain
- Catalan
Institute of Research and Advanced Studies (ICREA), Pg. Lluis Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
10
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Nickel-Catalyzed Reductive Cross-Coupling of Propargylic Acetates with Chloro(vinyl)silanes: Access to Silylallenes. J Org Chem 2024; 89:2885-2894. [PMID: 38355424 DOI: 10.1021/acs.joc.3c02228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Because of their various reactivities, propargyl acetates are refined chemical intermediates that are extensively applied in pharmaceutical synthesis. Currently, reactions between propargyl acetates and chlorosilanes may be the most effective method for synthesizing silylallenes. Nevertheless, owing to the adaptability and selectivity of substrates, transition metal catalysis is difficult to achieve. Herein, nickel-catalyzed reductive cross-coupling reactions between propargyl acetates and substituted vinyl chlorosilanes for the synthesis of tetrasubstituted silylallenes are described. Therein, metallic zinc is a crucial reductant that effectively enables two electrophilic reagents to selectively construct C(sp2)-Si bonds. Additionally, a Ni-catalyzed reductive mechanism involving a radical process is proposed on the basis of deuteration-labeled experiments.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 475004, Henan, China
| |
Collapse
|
11
|
Chen S, Su X, Dong Y, Liu J, Yang F, Guo H, Zhang C. Cu-Catalyzed Divergent Transformations of Allenylethylene Carbonates with Diboron Reagents. Org Lett 2024; 26:960-965. [PMID: 38240566 DOI: 10.1021/acs.orglett.3c04316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Divergent transformations of allenylethylene carbonates with diboron reagents catalyzed by copper are disclosed. By using CuCl/IPr·HCl as the catalyst, the allenylethylene carbonates react with B2hex2 to afford 2,4-dien-1-ols as the product in the presence of Cs2CO3 as the base, iPrOH as the additive, and 1,4-dioxane as the solvent. And they react with B2pin2 to form boronic half acids in the presence of NaOtBu as the base, water as the additive, and THF as the solvent. The reactions afford corresponding products in good stereoselectivities and yields, and further derivatizations of boronic half acids and study of the mechanism are also demonstrated.
Collapse
Affiliation(s)
- Sijie Chen
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Xiaojie Su
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Yujie Dong
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Jun Liu
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Fazhou Yang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Hongchao Guo
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| | - Cheng Zhang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, 2 Yuanmingyuan West Road, Beijing 100193, P. R. China
| |
Collapse
|
12
|
Xu CH, Xiong ZQ, Qin JH, Xu XH, Li JH. Cobalt-Promoted Electroreductive Cross-Coupling of Prop-2-yn-1-yl Acetates with Chloro(vinyl)silanes. Org Lett 2023; 25:7263-7267. [PMID: 37756013 DOI: 10.1021/acs.orglett.3c02989] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
An electroreductive cross-coupling of prop-2-yn-1-yl acetates with chloro(vinyl)silanes for producing tetrasubstituted silylallenes is developed. The method enables the formation of a new C─Si bond through the cathodic reduction formation of the silyl radical, radical addition across the C≡C bond, the alkenyl anion intermediate formation, and deacetoxylation and represents a mild, practical route to the synthesis of silylallenes. Mechanistic studies reveal that CoCl2 acts as the mediator to promote the formation of the alkenyl anion intermediate via electron transfer.
Collapse
Affiliation(s)
- Chong-Hui Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Zhi-Qiang Xiong
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Jing-Hao Qin
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Xin-Hua Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jin-Heng Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
13
|
Wu S, Zhang S, Sun J, Han Y, Wang Y, Yan CG, Wang L. Synthesis of Multisubstituted Allenes by Palladium-Catalyzed Carboetherification of β,γ-Unsaturated Ketoximes with Propargylic Acetates. Org Lett 2023. [PMID: 37335881 DOI: 10.1021/acs.orglett.3c01561] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
A highly efficient Pd-catalyzed carboetherification reaction of β,γ-unsaturated ketoximes with propargylic acetates is demonstrated. This method provides a practical protocol for accessing the incorporation of an allene moiety into 3,5-disubstituted and 3,5,5-trisubstituted isoxazolines. The salient features of this transformation include a broad substrate scope, good functional group tolerance, an easy scale-up, versatile transformations, and applications in the late-stage modification of drugs.
