1
|
Qian CW, Li X, Gu MQ. Visible-Light-Induced Multi-Component Nitrooxylation Reactions of α-Diazoesters, Cyclic Ethers, and Tert-Butyl Nitrite Leading to Organic Nitrate Esters. Chemistry 2024; 30:e202402304. [PMID: 39044322 DOI: 10.1002/chem.202402304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/25/2024]
Abstract
A simple and efficient strategy has been developed for the synthesis of organic nitrate esters via visible-light-induced multi-component nitrooxylation reactions of α-diazoesters, cyclic ethers, and tert-butyl nitrite under open air atmosphere. This transformation could be conducted under mild and metal-free conditions to provide a number of organic nitrate esters in moderate to good yields using air as the green oxidant.
Collapse
Affiliation(s)
- Cun-Wei Qian
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Xian Li
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| | - Meng-Qing Gu
- School of Chemical & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, Jiangsu, China
| |
Collapse
|
2
|
Lv Y, Hao J, Huang J, Song L, Yue H, Wei W, Yi D. Metal-free visible-light-mediated aerobic nitrooxylation for the synthesis of nitrate esters with t-BuONO. Chem Commun (Camb) 2024; 60:9801-9804. [PMID: 39162090 DOI: 10.1039/d4cc03272a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
A metal-free and sustainable visible-light-mediated method for the preparation of organic nitrate esters has been developed through the aerobic nitrooxylation reaction of α-diazoesters and cyclic ethers with t-BuONO in the presence of dioxygen. This protocol provides an efficient approach to access nitrate esters with the advantages of clean energy, broad substrate scope, green oxidants, operational simplicity, and mild conditions.
Collapse
Affiliation(s)
- Yufen Lv
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jindong Hao
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Lianhui Song
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 81000, P. R. China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, Shandong, P. R. China.
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, P. R. China.
| |
Collapse
|
3
|
Chen XM, Huang J, Pan J, Xie Y, Zeng F, Wei W, Yi D. Construction of β-Oximino Phosphorodithioates via (2,2,6,6-Tetramethylpiperidin-1-yl)oxyl-Promoted Difunctionalization of Alkenes with tert-Butyl Nitrite, P 4S 10, and Alcohols. Org Lett 2024; 26:3883-3888. [PMID: 38683041 DOI: 10.1021/acs.orglett.4c01038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
A (2,2,6,6-tetramethylpiperidin-1-yl)oxyl-mediated difunctionalization of alkenes with tert-butyl nitrite, P4S10, and alcohols has been developed for the synthesis of β-oximino phosphorodithioates. The reaction goes through a radical pathway with the successive installation of phosphorodithioate and an oxime group. This four-component protocol offers a practical approach to constructing a variety of β-oximino phosphorodithioates in moderate to good yields with favorable functional group tolerance.
Collapse
Affiliation(s)
- Xiao-Ming Chen
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Jian Huang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Jun Pan
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Yi Xie
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Fei Zeng
- Department of Biology and Chemistry, Hunan University of Science and Engineering, Yongzhou, Hunan 425199, People's Republic of China
| | - Wei Wei
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China
| | - Dong Yi
- Green Pharmaceutical Technology Key Laboratory of Luzhou City, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, People's Republic of China
| |
Collapse
|
4
|
Hochegger P, Hermann T, Dolensky J, Seebacher W, Saf R, Pferschy-Wenzig EM, Kaiser M, Mäser P, Weis R. Structure-Activity Relationships and Antiplasmodial Potencies of Novel 3,4-Disubstituted 1,2,5-Oxadiazoles. Int J Mol Sci 2023; 24:14480. [PMID: 37833929 PMCID: PMC10572347 DOI: 10.3390/ijms241914480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The 4-substituted 3-amino-1,2,5-oxadiazole 1 from the Malaria Box Project of the Medicines for Malaria Venture foundation shows very promising selectivity and in vitro activity against Plasmodium falciparum. Within the first series of new compounds, various 3-acylamino analogs were prepared. This paper now focuses on the investigation of the importance of the aromatic substituent in ring position 4. A number of new structure-activity relationships were elaborated, showing that antiplasmodial activity and selectivity strongly depend on the substitution pattern of the 4-phenyl moiety. In addition, physicochemical parameters relevant for drug development were calculated (logP and ligand efficiency) or determined experimentally (CYP3A4-inhibition and aqueous solubility). N-[4-(3-ethoxy-4-methoxyphenyl)-1,2,5-oxadiazol-3-yl]-3-methylbenzamide 51 showed high in vitro activity against the chloroquine-sensitive strain NF54 of P. falciparum (PfNF54 IC50 = 0.034 µM), resulting in a very promising selectivity index of 1526.
