1
|
Karuo Y, Hirata K, Tarui A, Sato K, Kawai K, Omote M. Synthesis of fluoroalkenes and fluoroenynes via cross-coupling reactions using novel multihalogenated vinyl ethers. Beilstein J Org Chem 2024; 20:2691-2703. [PMID: 39469295 PMCID: PMC11514441 DOI: 10.3762/bjoc.20.226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024] Open
Abstract
In this study, we develop the synthesis methods of fluoroalkenes and fluoroenynes via Suzuki-Miyaura and Sonogashira cross-coupling reactions using novel multihalogenated fluorovinyl ethers, which are easily prepared from the reaction between phenols and 2-bromo-2-chloro-1,1,1-trifluoroethane (halothane). These reactions make use of the unique structure of multihalogenated fluorovinyl ethers, which contains a reactive bromine atom, to afford a series of fluoroalkenes and fluoroenynes in moderate to high yields.
Collapse
Affiliation(s)
- Yukiko Karuo
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Keita Hirata
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Atsushi Tarui
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kazuyuki Sato
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Kentaro Kawai
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| | - Masaaki Omote
- Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotoge-cho, Hirakata, Osaka 573-0101, Japan
| |
Collapse
|
2
|
Zhao Y, Yang Z, Wang X, Kang Q, Wang B, Wu T, Lei H, Ma P, Su W, Wang S, Wu Z, Huang X, Fan C, Wei X. Mechanochemical Synthesis of α-halo Alkylboronic Esters. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404071. [PMID: 38958542 PMCID: PMC11434113 DOI: 10.1002/advs.202404071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/20/2024] [Indexed: 07/04/2024]
Abstract
α-halo alkylboronic esters, acting as ambiphilic synthons, play a pivotal role as versatile intermediates in fields like pharmaceutical science and organic chemistry. The sequential transformation of carbon-boron and carbon-halogen bonds into a broad range of carbon-X bonds allows for programmable bond formation, facilitating the incorporation of multiple substituents at a single position and streamlining the synthesis of complex molecules. Nevertheless, the synthetic potential of these compounds is constrained by limited reaction patterns. Additionally, the conventional methods often necessitate the use of bulk toxic solvents, exhibit sensitivity to air/moisture, rely on expensive metal catalysts, and involve extended reaction times. In this report, a ball milling technique is introduced that overcomes these limitations, enabling the external catalyst-free multicomponent coupling of aryl diazonium salts, alkenes, and simple metal halides. This approach offers a general and straightforward method for obtaining a diverse array of α-halo alkylboronic esters, thereby paving the way for the extensive utilization of these synthons in the synthesis of fine chemicals.
Collapse
Affiliation(s)
- Yunyi Zhao
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Zekun Yang
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
- Ningxia Jinghong Technology Co., Ltd. No. 98, Huihong District, Shizuishan Economic and Technological Development Zone, Shizuishan, Ningxia, 753000, P. R. China
| | - Xin Wang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Yanta District, Xi'an, Shaanxi, 710061, P. R. China
| | - Qinchun Kang
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Bobo Wang
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Tianle Wu
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Hao Lei
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Peile Ma
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Wenqiang Su
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Siyuan Wang
- Department of Medicinal Chemistry, College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, P. R. China
| | - Zhiqiang Wu
- Ningxia Jinghong Technology Co., Ltd. No. 98, Huihong District, Shizuishan Economic and Technological Development Zone, Shizuishan, Ningxia, 753000, P. R. China
| | - Xinsong Huang
- Ningxia Jinghong Technology Co., Ltd. No. 98, Huihong District, Shizuishan Economic and Technological Development Zone, Shizuishan, Ningxia, 753000, P. R. China
| | - Chunying Fan
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| | - Xiaofeng Wei
- School of Pharmacy, Xi'an Jiaotong University, No.76, Yanta West Road, Xi'an, Shaanxi, 710061, P. R. China
- Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Xi'an, Shaanxi, 710061, P. R. China
| |
Collapse
|
3
|
Lv W, Yang P, Yuan J, Li J, Liang M, Liu Y, Xing D, Yang L. Phototriggered Fluoroalkylation/Cyclization of Unactivated 1-Acryloyl-2-cyanoindoles: Synthesis of RCOCF 2-Substituted Pyrrolo[1,2- a]indolediones. J Org Chem 2024; 89:3525-3537. [PMID: 38362898 DOI: 10.1021/acs.joc.3c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A photochemical approach toward RCOCF2-substituted pyrrolo[1,2-a]indolediones was developed by the radical cascade difluoroalkylation/cyclization reaction of unactivated 1-acryloyl-2-cyanoindoles with ethyl iododifluoroacetate or iododifluoramides under visible-light irradiation. This transition-metal- and photosensitizer-free protocol afforded diverse difluoroalkylated pyrrolo[1,2-a]indolediones in moderate to good yields under mild reaction conditions. Most appealingly, the reaction can proceed smoothly under sunlight irradiation, which opens a new avenue toward difluoroalkylated pyrrolo[1,2-a]indolediones.