Collapse
Affiliation(s)
- Shuaijie Wu
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Shuting Zhang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jing Sun
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Ying Han
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Yidong Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Chao-Guo Yan
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Lei Wang
- School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| |
Collapse
|
14
|
Miura H, Doi M, Yasui Y, Masaki Y, Nishio H, Shishido T. Diverse Alkyl-Silyl Cross-Coupling via Homolysis of Unactivated C(sp 3)-O Bonds with the Cooperation of Gold Nanoparticles and Amphoteric Zirconium Oxides. J Am Chem Soc 2023; 145:4613-4625. [PMID: 36802588 DOI: 10.1021/jacs.2c12311] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Since C(sp3)-O bonds are a ubiquitous chemical motif in both natural and artificial organic molecules, the universal transformation of C(sp3)-O bonds will be a key technology for achieving carbon neutrality. We report herein that gold nanoparticles supported on amphoteric metal oxides, namely, ZrO2, efficiently generated alkyl radicals via homolysis of unactivated C(sp3)-O bonds, which consequently promoted C(sp3)-Si bond formation to give diverse organosilicon compounds. A wide array of esters and ethers, which are either commercially available or easily synthesized from alcohols participated in the heterogeneous gold-catalyzed silylation by disilanes to give diverse alkyl-, allyl-, benzyl-, and allenyl silanes in high yields. In addition, this novel reaction technology for C(sp3)-O bond transformation could be applied to the upcycling of polyesters, i.e., the degradation of polyesters and the synthesis of organosilanes were realized concurrently by the unique catalysis of supported gold nanoparticles. Mechanistic studies corroborated the notion that the generation of alkyl radicals is involved in C(sp3)-Si coupling and the cooperation of gold and an acid-base pair on ZrO2 is responsible for the homolysis of stable C(sp3)-O bonds. The high reusability and air tolerance of the heterogeneous gold catalysts as well as a simple, scalable, and green reaction system enabled the practical synthesis of diverse organosilicon compounds.
Collapse
Affiliation(s)
- Hiroki Miura
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| | - Masafumi Doi
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yuki Yasui
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yosuke Masaki
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Hidenori Nishio
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Shishido
- Department of Applied Chemistry for Environment, Graduate School of Urban Environmental Sciences, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Research Center for Hydrogen Energy-Based Society, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397, Japan.,Elements Strategy Initiative for Catalysts & Batteries, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8520, Japan
| |
Collapse
|
15
|
Niu R, Zhao J, Mou Q, Zhao R, Zhang J, Wang M, Sun B. Cp
X
Co (III)‐catalyzed selective C‐H alkenylation of indoles with ethynylethylene carbonates. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ruihan Niu
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Jiakai Zhao
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Qi Mou
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Ruyuan Zhao
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Jing Zhang
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Meiqi Wang
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| | - Bo Sun
- State Key Laboratory Base of Eco‐chemical Engineering, College of Chemical Engineering Qingdao University of Science & Technology Qingdao P. R. China
| |
Collapse
|
16
|
Zhang X, Jiao C, Qi D, Liu X, Zhang Z, Zhang G. Nickel-Catalyzed Deaminative Allenylation of Amino Acid Derivatives: Catalytic Activity Enhanced by an Amide-Type NN 2 Pincer Ligand. Org Lett 2022; 24:5361-5365. [DOI: 10.1021/acs.orglett.2c02042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xingjie Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Chenchen Jiao
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Di Qi
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xiaopan Liu
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhiguo Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guisheng Zhang
- Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
17
|
Zhang G, Feng XJ, Li MY, Ji XM, Lin GQ, Feng CG. Synthesis of tetrasubstituted allenes via a 1,4-palladium migration/carbene insertion/β-H elimination sequence. Org Biomol Chem 2022; 20:5383-5386. [PMID: 35748786 DOI: 10.1039/d2ob00751g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A palladium-catalyzed synthesis of tetrasubstituted allenes from aryl bromides and aryl diazoacetates is developed. This transformation proceeded via an aryl to alkenyl 1,4-palladium migration/carbene insertion/β-H elimination sequence under mild reaction conditions.
