1
|
Ghosh A, Parida VK, von Münchow T, Ackermann L, Banerjee D. Highly-Selective Electrochemical Decarboxylative Late-Stage Functionalization of Amino Acids. Chemistry 2025; 31:e202501287. [PMID: 40192603 PMCID: PMC12089904 DOI: 10.1002/chem.202501287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/25/2025]
Abstract
A unified electrochemical decarboxylative strategy for the site-selective construction of carbon-heteroatom bonds is disclosed herein. The metal- and catalyst-free decarboxylation provides access to the functionalization of C- and N-terminus from the simple amino acid feedstock. A wide variety of primary, secondary, and tertiary acids or alcohols were well tolerated. Late-stage functionalization using α-D-galactopyranose, di-peptide, steroid derivatives, and bio-active drug molecules established the robustness and synthesis potential of our approach.
Collapse
Affiliation(s)
- Adrija Ghosh
- Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeUttarakhand247667India
| | - Vishal Kumar Parida
- Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeUttarakhand247667India
| | - Tristan von Münchow
- Institute for Organic and Biomolecular ChemistryGeorg‐August‐Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Lutz Ackermann
- Institute for Organic and Biomolecular ChemistryGeorg‐August‐Universität GöttingenTammannstr. 237077GöttingenGermany
| | - Debasis Banerjee
- Department of ChemistryIndian Institute of Technology RoorkeeRoorkeeUttarakhand247667India
| |
Collapse
|
2
|
Dhuri AD, Kumar Pulukuri K. Dual Au/Ag Catalyzed Regiospecific Intramolecular Hydroacyloxylation and Hydroalkoxylation of Unactivated Geminal-Substituted Olefins. Chem Asian J 2025; 20:e202401093. [PMID: 39425630 DOI: 10.1002/asia.202401093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
A mild, regiospecific Gold-Silver bimetallic catalytic system has been devised for the intramolecular hydroacyloxylation and hydroetherification of alkenoic acids and alcohols. This method exhibits precise specificity for the geminal substituted olefinic center and facilitates the synthesis of substituted phthalide and hydroisocoumarin derivatives. This method has been effectively applied for late-state functionalization to produce bioactive natural products such as rumphellaone A, mycophenolate, and (-)-ambrox. The successful gram-scale synthesis of the anticonvulsant, hypnotic drug (±)-ethyl phenyl butyro lactone (EPBL), (±)-Boivinianin A and the ability to synthesize challenging spiro and bicyclic lactone underscores the synthetic potential of this methodology. Mechanistic insights into gold-silver catalyzed lactonization of olefins have also been discussed.
Collapse
Affiliation(s)
- Akash D Dhuri
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh, 517619, India
| | - Kiran Kumar Pulukuri
- Department of Chemistry, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh, 517619, India
| |
Collapse
|
3
|
He Y, Zeng X, Lu Z, Mo S, An Q, Liu Q, Yang Y, Lan W, Wang S, Zou Y. Aqueous Electrocatalytic Hydrogenation Depolymerization of Lignin β-O-4 Linkage via Selective C aryl-O(C) Bond Cleavage: The Regulation of Adsorption. J Am Chem Soc 2024; 146:32022-32031. [PMID: 39498621 DOI: 10.1021/jacs.4c12220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The cleavage of the benzene-oxygen (Caryl-O(C)) bond of the lignin β-O-4 linkage is expected to relieve condensation of the degradation product and improve the product value. Nevertheless, the electrochemical breaking of the Caryl-O(C) bond has not been achieved yet due to the high dissociation energy (∼409 kJ mol-1) and the easy over-reduction of aromatic compounds. Here, we report an aqueous electrochemical reduction strategy for breaking Caryl-O(C) bonds via the regulation of molecular adsorption. The density functional theory (DFT) calculations and quartz crystal microbalance (QCM) measurements reveal that the residual Cu(I) in the CuO electrocatalyst enhances the adsorption of the 2-phenoxy-1-phenylethyl alcohol (PPE) by the Caryl-O(C) bond and lowers the energy barrier of the protons attacking the oxygen atom in the β-O-4 linkage. Thus, compared to the Cu electrocatalyst (with a hydroquinone yield of 47.4% and a benzyl alcohol yield of 24.8%), the CuO nanorod exhibits a much higher yield of hydroquinone (95.3%) and benzyl alcohol (88.6%) at a potential of -0.4 V vs reversible hydrogen electrode (RHE) in an undivided cell. Moreover, the reaction pathway and the cleavage of the Caryl-O(C) bond are identified through a combination of in situ synchrotron-radiation Fourier transformed infrared spectroscopy (SR-FTIR) and DFT calculations. This effective method is utilized for poplar lignin electrolysis, yielding 10.9 wt % of guaiacylglycerol, with an outstanding selectivity of >63.0%. This work provides an efficient and mild method of cleavage of Caryl-O(C) bonds in lignin valorization.