Collapse
Affiliation(s)
- Patrick Hochegger
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Theresa Hermann
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Johanna Dolensky
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Werner Seebacher
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| | - Robert Saf
- Institute for Chemistry and Technology of Materials (ICTM), Graz University of Technology, Stremayrgasse 9, A-8010 Graz, Austria;
| | - Eva-Maria Pferschy-Wenzig
- Institute of Pharmaceutical Sciences, Pharmacognosy, University of Graz, Beethovenstraße 8, A-8010 Graz, Austria;
| | - Marcel Kaiser
- Swiss Tropical and Public Health Institute, Kreuzstraße 2, CH-4123 Allschwil, Switzerland; (M.K.); (P.M.)
- Faculty of Philosophy and Natural Sciences, University of Basel, Swiss TPH, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Pascal Mäser
- Swiss Tropical and Public Health Institute, Kreuzstraße 2, CH-4123 Allschwil, Switzerland; (M.K.); (P.M.)
- Faculty of Philosophy and Natural Sciences, University of Basel, Swiss TPH, Petersplatz 1, CH-4003 Basel, Switzerland
| | - Robert Weis
- Institute of Pharmaceutical Sciences, Pharmaceutical Chemistry, University of Graz, Schubertstraße 1, A-8010 Graz, Austria; (P.H.); (J.D.); (W.S.); (R.W.)
| |
Collapse
|
5
|
Dinda TK, Mal P. Activation of C-Br Bond of CBr 4 and CBrCl 3 Using 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. J Org Chem 2023; 88:573-584. [PMID: 36516984 DOI: 10.1021/acs.joc.2c02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report the activation of the C-Br bond of CBrX3 (X = Cl, Br) using 9-mesityl-10-methylacridinium perchlorate as a visible-light (12W blue LED, 450-455 nm) photocatalyst for the synthesis of gem-dihaloenones from terminal alkynes. An electron transfer from CBrX3 to Mes-Acr-MeClO4 led to the formation of •+CBrX3 which subsequently resulted in the intermediate +CX3. Next, C-C cross-coupling of +CX3 with terminal alkynes was the key path to obtain the gem-dihaloenones. Radical trapping experiments with TEMPO, BHT, and Stern-Volmer quenching studies helped to understand that the reaction proceeded via the SET mechanism.
Collapse
Affiliation(s)
- Tarun Kumar Dinda
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
6
|
Ma Q, Zhang S, Yuan Y, Ding H, Li Y, Sun Z, Yuan Y, Jia X. Multifunctionalization of sp3 C‐H Bond of Tetrahydroisoquinolines through C‐H Activation Relay (CHAR) Using α‐Cyanotetrahydroisoquinolines as the Starting Materials. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Qiyuan Ma
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Shuwei Zhang
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuan Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Han Ding
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yuemei Li
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Zheng Sun
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Yu Yuan
- Yangzhou University School of Chemistry & Chemical CHINA
| | - Xiaodong Jia
- Yangzhou University School of Chemistry and Chemical Engineering, Yangzhou University 180 Siwangting Road 225002 Yangzhou CHINA
| |
Collapse
|
7
|
Pramanik M, Mathuri A, Sau S, Das M, Mal P. Chlorinative Cyclization of Aryl Alkynoates Using NCS and 9-Mesityl-10-methylacridinium Perchlorate Photocatalyst. Org Lett 2021; 23:8088-8092. [PMID: 34558906 DOI: 10.1021/acs.orglett.1c03100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In a chlorinative cyclization, Mes-Acr-MeClO4 acted as a visible-light photocatalyst to obtain 3-chlorocoumarins from aryl alkynoates and N-chlorosuccinimide (NCS). The radical initiated reaction proceeded in a cascading manner via Cl- addition to alkynoates. Next, 5-exo-trig spirocyclization and subsequent 1,2-ester migration led to the formation of C-C and C-Cl bonds.