Collapse
Affiliation(s)
- Ge Zhang
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiao-Jiao Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Meng-Yao Li
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ming Ji
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Guo-Qiang Lin
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Chen-Guo Feng
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
18
|
Li TT, You Y, Sun TJ, Zhang YP, Zhao JQ, Wang ZH, Yuan WC. Copper-Catalyzed Decarboxylative Cascade Cyclization of Propargylic Cyclic Carbonates/Carbamates with Pyridinium 1,4-Zwitterionic Thiolates to Fused Polyheterocyclic Structures. Org Lett 2022; 24:5120-5125. [PMID: 35819406 DOI: 10.1021/acs.orglett.2c01959] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A copper-catalyzed decarboxylative cascade cyclization of propargylic cyclic carbonates/carbamates with pyridinium 1,4-zwitterionic thiolates is developed. A range of fused polyheterocyclic compounds are obtained in moderate to good yields with excellent diastereoselectivities. Of particular note is that four new bonds (two C-C, one C-O/N, one C-S) and four new stereocenters could be efficiently embedded into the tetracyclic fused scaffolds in a single step.
Collapse
Affiliation(s)
- Ting-Ting Li
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yong You
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Jia Sun
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yan-Ping Zhang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- Innovation Research Center of Chiral Drugs, Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
19
|
Guo W, Yan B. Recent Advances in Decarboxylative Conversions of Cyclic Carbonates and Beyond. SYNTHESIS-STUTTGART 2022. [DOI: 10.1055/a-1715-7413] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
AbstractIn recent years, functionalized cyclic organic carbonates have emerged as valuable building blocks for the construction of interesting and useful molecules upon decarboxylation under transition-metal catalysis. By employing suitable catalytic systems, the development of chemo-, regio-, stereo- and enantioselective methods for the synthesis of useful and interesting compounds has advanced greatly. On the basis of previous research on this topic, this short review highlights the synthetic potential of cyclic carbonates under transition-metal catalysis over the last two years.1 Introduction2 Transition-Metal-Catalyzed Decarboxylation of Vinyl Cyclic Carbonates3 Zwitterionic Enolate Chemistry Based On Transition-Metal Catalysis4 Decarboxylation of Alkynyl Cyclic Carbonates and Dioxazolones5 Conclusions and Perspectives
Collapse
|
20
|
Wu B, Su HZ, Wang ZY, Yu ZD, Sun HL, Yang F, Dou JH, Zhu R. Copper-Catalyzed Formal Dehydration Polymerization of Propargylic Alcohols via Cumulene Intermediates. J Am Chem Soc 2022; 144:4315-4320. [PMID: 35245047 DOI: 10.1021/jacs.2c00599] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Here we report a copper-catalyzed formal dehydration polymerization of propargylic alcohols. Copper catalysis allows for efficient in situ generation of [n]cumulenes (n = 3, 5) by a soft deprotonation/β-elimination pathway and subsequent polymerization via organocopper species. Alkyne polymers (Mn up to 36.2 kg/mol) were produced with high efficiency (up to 95% yield) and excellent functional group tolerance. One-pot synthesis of semiconducting head-to-head poly(phenylacetylene) was demonstrated through a polymerization-isomerization sequence.