Collapse
Affiliation(s)
- Yuanqing He
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xu Zeng
- Academy of Advanced Carbon Conversion Technology, Huaqiao University, Xiamen 361021, China
| | - Zhuoran Lu
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Shiheng Mo
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qizheng An
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Yulu Yang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wu Lan
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuangyin Wang
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuqin Zou
- State Key Laboratory of Chem/Bio-Sensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Martínez de Sarasa Buchaca M, Gaona MA, Sánchez-Barba LF, Garcés A, Rodríguez AM, Rodríguez-Diéguez A, de la Cruz-Martínez F, Castro-Osma JA, Lara-Sánchez A. Zinc-Catalyzed Cyclization of Alkynyl Derivatives: Substrate Scope and Mechanistic Insights. Inorg Chem 2024; 63:13875-13885. [PMID: 39011646 PMCID: PMC11289758 DOI: 10.1021/acs.inorgchem.4c00832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/17/2024]
Abstract
Novel alkyl zinc complexes supported by acetamidate/thioacetamidate heteroscorpionate ligands have been successfully synthesized and characterized. These complexes exhibited different coordination modes depending on the electronic and steric effects of the acetamidate/thioacetamidate moiety. Their catalytic activity has been tested toward the hydroelementation reactions of alkynyl alcohol/acid substrates, affording the corresponding enol ether/unsaturated lactone products under mild reaction conditions. Kinetic studies have been performed and confirmed that reactions are first-order in [catalyst] and zero-order in [alkynyl substrate]. DFT calculations supported a reaction mechanism through the formation of the catalytically active species, an alkoxide-zinc intermediate, by a protonolysis reaction of the Zn-alkyl bond with the alcohol group of the substrate. Based on the experimental and theoretical results, a catalytic cycle has been proposed.
Collapse
Affiliation(s)
- Marc Martínez de Sarasa Buchaca
- Universidad
de Castilla-La Mancha, Departamento de Química Inorgánica,
Orgánica y Bioquímica-Centro de Innovación en
Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
y Tecnologías Químicas, Instituto
Regional de Investigación Científica Aplicada-IRICA, Ciudad Real 13071, Spain
| | - Miguel A. Gaona
- Universidad
de Castilla-La Mancha, Departamento de Química Inorgánica,
Orgánica y Bioquímica-Centro de Innovación en
Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
y Tecnologías Químicas, Instituto
Regional de Investigación Científica Aplicada-IRICA, Ciudad Real 13071, Spain
| | - Luis F. Sánchez-Barba
- Departamento
de Biología y Geología, Física y Química
Inorgánica, Universidad Rey Juan
Carlos, Móstoles 28933, Spain
| | - Andrés Garcés
- Departamento
de Biología y Geología, Física y Química
Inorgánica, Universidad Rey Juan
Carlos, Móstoles 28933, Spain
| | - Ana M. Rodríguez
- Universidad
de Castilla-La Mancha, Departamento de Química Inorgánica,
Orgánica y Bioquímica-Centro de Innovación en
Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
y Tecnologías Químicas, Instituto
Regional de Investigación Científica Aplicada-IRICA, Ciudad Real 13071, Spain
| | - Antonio Rodríguez-Diéguez
- Departamento
de Química Inorgánica, Facultad de Ciencias, Universidad de Granada, Granada 18071, Spain
| | - Felipe de la Cruz-Martínez
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-Centro
de Innovación en Química Avanzada (ORFEO−CINQA),
Facultad de Farmacia, Universidad de Castilla-La
Mancha, Albacete 02071, Spain
| | - José A. Castro-Osma
- Departamento
de Química Inorgánica, Orgánica y Bioquímica-Centro
de Innovación en Química Avanzada (ORFEO−CINQA),
Facultad de Farmacia, Universidad de Castilla-La
Mancha, Albacete 02071, Spain
| | - Agustín Lara-Sánchez
- Universidad
de Castilla-La Mancha, Departamento de Química Inorgánica,
Orgánica y Bioquímica-Centro de Innovación en
Química Avanzada (ORFEO−CINQA), Facultad de Ciencias
y Tecnologías Químicas, Instituto
Regional de Investigación Científica Aplicada-IRICA, Ciudad Real 13071, Spain
| |
Collapse
|
5
|
Abstract
Nitrogen-centered radicals are reactive intermediates that can function in the formation of new C-N bonds or enable the formation of other bonds through their ability to abstract hydrogen atoms to generate carbon radical intermediates. Methods for the generation of nitrogen-centered radicals have traditionally involved application of radical initiators and propagators such as peroxides, AIBN and tin hydrides. More recently, approaches to nitrogen-centered radicals involving copper catalysis have been developed. In the transformations summarized herein, the copper catalyst either oxidizes or reduces the nitrogen-centered radical precursor. Some of these methods have been developed as catalytic enantioselective using chiral copper complexes.