Collapse
Affiliation(s)
- Weixian Lv
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jiayi Li
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Mengran Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yitong Liu
- School of International Education, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| |
Collapse
|
4
|
Joseph E, Smith I, Tunge JA. Cobalt-catalyzed decarboxylative difluoroalkylation of nitrophenylacetic acid salts. Chem Sci 2023; 14:13902-13907. [PMID: 38075641 PMCID: PMC10699560 DOI: 10.1039/d3sc05583c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/13/2023] [Indexed: 02/12/2024] Open
Abstract
The selective installation of fluorine-containing groups into biologically relevant molecules has been used as a common strategy for the development of pharmaceutically active molecules. However, the selective incorporation of gem-difluoromethylene groups next to sterically demanding secondary and tertiary alkyl groups remains a challenge. Herein, we report the first cobalt-catalyzed regioselective difluoroalkylation of carboxylic acid salts. The reaction allows for the facile construction of various difluoroalkylated products in good yields tolerating a wide range of functionalities on either reaction partner. The potential of the method is illustrated by the late-stage functionalization of molecules of biological relevance. Mechanistic studies support the in situ formation of a cobalt(i) species and the intermediacy of difluoroalkyl radicals, thus suggesting a Co(i)/Co(ii)/Co(iii) catalytic cycle.
Collapse
Affiliation(s)
- Ebbin Joseph
- Department of Chemistry, The University of Kansas 1567 Irving Rd, Lawrence KS 66045 USA
| | - Ian Smith
- Department of Chemistry, The University of Kansas 1567 Irving Rd, Lawrence KS 66045 USA
| | - Jon A Tunge
- Department of Chemistry, The University of Kansas 1567 Irving Rd, Lawrence KS 66045 USA
| |
Collapse
|
5
|
Sun Q, Li H, Chen X, Hao J, Deng H, Jiang H. Silver-Promoted Radical Cascade Aryldifluoromethylation/Cyclization of 2-Allyloxybenzaldehydes for the Synthesis of 3-Aryldifluoromethyl-Containing Chroman-4-one Derivatives. Molecules 2023; 28:molecules28083578. [PMID: 37110812 PMCID: PMC10142801 DOI: 10.3390/molecules28083578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
A convenient silver-promoted radical cascade aryldifluoromethylation/cyclization of 2-allyloxybenzaldehydes has been developed. Experimental studies disclosed that the addition of aryldifluoromethyl radicals in situ produced from easily accessible gem-difluoroarylacetic acids to unactivated double bonds in 2-allyloxybenzaldehyde was an effective route to access a series of 3-aryldifluoromethyl-containing chroman-4-one derivatives in moderate to good yields under mild reaction conditions.
Collapse
Affiliation(s)
- Qianqian Sun
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Xingyu Chen
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Jian Hao
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University, Shanghai 200444, China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai 200444, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Li YJ, Liu DG, Ren JH, Gong TJ, Fu Y. Photocatalytic Alkyl Radical Addition Tandem Oxidation of Alkenyl Borates. J Org Chem 2023; 88:4325-4333. [PMID: 36940141 DOI: 10.1021/acs.joc.2c02923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
Photocatalytic oxidation is a popular transformation way for organic synthesis and is widely applied in academia and industry. Herein, we report a blue light-induced alkylation-oxidation tandem reaction for the synthesis of diverse ketones by combining alkyl radical addition and oxidation of alkenyl borates. This reaction shows excellent functional group compatibility in acceptable yields, and diversity of radical precursors is applicable.
