1
|
Zhao D, Liu M, Bai L, Liu J, Luan X. Rapid Assembly of Spironaphthalenones by Dearomative Spiroannulation of Naphthols and Dielectrophiles. J Org Chem 2023; 88:15913-15924. [PMID: 37924300 DOI: 10.1021/acs.joc.3c02067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
A novel [4 + 1] and [5 + 1] dearomative spiroannulation has been developed by the use of commercial naphthols and phenols with dielectrophiles. Various spirocycles, including spiro[4.5] and spiro[5.5] have been constructed successfully by employing four-atom or five-atom dielectrophilic synthons. This transformation was realized through a sequence of site-selective C-alkylation/dearomative spiroannulation. Moreover, the potential application of this method was exemplified by several further transformation.
Collapse
Affiliation(s)
- Dongwei Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Mengtian Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Lu Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Jingjing Liu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| | - Xinjun Luan
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710069, China
| |
Collapse
|
2
|
Xu X, Zhong L, Feng H, Van der Eycken EV. Application of Metal-Free Dearomatization Reaction as a Sustainable Strategy to Direct Access Complex Cyclic Compounds. CHEM REC 2023; 23:e202300101. [PMID: 37132130 DOI: 10.1002/tcr.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The highly efficient construction of complicated heterocyclic frameworks in an atom- and step-economic manner is still one of the cores of synthetic chemistry. Dearomatization reactions show the unique advantage for the construction of functionalized heterocycles and have attracted widespread attention over the past two decades. The metal-free approach has proved to be a green and sustainable paradigm for the synthesis of spirocyclic, polycyclic and heterocyclic scaffolds, which are widely present in natural products and bioactive molecules. In this review, the advances in the recent six years (2017-2023) in metal-free dearomatization reactions are highlighted. Emphasis is placed on developments in the field of organo-catalyzed dearomatization reactions, oxidative dearomatization reactions, Brønsted acid- or base-promoted dearomatization reactions, photoredox-catalyzed dearomatization reactions, and electrochemical oxidation dearomatization reactions.
Collapse
Affiliation(s)
- Xianjun Xu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ling Zhong
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Erik V Van der Eycken
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
3
|
Begum AF, Balasubramanian KK, Bhagavathy S. 3‐Arylidene‐4‐Chromanones and 3‐arylidene‐4‐thiochromanones: Versatile Synthons towards the Synthesis of Complex Heterocycles. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ayisha F Begum
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry 600048 Chennai INDIA
| | | | - Shanmugasundaram Bhagavathy
- B S Abdur Rahman Crescent Institute of Science & Technology Chemistry Seethakathi EstateVandalur 600048 Chennai INDIA
| |
Collapse
|
4
|
Starosotnikov AM, Bastrakov MA. Heterocycles
via
Dearomatization Reactions. HETEROCYCLES 2022. [DOI: 10.1002/9783527832002.ch2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Jiang P, Wang Y, Chen D, Zheng Y, Huang S. Synthesis of 3‐Acyl‐Isoxazoles
via
Radical 5‐
endo trig
Cyclization of β,γ‐Unsaturated Ketones with NaNO
2. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ping Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yaming Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 China
| |
Collapse
|
6
|
Chen D, He T, Jin Y, Huang S. Electrooxidative Dearomatization to Spiroisoxazolines: Application to Total Synthesis of Xanthoisoxazoline B. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202101062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Dengfeng Chen
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 People's Republic of China
- International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Tianyu He
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Yongcan Jin
- International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 People's Republic of China
| | - Shenlin Huang
- Jiangsu Co–Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials Nanjing Forestry University Nanjing 210037 People's Republic of China
| |
Collapse
|
7
|
He T, Chen D, Qian S, Zheng Y, Huang S. Selective C-C Bond Cleavage of Cycloalkanones by NaNO 2/HCl. Org Lett 2021; 23:6525-6529. [PMID: 34378944 DOI: 10.1021/acs.orglett.1c02327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel selective fragmentation of cycloalkanones by NaNO2/HCl has been established. The C-C bond cleavage reaction proceeds smoothly under mild conditions, selectively affording versatile keto acids or oxime acids. The methodology can streamline the synthesis of valuable chiral molecules and isocoumarins from readily available feedstocks.
Collapse
Affiliation(s)
- Tianyu He
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Dengfeng Chen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shencheng Qian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yu Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| |
Collapse
|
8
|
Chen HW, Song QH. Regioselective benzoyloxylative dearomatization of naphthols by benzoyl peroxide under catalyst-free conditions. Org Biomol Chem 2021; 19:7161-7164. [PMID: 34378620 DOI: 10.1039/d1ob01274f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct regioselective benzoyloxylative dearomatization of both α- and β-naphthols by benzoyl peroxide under an air atmosphere, and radical inhibitor- and catalyst-free conditions at room temperature is described. The methodology provides a new efficient strategy for the construction of α-ketol derivatives bearing an oxo-quaternary carbon center from naphthols with good to excellent yields.
Collapse
Affiliation(s)
- Hong-Wei Chen
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | | |
Collapse
|
9
|
Das B, Rout N, Sarkar D. Ruthenium (VIII) Catalysed Dearomative Pyridyl C−X Activation: Direct Synthesis of
N
‐ Alkyl‐2‐pyridones. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Biswajit Das
- Organic Synthesis and Molecular Engineering Laboratory Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| | - Nilendri Rout
- Organic Synthesis and Molecular Engineering Laboratory Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| | - Debayan Sarkar
- Organic Synthesis and Molecular Engineering Laboratory Department of Chemistry National Institute of Technology Rourkela Odisha 769008 India
| |
Collapse
|
10
|
Chen D, Wang Y, Cai XM, Cao X, Jiang P, Wang F, Huang S. Synthesis of Spiroisoxazolines via TEMPO/NaNO 2-Catalyzed Aerobic Oxidative Dearomatization. Org Lett 2020; 22:6847-6851. [PMID: 32808793 DOI: 10.1021/acs.orglett.0c02372] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A catalytic, aerobic oxidative dearomatization protocol has been developed for the preparation of spiroisoxazline scaffolds from oximes using TEMPO and NaNO2 as the catalyst and O2 as the sole oxidant. This dearomatization methodology features its mild reaction conditions, good functional group tolerance, and an unprecedented broad substrate scope, encompassing phenols, aryl ethers, thiophenols, aryl sulfides, etc.
Collapse
Affiliation(s)
- Dengfeng Chen
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Yaming Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xu-Min Cai
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Xiaoji Cao
- College of Chemical Engineering, Zhejiang University of Technology, 18 Chaowang Rd., Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ping Jiang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Fei Wang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Shenlin Huang
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| |
Collapse
|
11
|
Urbano A, Vallejo S, Cabrera-Afonso MJ, Yonte E. Chirality Transfer from the Oxidative Dearomatization of Axially Chiral Binols with Oxone under Mild Conditions. Org Lett 2020; 22:6122-6126. [DOI: 10.1021/acs.orglett.0c02194] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Antonio Urbano
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), UAM, 28049 Madrid, Spain
| | - Sara Vallejo
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - María J. Cabrera-Afonso
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| | - Elena Yonte
- Departamento de Quı́mica Orgánica, Universidad Autónoma de Madrid (UAM), 28049 Madrid, Spain
| |
Collapse
|