1
|
Kumar S, Shah BA. Synthesis of Diverse Allylic Sulfone Derivatives via Sequential Hydroalkoxylation of 1,3-Enynes. Chemistry 2024; 30:e202401049. [PMID: 38712686 DOI: 10.1002/chem.202401049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/29/2024] [Accepted: 05/07/2024] [Indexed: 05/08/2024]
Abstract
A first metal-free protocol for the synthesis of allylic sulfones featuring aldehyde functionality at the δ-position has been reported. The formation of structurally complex δ,δ-dimethoxy allylic sulfones is enabled by the direct nucleophilic attack of methoxide onto the sulfone-containing 1,3-enynes. The present approach allows facile installation of acetal groups within the allylic sulfone scaffold, providing versatile platforms for further functionalization and drug development.
Collapse
Affiliation(s)
- Sourav Kumar
- Natural Products & Medicinal Chemistry, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001
| | - Bhahwal Ali Shah
- Natural Products & Medicinal Chemistry, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- CSIR-Indian Institute of Integrative Medicine, Jammu, 180001
| |
Collapse
|
2
|
Yu J, Yan X, Chen Y, Guo K, Wang S, Ma X. Pd-Catalyzed Aerobic Synthesis of Allylic Sulfones from Allylic Alcohols and Sulfonyl Hydrazines in Water. J Org Chem 2024; 89:10344-10348. [PMID: 38984991 DOI: 10.1021/acs.joc.4c00882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
A mild and green synthesis of allylic sulfones from allylic alcohols and sulfonyl hydrazines was developed in water media. The simple and commercially available Pd(PPh3)4 is used as the best catalyst, and the reaction can proceed smoothly at 40 °C under air. This new method does not require the common nitrogen protection and organic media, and can be readily scaled up in gram scale, showing the good practicality value.
Collapse
Affiliation(s)
- Jing Yu
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiaoyu Yan
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Yuying Chen
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Kexin Guo
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Shuo Wang
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering, Green Catalysis & Synthesis Key Laboratory of Xinyang City, Xinyang Normal University, Xinyang, Henan 464000, China
| |
Collapse
|
3
|
Bera S, Kabadwal LM, Banerjee D. Harnessing alcohols as sustainable reagents for late-stage functionalisation: synthesis of drugs and bio-inspired compounds. Chem Soc Rev 2024; 53:4607-4647. [PMID: 38525675 DOI: 10.1039/d3cs00942d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Alcohol is ubiquitous with unparalleled structural diversity and thus has wide applications as a native functional group in organic synthesis. It is highly prevalent among biomolecules and offers promising opportunities for the development of chemical libraries. Over the last decade, alcohol has been extensively used as an environmentally friendly chemical for numerous organic transformations. In this review, we collectively discuss the utilisation of alcohol from 2015 to 2023 in various organic transformations and their application toward intermediates of drugs, drug derivatives and natural product-like molecules. Notable features discussed are as follows: (i) sustainable approaches for C-X alkylation (X = C, N, or O) including O-phosphorylation of alcohols, (ii) newer strategies using methanol as a methylating reagent, (iii) allylation of alkenes and alkynes including allylic trifluoromethylations, (iv) alkenylation of N-heterocycles, ketones, sulfones, and ylides towards the synthesis of drug-like molecules, (v) cyclisation and annulation to pharmaceutically active molecules, and (vi) coupling of alcohols with aryl halides or triflates, aryl cyanide and olefins to access drug-like molecules. We summarise the synthesis of over 100 drugs via several approaches, where alcohol was used as one of the potential coupling partners. Additionally, a library of molecules consisting over 60 fatty acids or steroid motifs is documented for late-stage functionalisation including the challenges and opportunities for harnessing alcohols as renewable resources.