Collapse
Affiliation(s)
- Yu-Jie Li
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - De-Guang Liu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Jin-Hu Ren
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Tian-Jun Gong
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| | - Yao Fu
- Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Urban Pollutant Conversion, Anhui Province Key Laboratory of Biomass Clean Energy, University of Science and Technology of China, Hefei, Anhui 230026, China.,Institute of Energy, Hefei Comprehensive National Science Center, Hefei, Anhui 230031, P. R. China
| |
Collapse
|
7
|
Su J, Guo W, Liu Y, Kong L, Zheng H, Zhu G. Cu-catalyzed cascade difluoroalkylation/5- endo cyclization/β-fluorine cleavage of ynones. Chem Commun (Camb) 2023; 59:1821-1824. [PMID: 36722869 DOI: 10.1039/d2cc06068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A copper-catalyzed, redox-neutral cascade difluoroalkylation/5-endo annulation/β-fluorine cleavage of ynones is developed, providing a direct and stereoselective method to access synthetically important α-monofluoroalkenyl cyclopentanones. Mechanistic studies suggest an unprecedented CuII-assisted β-fluorine fragmentation, which may be valuable for the challenging but important C-F bond activation. Moreover, the in situ generated difluorocarbene was found to serve as an effective reductant for the regeneration of copper(I) catalyst, thus avoiding the addition of external reductants.
Collapse
Affiliation(s)
- Jingwen Su
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Wenbin Guo
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Yi Liu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Lichun Kong
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Hanliang Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| | - Gangguo Zhu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Department of Chemistry, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China.
| |
Collapse
|
8
|
Wang XY, Yang M, Zhou Y, Zhou J, Hao YJ. A highly efficient metal-free selective 1,4-addition of difluoroenoxysilanes to chromones. Org Biomol Chem 2023; 21:1033-1037. [PMID: 36625240 DOI: 10.1039/d2ob02152h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A highly efficient metal-free selective 1,4-addition reaction of difluoroenoxysilanes to chromones was developed using the low-cost and readily available HOTf as the catalyst, which is a facile and straightforward method to access valuable C2-difluoroalkylated chroman-4-one derivatives. Interestingly, the products could be readily converted to the difluorinated bioisostere of the natural product (S)-2,6-dimethylchroman-4-one and a difluorinated benzo-seven-membered heterocycle via the Schmidt rearrangement reaction. In addition, the in vitro anti-proliferative activities of these synthesized derivatives against human colon carcinoma cells (HCT116) revealed that compound 3g exhibited potent inhibitory effect on HCT116 cancer cells with an IC50 value of 6.37 μM, representing a novel lead compound for further structural optimization and biological evaluation.
Collapse
Affiliation(s)
- Xi-Yu Wang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Min Yang
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Ying Zhou
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Jian Zhou
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, and Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China. .,School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| | - Yong-Jia Hao
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China.