Collapse
Affiliation(s)
- Sherry R Chemler
- Chemistry Department, Natural Science Complex, State University of New York at Buffalo, Buffalo, New York 14260, United States of America
| |
Collapse
|
6
|
Yang L, Liang X, Ding Y, Li X, Li X, Zeng Q. Transition Metal-Catalyzed Enantioselective Synthesis of Chiral Five- and Six-Membered Benzo O-heterocycles. CHEM REC 2023; 23:e202300173. [PMID: 37401804 DOI: 10.1002/tcr.202300173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/22/2023] [Indexed: 07/05/2023]
Abstract
Enantiomerically enriched five- and six-membered benzo oxygen heterocycles are privileged architectures in functional organic molecules. Over the last several years, many effective methods have been established to access these compounds. However, comprehensive documents cover updated methodologies still in highly demand. In this review, recent transition metal catalyzed transformations lead to chiral five- and six-membered benzo oxygen heterocycles are presented. The mechanism and chirality transfer or control processes are also discussed in details.
Collapse
Affiliation(s)
- Lu Yang
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xiayu Liang
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| | - Yuyang Ding
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xinran Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Xuefeng Li
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, People's Republic of China
| | - Qingle Zeng
- College of Materials, Chemistry & Chemical Engineering, Chengdu, 610059, People's Republic of China
| |
Collapse
|
7
|
Zou L, Gao Y, Zhang Q, Ye XY, Xie T, Wang LW, Ye Y. Recent Progress in Asymmetric Domino Intramolecular Cyclization/Cascade Reactions of Substituted Olefins. Chem Asian J 2023; 18:e202300617. [PMID: 37462417 DOI: 10.1002/asia.202300617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 08/02/2023]
Abstract
The domino cyclization/coupling strategy is one of the most effective methods to produce cyclized and multi-functionalized compounds from olefins, which has attracted huge attention from chemists and biochemists especially for its considerable potential of enantiocontrol. Nowadays, more and more studies are developed to achieve difunctionalization of substituted olefins through an asymmetric domino intramolecular cyclization/cascade reaction, which is still an elegant choice to accomplish several synthetic ideas such as complex natural products and drugs. This review surveys the recent advances in this field through reaction type classification. It might serve as useful knowledge desktop for the community and accelerate their research.
Collapse
Affiliation(s)
- Liang Zou
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yuan Gao
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, P. R. China
| | - Qiaoman Zhang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Key Laboratory of Elemene Class Anti-Cancer Chinese Medicines, Engineering Laboratory of Development and Application of Traditional Chinese Medicines, Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang Province, Hangzhou, Zhejiang 311121, P. R. China
| |
Collapse
|
8
|
Wang PZ, Chen JR, Xiao WJ. Emerging Trends in Copper-Promoted Radical-Involved C-O Bond Formations. J Am Chem Soc 2023; 145:17527-17550. [PMID: 37531466 DOI: 10.1021/jacs.3c04879] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
The C-O bond is ubiquitous in biologically active molecules, pharmaceutical agents, and functional materials, thereby making it an important functional group. Consequently, the development of C-O bond-forming reactions using catalytic strategies has become an increasingly important research topic in organic synthesis because more conventional methods involving strong base and acid have many limitations. In contrast to the ionic-pathway-based methods, copper-promoted radical-mediated C-O bond formation is experiencing a surge in research interest owing to a renaissance in free-radical chemistry and photoredox catalysis. This Perspective highlights and appraises state-of-the-art techniques in this burgeoning research field. The contents are organized according to the different reaction types and working models.