Collapse
Affiliation(s)
- Milan Pramanik
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Ashis Mathuri
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Sudip Sau
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Monojit Das
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| | - Prasenjit Mal
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, HBNI, PO Bhimpur-Padanpur, Via Jatni, District Khurda, Odisha 752050, India
| |
Collapse
|
8
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
9
|
Craescu CV, Schubach MJ, Huss S, Elacqua E. Metal-free photocatalytic C(sp3)–H bond activation. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2021.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
10
|
Xu Q, Zhou X, Zhang S, Pan L, Liu Q, Li Y. Visible-Light-Induced Sulfur-Alkenylation of Alkenes. Org Lett 2021; 23:4870-4875. [PMID: 34109797 DOI: 10.1021/acs.orglett.1c01596] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A visible-light-induced intermolecular sulfur-alkenylation of alkenes, including both activated and unactivated alkenes, is described. This sulfur-alkenylation reaction proceed in a highly regio- and stereospecific manner involving the visible-light-induced conversion of a ketene dithioacetal to the thiavinyl 1,3-dipole intermediate, followed by a formal [3 + 2] cycloaddition and C-S bond cleavage. Furthermore, it is also an efficient approach for the late-stage functionalization of natural products and complex molecules, even being induced by sunlight under ambient conditions.
Collapse
Affiliation(s)
- Qi Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xiaoxuan Zhou
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Si Zhang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Department of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
11
|
Dahiya A, Patel BK. The Rich Legacy and Bright Future of Transition-Metal Catalyzed Peroxide Based Radical Reactions. CHEM REC 2021; 21:3589-3612. [PMID: 34137502 DOI: 10.1002/tcr.202100115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/17/2021] [Indexed: 01/19/2023]
Abstract
This personal account is mainly focused on the author's involvement in the field of transition metal-catalyzed peroxide based radical reactions. Over the past decades, radical chemistry has flourished and become crucial in contemporary synthetic organic chemistry. Owing to the presence of a single electron in one orbital, radicals are very unstable and react very fast. To carry out desired transformations and to control the side reactions the stabilizations of these radicals is essential. Fortunately, the implementation of a suitable transition metal and peroxide combination into the radical reactions have proved beneficial. Transition metals not only stabilizes the radicals but also protects them from being quenched by undesired homo-coupling or fragmentation. Transition metal-catalyzed radical-radical reactions provide an innovative way for the construction and derivatization of carbocycles and heterocycles. The objective of this review is to give an overview of the construction and derivatization of heterocycles through the lens of radical chemistry, mainly focusing on research work done by our group.
Collapse
Affiliation(s)
- Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Guwahati, India
| |
Collapse
|
12
|
Vishwakarma RK, Kumar S, Singh KN. Visible-Light-Induced Photocatalytic Synthesis of β-Keto Dithiocarbamates via Difunctionalization of Styrenes. Org Lett 2021; 23:4147-4151. [PMID: 33988029 DOI: 10.1021/acs.orglett.1c01059] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A facile photocatalyzed strategy for difunctionalization of styrenes in the presence of CS2 and amines providing β-keto dithiocarbamates has been developed. In the case of 4-nitrostyrene and 2-vinylpyridine, however, only 2-arylethylthiocarbamates are interestingly formed without the aid of photoredox catalysis/TBHP.