| |
Collapse
|
9
|
Yang C, Chen J, Li X, Meng L, Wang K, Sun W, Fan B. Difluoroallylation of Silanes under Photoirradiation. ACTA CHIMICA SINICA 2023. [DOI: 10.6023/a22110454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
10
|
Peng P, Yang R, Xu B. Tunable Reduction of Benzyl
α
,
α
‐Difluorotriflones: Synthesis of Difluoroarenes and Sodium Aryldifluoromethyl Sufinates and their Applications. ChemistrySelect 2022. [DOI: 10.1002/slct.202202870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peng Peng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals Zhejiang University of Technology, Address Hangzhou 310014 China
| | - Ren‐Yin Yang
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| | - Bo Xu
- College of Chemistry Chemical Engineering and Biotechnology Donghua University, Address Shanghai 201620 China
| |
Collapse
|
11
|
Yang C, Chen J, Li X, Yang X, Zhu Y, Wu S, Zeng G, Wang K, Fan B. Photocatalyzed
gem
‐Difluoroallylation of Tertiary Amines with α‐Trifluoromethyl Alkenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202201188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Chunhui Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Xinhan Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Xiaoju Yang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Yuanbin Zhu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province China
| | - Shiyuan Wu
- Yunnan Tiefeng High Tech Mining Chemicals Co.Ltd Qingfeng industrial park Lufeng 651200 Yunnan Province China
| | - Guangzhi Zeng
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
| | - Kaimin Wang
- School of Chemistry and Environment Yunnan Minzu University Yunnan Kunming 650500 China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources (Yunnan Minzu University) State Ethnic Affairs Commission & Ministry of Education Yunnan Minzu University Kunming 650500 China (Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Yunnan Kunming 650500 China
| |
Collapse
|
12
|
yao Z, Yang J, Luo ZL, Ye J, Han J, zhang X, Xu L, Wang P, Shi Q. Visible‐Light Photoredox‐Catalyzed Tandem One‐Pot Construction of C4‐Difluoroalkylated Phthalazin‐1(2H)‐ones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- zhen yao
- Renmin University of China CHINA
| | | | | | | | | | | | - Lijin Xu
- Renmin University of China CHINA
| | | | | |
Collapse
|
13
|
Direct couplings of secondary alcohols with primary alkenyl alcohols to α-alkylated ketones via a tandem transfer hydrogenation/hydrogen autotransfer process catalyzed by a metal-ligand bifunctional iridium catalyst. J Catal 2022. [DOI: 10.1016/j.jcat.2022.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Ma S, Zhou P, Fan X, Li D, Yang J. Base-promoted cascade radical difluoroalkylation/cyclization of acrylamides for the synthesis of CF2-containing oxindoles and isoquinoline-1,3-diones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
15
|
Huang QP, Li WP, Li R, Zhao L, Wang HY, Li X, Wang P, He CY. Visible-light Promoted Cross-coupling of Ethyl Iododifluoroacetate with Silyl Enol Ethers for the Synthesis of β-Fluoroenones via Noncovalent Interactions. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Wang Y, Liu R, Zhou P, Wu J, Li W, Wang C, Li H, Li D, Yang J. Visible Light‐Driven Base‐Promoted Radical Cascade Difluoroalkylization‐cyclization‐iodination of 1,6‐Enynes with Ethyl Difluoroiodoacetate. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yan Wang
- Ningxia University School of chemistry and chemical Engineering 539 West Helan Mountains road, Xixia District, Yinchuan 750000 Yinchuan CHINA
| | - Ruyan Liu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Pengsheng Zhou
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Jianglong Wu
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Wenshuang Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Chenyu Wang
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Hao Li
- Ningxia University School of Chemistry and Chemical Engineering CHINA
| | - Dianjun Li
- Ningxia University State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, School of Chemistry and Chemical Engineering CHINA
| | - Jinhui Yang
- Ningxia University State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering China, Ning Xia, Yinchuan, Xixia District Ningxia University B 750021 Yinchuan CHINA
| |
Collapse
|
17
|
Cheng H, Luo Y, Lam TL, Liu Y, Che CM. Visible-light-induced radical cascade reaction to prepare oxindoles via alkyl radical addition to N-arylacryl amides. Org Chem Front 2022. [DOI: 10.1039/d2qo01140a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical approach towards oxindoles with C3 quaternary centers by the radical cascade reaction of α,β-unsaturated N-arylacryl amides with alkyl bromides or iodides upon visible light irradiation under mild reaction conditions was developed.
Collapse
Affiliation(s)
- Hanchao Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Yunfeng Luo
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Tsz-Lung Lam
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| | - Chi-Ming Che
- Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
- State Key Laboratory of Synthetic Chemistry, Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
- HKU Shenzhen Institute of Research and Innovation, Shenzhen, Guangdong 518057, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science Park, New Territories, Hong Kong, China
| |
Collapse
|
18
|
Wang Z, Sun Y, Shen LY, Yang WC, Meng F, Li P. Photochemical and electrochemical strategies in C–F bond activation and functionalization. Org Chem Front 2022. [DOI: 10.1039/d1qo01512e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The recent advances in photochemical or electrochemical C–F bond activation and functionalization have been summarized and discussed.