Collapse
Affiliation(s)
- Peng-Zi Wang
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Jia-Rong Chen
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Wen-Jing Xiao
- College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Carmo RLL, Galster SL, Wdowik T, Song C, Chemler SR. Copper-Catalyzed Enantioselective Aerobic Alkene Aminooxygenation and Dioxygenation: Access to 2-Formyl Saturated Heterocycles and Unnatural Proline Derivatives. J Am Chem Soc 2023; 145:13715-13729. [PMID: 37327484 PMCID: PMC10330884 DOI: 10.1021/jacs.3c01985] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Alkene aminooxygenation and dioxygenation reactions that result in carbonyl products are uncommon, and protocols that control absolute stereochemistry are rare. We report herein catalytic enantioselective alkene aminooxygenation and dioxygenation that directly provide enantioenriched 2-formyl saturated heterocycles under aerobic conditions. Cyclization of substituted 4-pentenylsulfonamides, catalyzed by readily available chiral copper complexes and employing molecular oxygen as both oxygen source and stoichiometric oxidant, directly provides chiral 2-formyl pyrrolidines efficiently. Reductive or oxidative workup of these aldehydes provides their respective amino alcohols or amino acids (unnatural prolines). Enantioselective synthesis of an indoline and isoquinolines is also demonstrated. Concurrently, cyclization of various alkenols under similar conditions provides 2-formyl tetrahydrofurans, phthalans, isochromans, and morpholines. The nature of the copper ligands, the concentration of molecular oxygen, and the reaction temperature all impact the product distribution. Chiral nitrogen and oxygen heterocycles are common components of bioactive small molecules, and these enabling technologies provide access to saturated heterocycles functionalized with ready-to-use carbonyl electrophiles.
Collapse
Affiliation(s)
| | | | | | - Chaeeon Song
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Sherry R. Chemler
- Department of Chemistry, State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
10
|
Han L, Lv K, Wang T, Meng Z, Zhang J, Liu T. Mechanistic Insight into Palladium/Brønsted Acid Catalyzed Methoxycarbonylation and Hydromethoxylation of Internal Alkene: A Computational Study. Inorg Chem 2023; 62:3904-3915. [PMID: 36799526 DOI: 10.1021/acs.inorgchem.2c04291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Density functional theory (DFT) calculations were performed to study the palladium/Brønsted acid-catalyzed methoxycarbonylation and hydromethoxylation reactions of internal alkene. The calculated results show that the pyridyl group (N atom) in bidentate phosphine ligand with built-in base (L1) plays a crucial role in controlling the selectivity. With the help of the pyridyl group, the methanolysis steps in the methoxycarbonylation reaction and the hydromethoxylation reaction become easy, and both the linear ester methyl 3,4-dimethylpentanoate (P1) and the hydromethoxylation product 2-methoxy-2,3-dimethylbutane (P2) could be obtained. In contrast, the possibility of leading to branched ester P1' was ruled out according to our calculations. The steric effect could account for the observed selectivity. In the presence of the DPEphos ligand (L2) that does not bear the pyridyl group, the methanolysis step in the methoxycarbonylation reaction becomes the rate-determining step with a high overall energy barrier. Neither linear nor branched methoxycarbonylation product could be generated. The palladium/Brønsted acid co-catalyzed hydromethoxylation also become difficult without the assistance of the pyridyl group in the presence of the L2 ligand. Instead, TsOH-catalyzed hydromethoxylation reaction could take place to generate the ether product P2.