Collapse
Affiliation(s)
- Bin Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hao-Ze Su
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Yuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zi-Di Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Han-Li Sun
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Fan Yang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jin-Hu Dou
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Rong Zhu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
21
|
Guo K, Zeng Q, Villar-Yanez A, Bo C, Kleij AW. Ni-Catalyzed Decarboxylative Silylation of Alkynyl Carbonates: Access to Chiral Allenes via Enantiospecific Conversions. Org Lett 2022; 24:637-641. [PMID: 34978820 DOI: 10.1021/acs.orglett.1c04086] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A Ni-mediated decarboxylative silylation of alkynyl cyclic carbonates used as versatile propargylic surrogates is reported affording a wide range of highly substituted 2,3- and 3,4-allenol products in good yields. The formal cross-coupling between a tentative intermediate Ni(allenyl) and the silyl reagent was further extended to enantiospecific conversions providing access to chiral allene synthons. This protocol marks the first Ni-catalyzed propargylic silylation proceeding through an SN2' manifold.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Qian Zeng
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Alba Villar-Yanez
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), the Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
22
|
Li TT, Lu WY, Shen LW, Wang ZH, Zhao JQ, You Y, Yuan WC. CuI-catalyzed decarboxylative highly regioselective phosphonylation of terminal alkyne-substituted cyclic carbonates/carbamates to access 4-phosphonyl 2,3-allenols/2,3-allenamines. Tetrahedron 2022. [DOI: 10.1016/j.tet.2021.132606] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Functional CO2 based heterocycles as precursors in organic synthesis. ADVANCES IN CATALYSIS 2022. [DOI: 10.1016/bs.acat.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Sontakke GS, Shukla RK, Volla CMR. Rh(I)‐Catalyzed Decarboxylative Arylation of Alkynyl Cyclic Carbonates: Divergent Access to Substituted
α
‐Allenols and 1,3‐Butadienes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
| | - Rahul K. Shukla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai-400076 India
| | - Chandra M. R. Volla
- Department of Chemistry Indian Institute of Technology Bombay Powai Mumbai-400076 India
| |
Collapse
|
25
|
Zhang J, Luo J, Li X, Zhang Q, Wu Z, Lan Y, Wei D. Insights into Organoamine-Catalyzed Asymmetric Synthesis of Axially Chiral Allenoates Using Morita-Baylis-Hillman Carbonates and Trisubstituted Allenoates: Mechanism and Origin of Stereoselectivity. J Org Chem 2021; 86:15276-15283. [PMID: 34605241 DOI: 10.1021/acs.joc.1c01871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A computational study was performed to explore the possible mechanisms of β-isocinchonine-catalyzed asymmetric C(sp2)-H allylation of trisubstituted allenoates using Morita-Baylis-Hillman (MBH) carbonates for synthesis of axially chiral tetrasubstituted allenoates. The calculated results indicate that the most energetically favorable pathway includes (1) nucleophilic attack on MBH carbonate by β-isocinchonine, (2) BocO- dissociation, (3) stereoselective formation of the C-C bond, and (4) regeneration of the catalyst. By tracking the orbital overlap/interaction changes, the half shoulder-to-head orbital overlap mode can be smoothly switched to a head-to-head orbital overlap mode for the key C-C σ bond formation, which is also identified as the stereoselectivity-determining process. Further distortion/interaction, noncovalent interaction (NCI), and atom-in-molecule (AIM) analyses demonstrate that C-H···O and C-H···π interactions should be key for controlling the axial and central chirality. This work would be useful for rational design of organocatalytic allylic alkylation reactions for synthesis of axially chiral compounds in the future.
Collapse
Affiliation(s)
- Jiaming Zhang
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Jing Luo
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Xue Li
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Qiaoyu Zhang
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Zhoujie Wu
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Yu Lan
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| | - Donghui Wei
- The College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
26
|
Jin Y, Wen H, Yang F, Ding D, Wang C. Synthesis of Multisubstituted Allenes via Nickel-Catalyzed Cross-Electrophile Coupling. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Youxiang Jin
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hao Wen
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Feiyan Yang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Decai Ding
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chuan Wang
- Hefei National Laboratory for Physical Science at the Microscale and Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- Center for Excellence in Molecular Synthesis of CAS, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
27
|
Singer RA, Monfette S, Bernhardson D, Tcyrulnikov S, Hubbell AK, Hansen EC. Recent Advances in Nonprecious Metal Catalysis. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.1c00241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Robert A. Singer
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sebastien Monfette
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David Bernhardson
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Sergei Tcyrulnikov
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Aran K. Hubbell
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Eric C. Hansen
- Pfizer Chemical Research and Development, Pfizer, Inc., Groton, Connecticut 06340, United States
| |
Collapse
|
28
|
Lu WY, You Y, Li TT, Wang ZH, Zhao JQ, Yuan WC. CuI-Catalyzed Decarboxylative Thiolation of Propargylic Cyclic Carbonates/Carbamates to Access Allenyl Thioethers. J Org Chem 2021; 86:6711-6720. [PMID: 33844530 DOI: 10.1021/acs.joc.1c00453] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first CuI-catalyzed decarboxylative thiolation of terminal alkyne-substituted cyclic carbonates/carbamates to access allenes has been developed. A wide range of hydroxymethyl- and aminomethyl-containing allenyl thioethers were smoothly obtained in good to excellent yields under mild conditions. The copper-allenylidene intermediate among the process is crucial to the decarboxylative thiolation reaction. This method opens up a new channel to access allenyl thioether compounds.