Collapse
Affiliation(s)
- Zhanghong Wang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, PR China
| | - Yu Sun
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Liu-Yu Shen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Wen-Chao Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Fei Meng
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou 225009, P. R. China
| | - Pinhua Li
- Anhui Laboratory of Clean Catalytic Engineering, Anhui Laboratory of Functional Complexes for Materials Chemistry and Application, College of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, P. R. of China
| |
Collapse
|
19
|
Qu CH, Huang R, Liu Y, Liu T, Song GT. Bromine-radical-induced C sp2–H difluoroalkylation of quinoxalinones and hydrazones through visible-light-promoted C sp3–Br bond homolysis. Org Chem Front 2022. [DOI: 10.1039/d2qo00710j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bromine radicals derived from photo-induced Csp3–Br bond homolysis can mediate H abstraction/imine radical formation from quinoxalinones and hydrazones, which in turn quench the in situ-generated difluoroalkyl radicals to furnish the products.
Collapse
Affiliation(s)
- Chuan-Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Run Huang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Tong Liu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Gui-Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
20
|
Li W, Liu R, Li R, Wang S, Li D, Yang J. Catalyst‐Free and Oxidant‐Free Cascade Difluoroalkylation and Controllable C−F Bond Activation of Aryl Enol Acetates for the Synthesis of β‐Fluoroenones and β‐Enaminones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100681] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wenshuang Li
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Ruyan Liu
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Ruonan Li
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Shihaozhi Wang
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Dianjun Li
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| | - Jinhui Yang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
- School of Chemistry and Chemical Engineering Ningxia University 489 Helanshan West Road Yinchuan 750021 People's Republic of China
| |
Collapse
|
21
|
Li J, Xu D, Shi G, Liu X, Zhang J, Fan B. Oxidation of Silanes to Silanols with Oxygen via Photoredox Catalysis. ChemistrySelect 2021. [DOI: 10.1002/slct.202101241] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Jiayan Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University State Ethnic Affairs Commission & Ministry of Education Kunming 650500 China
| | - Dandan Xu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University State Ethnic Affairs Commission & Ministry of Education Kunming 650500 China
| | - Guangrui Shi
- Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University State Ethnic Affairs Commission & Ministry of Education Kunming 650500 China
| | - Xingyuan Liu
- College of Biology and Chemistry Puer University Puer, Yunnan 665000 China
| | - Jianqiang Zhang
- College of Biology and Chemistry Puer University Puer, Yunnan 665000 China
| | - Baomin Fan
- Key Laboratory of Chemistry in Ethnic Medicinal Resources Yunnan Minzu University State Ethnic Affairs Commission & Ministry of Education Kunming 650500 China
| |
Collapse
|
22
|
Liu Y, Shi Y, Wei L, Zhao K, Zhao J, Zhang P, Xu X, Li P. Gold-Catalyzed One-Pot Synthesis of Polyfluoroalkylated Oxazoles from N-Propargylamides Under Visible-Light Irradiation. Chem Asian J 2021; 16:2417-2420. [PMID: 34235859 DOI: 10.1002/asia.202100614] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/29/2021] [Indexed: 11/11/2022]
Abstract
A gold-catalyzed synthesis of polyfluoroalkylated oxazoles from N-propargylamides under visible-light irradiation has been developed. These reactions display excellent compatibility of radicals and gold catalysts under visible-light irradiation. Mechanistic experiments indicate that polyfluoroalkyl iodides play a dual role in enhanced compatibility of radicals and gold catalysts through assisted protodeauration of vinyl gold and reactivated the gold catalyst. In addition, PPh3 AuNTf2 not only activates N-propargylamide to generate vinyl gold intermediate, but also greatly promotes homolysis of polyfluoroalkyl iodides under blue light irradiation.