Collapse
Affiliation(s)
- Lingli Han
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Kang Lv
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China
| | - Teng Wang
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Zitong Meng
- School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Jing Zhang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| | - Tao Liu
- School of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, 273155 Shandong, China.,School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165 Shandong, China
| |
Collapse
|
11
|
Burde AS, Chemler SR. Copper-Catalyzed Enantioselective Oxysulfenylation of Alkenols: Synthesis of Arylthiomethyl-Substituted Cyclic Ethers. ACS Catal 2022; 12:7559-7564. [PMID: 36937986 PMCID: PMC10022821 DOI: 10.1021/acscatal.2c02214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Saturated heterocycles containing oxygen and sulfur are found in biologically significant molecules. The enantioselective oxysulfenylation of alkenols provides a straightforward synthesis route. To date, organocatalytic methods have dominated this approach. Herein, a complementary approach via copper catalysis is presented. This exoselective method provides enantioenriched arylthiomethyl-substituted tetrahydrofurans, phthalans, isochromans, and morpholines from acyclic alkenols. This method provides the largest scope to date for the exocyclization mode, and with generally high enantioselectivity. The enantioselectivity of this copper-catalyzed oxysulfenylation is rationalized by a proposed mechanism involving alkene oxycupration followed by C─S bond formation via radical-mediated atom transfer.
Collapse
Affiliation(s)
- Ameya S Burde
- Department of Chemistry, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Sherry R Chemler
- Department of Chemistry, Natural Science Complex, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| |
Collapse
|
12
|
Luo C, Alegre-Requena JV, Sujansky SJ, Pajk SP, Gallegos LC, Paton RS, Bandar JS. Mechanistic Studies Yield Improved Protocols for Base-Catalyzed Anti-Markovnikov Alcohol Addition Reactions. J Am Chem Soc 2022; 144:9586-9596. [PMID: 35605253 DOI: 10.1021/jacs.1c13397] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The catalytic anti-Markovnikov addition of alcohols to simple alkenes is a longstanding synthetic challenge. We recently disclosed the use of organic superbase catalysis for the nucleophilic addition of alcohols to activated styrene derivatives. This article describes mechanistic studies on this reversible reaction, including thermodynamic and kinetic profiling as well as computational modeling. Our findings show the negative entropy of addition is counterbalanced by an enthalpy that is most favored in nonpolar solvents. However, a large negative alcohol rate order under these conditions indicates excess alcohol sequesters the active alkoxide ion pairs, slowing the reaction rate. These observations led to an unexpected solution to a thermodynamically challenging reaction: use of less alcohol enables faster addition, which in turn allows for lower reaction temperatures to counteract Le Chatelier's principle. Thus, our original method has been improved with new protocols that do not require excess alcohol stoichiometry, enable an expanded alkene substrate scope, and allow for the use of more practical catalyst systems. The generality of this insight for other challenging hydroetherification reactions is also demonstrated through new alkenol cyclization and oxa-Michael addition reactions.
Collapse
Affiliation(s)
- Chaosheng Luo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Juan V Alegre-Requena
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Stephen J Sujansky
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Spencer P Pajk
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Liliana C Gallegos
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Robert S Paton
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
13
|
Wang J, Huang H, Gao H, Qin G, Xiao T, Jiang Y. DBU/AgOTf Relay‐Catalysis Enabled One‐Pot Synthesis of 1,3‐Dihydroisobenzofurans and Its Conversion to Indanones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jiazhuang Wang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Hongtai Huang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Haotian Gao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Guiping Qin
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Tiebo Xiao
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| | - Yubo Jiang
- Faculty of Science Kunming University of Science and Technology Kunming 650500 People's Republic of China
| |
Collapse
|
14
|
Han C, Meng W, Feng X, Du H. Asymmetric Intramolecular Hydroalkoxylation of 2‐Vinylbenzyl Alcohols with Chiral Boro‐Phosphates. Angew Chem Int Ed Engl 2022; 61:e202200100. [DOI: 10.1002/anie.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Caifang Han
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wei Meng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiangqing Feng
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Haifeng Du
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Molecular Recognition and Function Institute of Chemistry Chinese Academy of Sciences Beijing 100190 China
- University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
15
|
Asymmetric Intramolecular Hydroalkoxylation of 2‐Vinylbenzyl Alcohols with Chiral Boro‐Phosphates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
16
|
Kennemur J, Maji R, Scharf MJ, List B. Catalytic Asymmetric Hydroalkoxylation of C-C Multiple Bonds. Chem Rev 2021; 121:14649-14681. [PMID: 34860509 PMCID: PMC8704240 DOI: 10.1021/acs.chemrev.1c00620] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 01/30/2023]
Abstract
Asymmetric hydroalkoxylation of alkenes constitutes a redox-neutral and 100% atom-economical strategy toward enantioenriched oxygenated building blocks from readily available starting materials. Despite their great potential, catalytic enantioselective additions of alcohols across a C-C multiple bond are particularly underdeveloped, especially compared to other hydrofunctionalization methods such as hydroamination. However, driven by some recent innovations, e.g., asymmetric MHAT methods, asymmetric photocatalytic methods, and the development of extremely strong chiral Brønsted acids, there has been a gratifying surge of reports in this burgeoning field. The goal of this review is to survey the growing landscape of asymmetric hydroalkoxylation by highlighting exciting new advances, deconstructing mechanistic underpinnings, and drawing insight from related asymmetric hydroacyloxylation and hydration. A deep appreciation of the underlying principles informs an understanding of the various selectivity parameters and activation modes in the realm of asymmetric alkene hydrofunctionalization while simultaneously evoking the outstanding challenges to the field moving forward. Overall, we aim to lay a foundation for cross-fertilization among various catalytic fields and spur further innovation in asymmetric hydroalkoxylations of C-C multiple bonds.