Collapse
Affiliation(s)
| | - Saurabh Kumar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Krishna Nand Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
13
|
Murugesan K, Donabauer K, König B. Visible-Light-Promoted Metal-Free Synthesis of (Hetero)Aromatic Nitriles from C(sp 3 )-H Bonds*. Angew Chem Int Ed Engl 2021; 60:2439-2445. [PMID: 33053270 PMCID: PMC7898869 DOI: 10.1002/anie.202011815] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 09/29/2020] [Indexed: 01/18/2023]
Abstract
The metal-free activation of C(sp3 )-H bonds to value-added products is of paramount importance in organic synthesis. We report the use of the commercially available organic dye 2,4,6-triphenylpyrylium tetrafluoroborate (TPP) for the conversion of methylarenes to the corresponding aryl nitriles via a photocatalytic process. Applying this methodology, a variety of cyanobenzenes have been synthesized in good to excellent yield under metal- and cyanide-free conditions. We demonstrate the scope of the method with over 50 examples including late-stage functionalization of drug molecules (celecoxib) and complex structures such as l-menthol, amino acids, and cholesterol derivatives. Furthermore, the presented synthetic protocol is applicable for gram-scale reactions. In addition to methylarenes, selected examples for the cyanation of aldehydes, alcohols and oximes are demonstrated as well. Detailed mechanistic investigations have been carried out using time-resolved luminescence quenching studies, control experiments, and NMR spectroscopy as well as kinetic studies, all supporting the proposed catalytic cycle.
Collapse
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and PharmacyUniversity of RegensburgGermany
| |
Collapse
|
14
|
Xiang S, Li Y, Fan W, Jin J, Zhang W, Huang D. Copper(II)-Dioxygen Facilitated Activation of Nitromethane: Nitrogen Donors for the Synthesis of Substituted 2-Hydroxyimino-2-phenylacetonitriles and Phthalimides. Front Chem 2021; 8:622867. [PMID: 33585402 PMCID: PMC7878530 DOI: 10.3389/fchem.2020.622867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
A simple and efficient method is explored for the synthesis of 2-hydroxyimino-2-phenylacetonitriles (2) and phthalimides (4), by using nitromethane as nitrogen donors. Both reactions are promoted by Cu(II) system with the participation of dioxygen as an oxidant. The scope of the method has been successfully demonstrated with a total of 51 examples. The flexible and diversified characteristics of reactions are introduced in terms of electronic effect, steric effect, position of substituted groups, and intramolecular charge transfer. Experimental studies suggest that the methyl nitrite could be a precursor in the path to the final products. A possible reaction mechanism is proposed, including the Cu(II)/O2-facilitated transformation of nitromethane to methyl nitrite, the base-induced formation of 2-hydroxyimino-2-phenylacetonitriles, and the base-dioxygen-promoted formation of phthalimides.
Collapse
Affiliation(s)
- Shiqun Xiang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yinghua Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Weibin Fan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jiang Jin
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Wei Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| | - Deguang Huang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
15
|
Patel SM, P EP, Bakthadoss M, Sharada DS. Photocatalytic Visible-Light-Induced Nitrogen Insertion via Dual C(sp 3)-H and C(sp 2)-H Bond Functionalization: Access to Privileged Imidazole-based Scaffolds. Org Lett 2021; 23:257-261. [PMID: 33373256 DOI: 10.1021/acs.orglett.0c03269] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Here we have demonstrated a visible-light-mediated metal-free organic-dye-catalyzed dehydrogenative N-insertion leading to highly substituted imidazoles and privileged dihydroisoquinoline-based imidazole derivatives via C(sp3)-H and C(sp2)-H bond functionalization. A sustainable, convenient, metal-free azidation/C-H aminative cyclization approach in the absence of stoichiometric oxidants is presented. This protocol involves a rare photoinduced iminyl radical as a key intermediate for the "N" insertion.
Collapse
Affiliation(s)
- Srilaxmi M Patel
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| | - Ermiya Prasad P
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| | | | - Duddu S Sharada
- Indian Institute of Technology (IIT) Hyderabad, Kandi, Sangareddy, Telangana 502 285, India
| |
Collapse
|
16
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
17
|
Zhao M, He W, Zou LH, Wang D, Sun TY, Xia XF. Iron-catalyzed hydrogen atom transfer induced cyclization of 1,6-enynes for the synthesis of ketoximes: a combined experimental and computational study. Org Chem Front 2021. [DOI: 10.1039/d0qo01341b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An iron-catalyzed reductive radical cyclization/hydro-oximation of 1,6-enynes with tBuONO was developed, leading to functionalized benzofuran, benzothiophene, and cyclopentenyl-based ketoximes.