Collapse
Affiliation(s)
- Yantao Liu
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Yating Shi
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Lanen Wei
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Ke Zhao
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Jingjing Zhao
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Puyu Zhang
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Xuejun Xu
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| | - Pan Li
- Department Institute of Functional Organic Molecular Engineering, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
23
|
Zhang Z, Li X, Shi D. Visible‐Light‐Promoted Oxy‐difluoroalkylation of Aryl Alkynes for the Synthesis of
β
‐Fluoroenones and
α
‐Difluoroalkyl Ketones. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zhong Zhang
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center Shandong University 72 Binhai Road Qingdao 266237 Shandong People's Republic of China
- Laboratory for Marine Biology and Biotechnology Pilot National Laboratory for Marine Science and Technology 168 Wenhai Road Qingdao 266237 Shandong People's Republic of China
| |
Collapse
|
24
|
Feng Z, Zhu B, Dong B, Cheng L, Li Y, Wang Z, Wu J. Visible-Light-Promoted Synthesis of α-CF2H-Substituted Ketones by Radical Difluoromethylation of Enol Acetates. Org Lett 2020; 23:508-513. [DOI: 10.1021/acs.orglett.0c04021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Zengqiang Feng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Baoxiang Zhu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Bingbing Dong
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Li Cheng
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Yunpu Li
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Zechao Wang
- Division of Molecular Catalysis & Synthesis, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, P.R. China
| | - Junliang Wu
- College of Chemistry and Institute of Green Catalysis, Zhengzhou University, Zhengzhou 450001, P.R. China
| |
Collapse
|
25
|
Zhang J, Xu W, Qu Y, Liu Y, Li Y, Song H, Wang Q. Visible-light-induced radical isocyanide insertion protocol for the synthesis of difluoromethylated spiro[indole-3,3'-quinoline] derivatives. Chem Commun (Camb) 2020; 56:15212-15215. [PMID: 33227101 DOI: 10.1039/d0cc06645a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Herein, we report the first protocol for visible-light-induced radical isocyanide insertion reactions between 3-(2-isocyanobenzyl)-indoles and bromodifluoroacetates or bromodifluoroacetamides. The protocol, which has good functional group tolerance and a broad substrate scope, constitutes an efficient and general route to difluoromethylated spiro[indole-3,3'-quinoline] derivatives.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
26
|
Laishram RD, Chen J, Fan B. Progress in Visible Light‐Induced Difluroalkylation of Olefins. CHEM REC 2020; 21:69-86. [DOI: 10.1002/tcr.202000094] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/05/2020] [Accepted: 10/05/2020] [Indexed: 11/08/2022]
Affiliation(s)
- Ronibala Devi Laishram
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Jingchao Chen
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| | - Baomin Fan
- School of Chemistry and Environment Yunnan Minzu University Kunming 650504 Yunnan China
- Key Laboratory of Chemistry in Ethnic Medicinal Resource Yunnan Minzu University Kunming 650504 Yunnan China
| |
Collapse
|
27
|
Zhang Y, Ge J, Luo L, Yan SQ, Lai GW, Mei ZQ, Luo HQ, Fan XL. Difluoroisoxazolacetophenone: A Difluoroalkylation Reagent for Organocatalytic Vinylogous Nitroaldol Reactions of 1,2-Diketones. Org Lett 2020; 22:7952-7957. [PMID: 32991188 DOI: 10.1021/acs.orglett.0c02873] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Difluoroisoxazolacetophenone (DFIO) is developed as a new difluoroalkylation reagent that can be easily prepared from inexpensive starting materials. In situ remote C-C bond cleavage of DFIO affords γ,γ-difluoroisoxazole nitronate that undergoes base-catalyzed vinylogous nitroaldol additions to isatins, benzothiophene-2,3-dione, unsaturated-α-ketoesters, and cyclic 1,2-diketones. This organocatalytic debenzoate vinylogous nitroaldol reaction provides a new and mild approach for the preparation of various difluoroisoxazole-substituted 3-hydroxy-2-oxindoles.
Collapse
Affiliation(s)
- Yong Zhang
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Jin Ge
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Liang Luo
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Su-Qiong Yan
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Guo-Wei Lai
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Zu-Qin Mei
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Hai-Qing Luo
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| | - Xiao-Lin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry, Gannan Normal University, Ganzhou 341000, P.R. China
| |
Collapse
|