Collapse
Affiliation(s)
- Sourajit Bera
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Lalit Mohan Kabadwal
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| | - Debasis Banerjee
- Department of Chemistry, Laboratory of Catalysis and Organic Synthesis, Indian Institute of Technology Roorkee, Roorkee 247667, Uttarakhand, India.
| |
Collapse
|
4
|
Li RX, Chen Y, Huang LQ, Guan Z, He YH. Visible-Light Induced Radical Addition-Elimination Reaction for Constructing Allylic Sulfones from Sulfonyl Chlorides and Allyl Bromides. J Org Chem 2024; 89:4619-4627. [PMID: 38536672 DOI: 10.1021/acs.joc.3c02893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Allyl sulfones are commonly present in bioactive compounds and organic building blocks. This work introduces a photocatalytic radical addition-elimination reaction involving readily accessible sulfonyl chlorides and allyl bromides. It delivers structurally diverse allylic sulfones in moderate to excellent yields, showcasing a high tolerance to functional groups. Notably, this method operates under mild reaction conditions without the need for oxidants, stoichiometric reducing metals, or additives.
Collapse
Affiliation(s)
- Rui-Xue Li
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuan Chen
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Lan-Qian Huang
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yan-Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
5
|
Yang Y, Zhu H, Gong B, Yang H, Fan Q, Le ZG, Xie Z. Neutral nickel-catalyzed dehydrosulfonylation of unactivated allylic alcohols under mild conditions. Chem Commun (Camb) 2024; 60:2516-2519. [PMID: 38324066 DOI: 10.1039/d3cc06036e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Allyl sulfones are important sulfur-containing compounds that have widespread applications in organic synthesis, medicinal chemistry and materials science. Herein, nickel-catalysed dehydrosulfonylation of unactivated allyl alcohols with aryl sulfonyl hydrazides without additional active agents under mild conditions was developed. A variety of functional allyl sulfones could be efficiently synthesized in the presence of air-stable Ni(acac)2 as the catalyst and 1,1'-bis(diphenylphosphino)ferrocene (DPPF) as the ligand.
Collapse
Affiliation(s)
- Yahui Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Haibo Zhu
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Bozhen Gong
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Hong Yang
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Qiangwen Fan
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Zhang-Gao Le
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| | - Zongbo Xie
- School of Chemistry and Materials Science, East China University of Technology, Nanchang, 330013, China.
| |
Collapse
|
6
|
Jia Y, Jiang P, Wang X, Ablajan K. One-Pot, Metal-Free Synthesis of Allyl Sulfones in Water. J Org Chem 2024. [PMID: 38194354 DOI: 10.1021/acs.joc.3c01421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A one-pot dehydration cross-coupling reaction between allyl alcohols and sodium sulfinates that provides allyl sulfones in good to excellent yields is presented. Its broad substrate scope includes symmetrical and asymmetrical α,α-diaryl- and α-aryl-substituted allylic alcohols and aryl and alkyl sodium sulfinates. For asymmetrical allylic substrates, the E isomer predominates with examples of excellent stereoselectivity. Control experiments provide the basis for a proposed radical-mediated mechanism. The metal-free procedure applies cheap and commercially available tetrabutylammonium tribromide as the catalyst and H2O as the solvent. Notable features of this simple, efficient, weakly toxic, and environmentally benign strategy include mild and convenient operating conditions and readily accessible starting materials.
Collapse
Affiliation(s)
- Yunfei Jia
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Ping Jiang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Xinqian Wang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| | - Keyume Ablajan
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
7
|
Wang Y, Wu G, Yan K, Qin J, Liu R, Rong N, Tang Y, Loh TP, Xie P. Sulfination of Unactivated Allylic Alcohols via Sulfinate-Sulfone Rearrangement. Org Lett 2023. [PMID: 38059565 DOI: 10.1021/acs.orglett.3c03709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
A dehydrative cross-coupling of unactivated allylic alcohols with sulfinic acids was achieved under catalyst-free conditions. This reaction proceeded via allyl sulfination and concomitant allyl sulfinate-sulfone rearrangement. Various allylic sulfones could be obtained in good to excellent yields with water as the only byproduct. This study expands the synthetic toolbox for constructing allylic sulfone molecules.