Collapse
Affiliation(s)
| | | | - Manuel J. Scharf
- Max-Planck-Institut für
Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Benjamin List
- Max-Planck-Institut für
Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Giofrè S, Molteni L, Nava D, Lo Presti L, Beccalli EM. Enantio‐ and Regioselective Palladium(II)‐Catalyzed Dioxygenation of (Aza‐)Alkenols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Donatella Nava
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Egle Maria Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini” Università degli Studi di Milano Via Venezian 21 20133 Milano Italy
| |
Collapse
|
18
|
Giofrè S, Molteni L, Nava D, Lo Presti L, Beccalli EM. Enantio- and Regioselective Palladium(II)-Catalyzed Dioxygenation of (Aza-)Alkenols. Angew Chem Int Ed Engl 2021; 60:21723-21727. [PMID: 34387928 PMCID: PMC8518864 DOI: 10.1002/anie.202109312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Indexed: 11/23/2022]
Abstract
An oxidative Pd-catalyzed intra-intermolecular dioxygenation of (aza-)alkenols has been reported, with total regioselectivity. To study the stereoselectivity, different chiral ligands as well as different hypervalent-iodine compounds have been compared. In particular, by using a C-6 modified pyridinyl-oxazoline (Pyox) ligand and hypervalent iodine bearing an aromatic ring, an excellent enantio- and diastereoselectivity has been achieved.
Collapse
Affiliation(s)
- Sabrina Giofrè
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| | - Letizia Molteni
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| | - Donatella Nava
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| | - Leonardo Lo Presti
- Dipartimento di Chimica, Università degli Studi di MilanoVia Golgi 1920133MilanoItaly
| | - Egle Maria Beccalli
- DISFARM, Sezione di Chimica Generale e Organica “A. Marchesini”Università degli Studi di MilanoVia Venezian 2120133MilanoItaly
| |
Collapse
|
19
|
|
20
|
Diverse anti-inflammation and anti-cancer polyketides isolated from the endophytic fungi Alternaria sp. MG1. Fitoterapia 2021; 153:105000. [PMID: 34303765 DOI: 10.1016/j.fitote.2021.105000] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 11/22/2022]
Abstract
Six new polyketides, alternaritins A-D [(±)-1-4] and isoxanalteric acid I (8), and 25 known Alternaria toxins were isolated from the culture of an endophytic fungi Alternaria sp. MG1. 3 is a rare fungal metabolite. 6 is a new natural product, and 5, 7, and 9 are known previously but their absolute configurations have not been determined. Three enantiomers [(±)-1, (±)-7, and (±)-15] were separated via chiral HPLC resolution. The structures of those polyketides (1-9) were elucidated by spectrometric analysis using MS and NMR. The absolute configurations were established using X-ray diffraction analysis and statistical comparative analysis of the experimental ECD and OR data, in conjunction with quantum mechanical calculations. All of the compounds were evaluated for their bioactivities. Known compound 27 exerted the most potent cytotoxic activities against HT-1080 and NCI-H1299 cell lines. The new compounds, 2 and 3, showed moderate inhibition on COX-2, while a pair of isomers, 8 and 9, exhibited medium activity on COX-2 and uropathogenic Escherichia coli.