Collapse
Affiliation(s)
- Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ting-Ting Li
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Wei-Cheng Yuan
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China.,Institute for Advanced Study, Chengdu University, Chengdu 610106, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
29
|
Alonso JM, Almendros P. Deciphering the Chameleonic Chemistry of Allenols: Breaking the Taboo of a Onetime Esoteric Functionality. Chem Rev 2021; 121:4193-4252. [PMID: 33630581 PMCID: PMC8479864 DOI: 10.1021/acs.chemrev.0c00986] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 12/19/2022]
Abstract
The allene functionality has participated in one of the most exciting voyages in organic chemistry, from chemical curiosities to a recurring building block in modern organic chemistry. In the last decades, a special kind of allene, namely, allenol, has emerged. Allenols, formed by an allene moiety and a hydroxyl functional group with diverse connectivity, have become common building blocks for the synthesis of a wide range of structures and frequent motif in naturally occurring systems. The synergistic effect of the allene and hydroxyl functional groups enables allenols to be considered as a unique and sole functionality exhibiting a special reactivity. This Review summarizes the most significant contributions to the chemistry of allenols that appeared during the past decade, with emphasis on their synthesis, reactivity, and occurrence in natural products.
Collapse
Affiliation(s)
- José M. Alonso
- Grupo
de Lactamas y Heterociclos Bioactivos, Departamento de Química
Orgánica, Unidad Asociada al CSIC, Facultad de Química, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Pedro Almendros
- Instituto
de Química Orgánica General, IQOG-CSIC, Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
30
|
Guo K, Kleij AW. Copper-Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to (E)-1,2-Diborylated 1,3-Dienes versus Traceless Monoborylation Affording α-Hydroxyallenes. Angew Chem Int Ed Engl 2021; 60:4901-4906. [PMID: 33230901 DOI: 10.1002/anie.202014310] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 11/09/2022]
Abstract
A mild copper-mediated protocol has been developed for borylation of alkynyl cyclic carbonates. Depending on the nature of the borylating reaction partner, either stereoselective diborylation of the propargylic surrogate takes place, providing convenient access to (E)-1,2-borylated 1,3-dienes, or traceless monoborylation occurs, which leads to α-hydroxyallenes as the principal product. The dichotomy in this borylation protocol has been scrutinized by several control experiments, illustrating that a relatively small change in the diboron(4) reagent allows for competitive alcohol-assisted protodemetalation to forge an α-hydroxyallene product under ambient conditions.
Collapse
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Arjan W Kleij
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.,Catalan Institute of Research and Advanced Studies (ICREA), Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
31
|
Guo K, Kleij AW. Copper‐Mediated Dichotomic Borylation of Alkyne Carbonates: Stereoselective Access to (
E
)‐1,2‐Diborylated 1,3‐Dienes versus Traceless Monoborylation Affording α‐Hydroxyallenes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Kun Guo
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
| | - Arjan W. Kleij
- Institute of Chemical Research of Catalonia (ICIQ) The Barcelona Institute of Science and Technology Av. Països Catalans 16 43007 Tarragona Spain
- Catalan Institute of Research and Advanced Studies (ICREA) Pg. Lluís Companys 23 08010 Barcelona Spain
| |
Collapse
|
32
|
Feng JJ, Mao W, Zhang L, Oestreich M. Activation of the Si–B interelement bond related to catalysis. Chem Soc Rev 2021; 50:2010-2073. [DOI: 10.1039/d0cs00965b] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Covering the past seven years, this review comprehensively summarises the latest progress in the preparation and application of Si–B reagents, including the discussion of relevant reaction mechanisms.
Collapse
Affiliation(s)
- Jian-Jun Feng
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
- College of Chemistry and Chemical Engineering
| | - Wenbin Mao
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Liangliang Zhang
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Martin Oestreich
- Institut für Chemie
- Technische Universität Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
33
|
Natongchai W, Luque-Urrutia JA, Phungpanya C, Solà M, D'Elia V, Poater A, Zipse H. Cycloaddition of CO2 to epoxides by highly nucleophilic 4-aminopyridines: establishing a relationship between carbon basicity and catalytic performance by experimental and DFT investigations. Org Chem Front 2021. [DOI: 10.1039/d0qo01327g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
New highly nucleophilic homogeneous and heterogeneous catalysts based on the 3,4-diaminopyridine scaffold are reported for the halogen-free cycloaddition of CO2 to epoxides.