Collapse
Affiliation(s)
- Mingming Zhao
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Wei He
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | - Liang-Hua Zou
- School of Pharmaceutical Sciences
- Jiangnan University
- Wuxi
- China
| | - Dawei Wang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| | | | - Xiao-Feng Xia
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
| |
Collapse
|
18
|
Hosseini-Sarvari M, Valikhani A. Boron-doped TiO 2 (B-TiO 2): visible-light photocatalytic difunctionalization of alkenes and alkynes. NEW J CHEM 2021. [DOI: 10.1039/d1nj01752g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Boron-doped TiO2 (B-TiO2) was prepared, characterized, and applied as a reusable, inexpensive, and available heterogeneous nanophotocatalyst under visible light for the synthesis of phenacyl thiocyanates.
Collapse
Affiliation(s)
- Mona Hosseini-Sarvari
- Department of Chemistry
- Nano Photocatalysis Lab
- Shiraz University
- Shiraz 7194684795
- Iran
| | - Atefe Valikhani
- Department of Chemistry
- Nano Photocatalysis Lab
- Shiraz University
- Shiraz 7194684795
- Iran
| |
Collapse
|
19
|
Xu J, Yang H, He L, Huang L, Shen J, Li W, Zhang P. Synthesis of ( E)-Quinoxalinone Oximes through a Multicomponent Reaction under Mild Conditions. Org Lett 2020; 23:195-201. [PMID: 33354970 DOI: 10.1021/acs.orglett.0c03918] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Herein, a novel method for the gram-scale synthesis of (E)-quinoxalinone oximes through a multicomponent reaction under mild conditions is described. Such a transformation was performed under transition-metal-free conditions, affording (E)-oximes in a moderate-to-good yield through recrystallization. Our methodology demonstrates a successful combination of a Mannich-type reaction and radical coupling, providing a green and practical approach for the synthesis of potentially bioactive quinoxalinone-containing molecules.
Collapse
Affiliation(s)
- Jun Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Huiyong Yang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lei He
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Lin Huang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiabin Shen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Wanmei Li
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Pengfei Zhang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
20
|
Murugesan K, Donabauer K, König B. Visible‐Light‐Promoted Metal‐Free Synthesis of (Hetero)Aromatic Nitriles from C(sp
3
)−H Bonds**. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202011815] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | | | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Germany
| |
Collapse
|
21
|
Rakshit A, Kumar P, Alam T, Dhara H, Patel BK. Visible-Light-Accelerated Pd-Catalyzed Cascade Addition/Cyclization of Arylboronic Acids to γ- and β-Ketodinitriles for the Construction of 3-Cyanopyridines and 3-Cyanopyrrole Analogues. J Org Chem 2020; 85:12482-12504. [DOI: 10.1021/acs.joc.0c01703] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Prashant Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Hirendranath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
22
|
Wang X, Dong J, Li Y, Liu Y, Wang Q. Visible-Light-Mediated Manganese-Catalyzed Allylation Reactions of Unactivated Alkyl Iodides. J Org Chem 2020; 85:7459-7467. [PMID: 32383380 DOI: 10.1021/acs.joc.0c00861] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Herein, we report a protocol for visible-light-mediated allylation reactions between unactivated alkyl iodides and allyl sulfones under mild conditions with catalysis by inexpensive and readily available Mn2(CO)10. This protocol is compatible with a wide array of sensitive functional groups and has a broad substrate scope with regard to both alkyl iodides and allyl sulfones.
Collapse
Affiliation(s)
- Xiaochen Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Jianyang Dong
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yongqiang Li
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Yuxiu Liu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, People's Republic of China.,Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
| |
Collapse
|