Collapse
|
21
|
Chen X, Zhao R, Liu Z, Sun S, Ma Y, Liu Q, Sun X, Liu L. Redox deracemization of α-substituted 1,3-dihydroisobenzofurans. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.02.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Earth-Abundant 3d Transition Metal Catalysts for Hydroalkoxylation and Hydroamination of Unactivated Alkenes. Catalysts 2021. [DOI: 10.3390/catal11060674] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This review summarizes the most noteworthy achievements in the field of C–O and C–N bond formation by hydroalkoxylation and hydroamination reactions on unactivated alkenes (including 1,2- and 1,3-dienes) promoted by earth-abundant 3d transition metal catalysts based on manganese, iron, cobalt, nickel, copper and zinc. The relevant literature from 2012 until early 2021 has been covered.
Collapse
|
23
|
Xie WB, Li Z. Bis(μ-oxo)–Dititanium(IV)–Chiral Binaphthyldisulfonate Complexes for Highly Enantioselective Intramolecular Hydroalkoxylation of Nonactivated Alkenes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01146] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Wen-Bin Xie
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, People’s Republic of China
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, People’s Republic of China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, People’s Republic of China
| | - Zhi Li
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong District, Shanghai 201210, People’s Republic of China
| |
Collapse
|
24
|
Zhou Y, Xu X, Sun H, Tao G, Chang XY, Xing X, Chen B, Xu C. Development of highly efficient platinum catalysts for hydroalkoxylation and hydroamination of unactivated alkenes. Nat Commun 2021; 12:1953. [PMID: 33782394 PMCID: PMC8007598 DOI: 10.1038/s41467-021-22287-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 02/26/2021] [Indexed: 11/09/2022] Open
Abstract
Hydrofunctionalization, the direct addition of an X-H (e.g., X=O, N) bond across an alkene, is a desirable strategy to make heterocycles that are important structural components of naturally occurring molecules. Described here is the design and discovery of "donor-acceptor"-type platinum catalysts that are highly effective in both hydroalkoxylation and hydroamination of unactivated alkenes over a broad range of substrates under mild conditions. A number of alkene substitution patterns are accommodated, including tri-substituted, 1,1-disubstituted, (E)-disubstituted, (Z)-disubstituted and even mono-substituted double bonds. Detailed mechanistic investigations suggest a plausible pathway that includes an unexpected dissociation/re-association of the electron-deficient ligand to form an alkene-bound "donor-acceptor"-type intermediate. These mechanistic studies help understand the origins of the high reactivity exhibited by the catalytic system, and provide a foundation for the rational design of chiral catalysts towards asymmetric hydrofunctionalization reactions.
Collapse
Affiliation(s)
- Yali Zhou
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xingjun Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Hongwei Sun
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Guanyu Tao
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiao-Yong Chang
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xiangyou Xing
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Bo Chen
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| | - Chen Xu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
25
|
Tsui E, Wang H, Knowles RR. Catalytic generation of alkoxy radicals from unfunctionalized alcohols. Chem Sci 2020; 11:11124-11141. [PMID: 33384861 PMCID: PMC7747465 DOI: 10.1039/d0sc04542j] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 09/21/2020] [Indexed: 12/12/2022] Open
Abstract
Alkoxy radicals have long been recognized as powerful synthetic intermediates with well-established reactivity patterns. Due to the high bond dissociation free energy of aliphatic alcohol O-H bonds, these radicals are difficult to access through direct homolysis, and conventional methods have instead relied on activation of O-functionalized precursors. Over the past decade, however, numerous catalytic methods for the direct generation of alkoxy radicals from simple alcohol starting materials have emerged and created opportunities for the development of new transformations. This minireview discusses recent advances in catalytic alkoxy radical generation, with particular emphasis on progress toward the direct activation of unfunctionalized alcohols enabled by transition metal and photoredox catalysis.
Collapse
Affiliation(s)
- Elaine Tsui
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Huaiju Wang
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| | - Robert R Knowles
- Department of Chemistry , Princeton University , Princeton , NJ 08544 , USA .
| |
Collapse
|