Collapse
Affiliation(s)
- Wuttichai Natongchai
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Jesús Antonio Luque-Urrutia
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Chalida Phungpanya
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Miquel Solà
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Valerio D'Elia
- Department of Materials Science and Engineering
- School of Molecular Science and Engineering
- Vidyasirimedhi Institute of Science and Technology (VISTEC)
- Rayong
- Thailand
| | - Albert Poater
- Institut de Química Computacional i Catàlisi and Departament de Química
- Universitat de Girona
- 17003 Girona
- Spain
| | - Hendrik Zipse
- Department Chemie
- Ludwig-Maximilians-Universität München
- 81377 München
- Germany
| |
Collapse
|
34
|
Pei G, Chen H, Xu W, Chen T, Li J. Diboron-controlled product selectivity switch in copper-catalyzed decarboxylative substitutions of alkynyl cyclic carbonates. Org Chem Front 2021. [DOI: 10.1039/d1qo01411k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DFT calculations were performed to explore the mechanisms, origins of diboron-controlled divergent product selectivity and stereoselectivity in the copper-catalyzed decarboxylative substitution of alkynyl cyclic carbonates.
Collapse
Affiliation(s)
- Guojing Pei
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Hui Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Wan Xu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| | - Tao Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Juan Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou, Guangdong 510632, P. R. China
| |
Collapse
|
35
|
Lu WY, Wang Y, You Y, Wang ZH, Zhao JQ, Zhou MQ, Yuan WC. Copper-Catalyzed Decarboxylative [3 + 2] Annulation of Ethynylethylene Carbonates with Azlactones: Access to γ-Butyrolactones Bearing Two Vicinal Quaternary Carbon Centers. J Org Chem 2020; 86:1779-1788. [PMID: 33377785 DOI: 10.1021/acs.joc.0c02621] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An efficient decarboxylative [3 + 2] annulation reaction of ethynylethylene carbonates and azlactones has been developed with a copper salt as catalyst. This practical methodology gives access to a diverse library of γ-butyrolactones bearing α,β-two vicinal quaternary carbon centers in good to high yields with good levels of diastereoselectivities (up to 98% yield, >95:5 dr). Preliminary trials on enantioselective variant with a chiral PyBox ligand provided chiral products in up to 71% ee. This synthetic method features mild reaction conditions, broad functional group tolerance, large-scale synthesis, and versatile products transformation. A plausible catalytic cycle for the protocol is proposed based on previous related studies and our experimental observations.
Collapse
Affiliation(s)
- Wen-Ya Lu
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yun Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province, School of Pharmacy, Zunyi Medical University, Zunyi, 563006, China
| | - Yong You
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Zhen-Hua Wang
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Jian-Qiang Zhao
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| | - Ming-Qiang Zhou
- National Engineering Research Center of Chiral Drugs, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, 610041, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei-Cheng Yuan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China
| |
Collapse
|
36
|
Pei C, Yang Z, Koenigs RM. Synthesis of Trifluoromethylated Tetrasubstituted Allenes via Palladium-Catalyzed Carbene Transfer Reaction. Org Lett 2020; 22:7300-7304. [PMID: 32866017 DOI: 10.1021/acs.orglett.0c02638] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, we report on the palladium-catalyzed synthesis of trifluoromethylated, tetrasubstituted allenes from vinyl bromides and trifluoromethylated diazoalkanes in good to excellent yield. This reaction proceeds via oxidative addition of a Pd(0) complex with vinyl bromide. Subsequent base-promoted reductive elimination generates the allene. This methodology provides an efficient strategy even on gram scale to valuable trifluoromethylated, tetrasubstituted allenes under mild reaction conditions. The allene products can be used in acid catalyzed cyclization reactions to give trifluoromethylated indene products.
Collapse
Affiliation(s)
- Chao Pei
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Zhen Yang
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| | - Rene M Koenigs
- RWTH Aachen University, Institute of Organic Chemistry, Landoltweg 1, D-52074 Aachen, Germany
| |
Collapse
|