Collapse
Affiliation(s)
- Yan Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Guangming Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Kaiyu Yan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jiaheng Qin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Rui Liu
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Nannan Rong
- Anhui JinTung Fine Chemical Co., Ltd, Cihu Economic & Technical Development Zone, Maanshan 243000, China
| | - Yongming Tang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, 450001, China
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
8
|
Zhang KY, Long F, Peng CC, Liu JH, Wu LJ. Pd-Catalyzed Multicomponent Cross-Coupling of Allyl Esters with Alkyl Bromides and Potassium Metabisulfite: Access to Allylic Sulfones. Org Lett 2023; 25:5817-5821. [PMID: 37498112 DOI: 10.1021/acs.orglett.3c02066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
A Pd-catalyzed multicomponent cross-coupling of allyl esters with alkyl bromides to synthesize allylic sulfones by using K2S2O5 as a connector is first reported. The reaction displays a broad range of substrate generality along with excellent functional group compatibility and produces the products with high regioselectivity (only E). Furthermore, the biologically active molecules with a late-stage modification, including aspirin, menthol, borneol, and estrone, are also highly compatible with the multicomponent cross-coupling reaction. Mechanistic studies indicate that the process of SO2 insertion into the C-Pd bond was involved in this transformation.
Collapse
Affiliation(s)
- Kai-Yi Zhang
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Fang Long
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
- Department of Hunan Cuisine, ChangSha Commerce & Tourism College, Changsha 410116, China
| | - Chuan-Chong Peng
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Jin-Hui Liu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| | - Li-Jun Wu
- College of Sciences, Central South University of Forestry and Technology, Changsha 410004, China
| |
Collapse
|
9
|
Xiang YJ, Liu S, Zhou J, Lin JH, Yao X, Xiao JC. Dehydroxylative Sulfonylation of Alcohols. J Org Chem 2023; 88:4818-4828. [PMID: 36913713 DOI: 10.1021/acs.joc.2c03085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
Described here is the R3P/ICH2CH2I-promoted dehydroxylative sulfonylation of alcohols with a variety of sulfinates. In contrast to previous dehydroxylative sulfonylation methods, which are usually limited to active alcohols, such as benzyl, allyl, and propargyl alcohols, our protocol can be extended to both active and inactive alcohols (alkyl alcohols). Various sulfonyl groups can be incorporated, such as CF3SO2 and HCF2SO2, which are fluorinated groups of interest in pharmaceutical chemistry and the installation of which has received increasing attention. Notably, all reagents are cheap and widely available, and moderate to high yields were obtained within 15 min of reaction time.
Collapse
Affiliation(s)
- Yi-Jun Xiang
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| | - Shun Liu
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jing Zhou
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Jin-Hong Lin
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China.,Department of Chemistry, Innovative Drug Research Center, Shanghai University, 200444 Shanghai, PR China
| | - Xu Yao
- Institute of Pharmacy and Pharmacology, Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, University of South China, 421001 Hengyang, PR China
| | - Ji-Chang Xiao
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, 200032 Shanghai, PR China
| |
Collapse
|
10
|
Boumekla Y, Xia F, Vidal L, Totée C, Raynaud C, Ouali A. Calcium-catalysed synthesis of amines through imine hydrosilylation: an experimental and theoretical study. Org Biomol Chem 2023; 21:1038-1045. [PMID: 36625298 DOI: 10.1039/d2ob02243e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A method to reduce aldimines through hydrosilylation is reported. The catalytic system involves calcium triflimide (Ca(NTf2)2) and potassium hexafluorophosphate (KPF6) which have been shown to act in a synergistic manner. The expected amines are obtained in fair to very high yields (40-99%) under mild conditions (room temperature in most cases). To illustrate the potential of this method, a bioactive molecule with antifungal properties was prepared on the gram scale and in high yield in environmentally friendly 2-methyltetrahydrofuran. Moreover, it is shown in this example that the imine can be prepared in situ from the aldehyde and the amine without isolating the imine. The mechanism involved has been explored experimentally and through DFT calculations, and the results are in accordance with an electrophilic activation of the silane by the calcium catalyst.
Collapse
Affiliation(s)
| | - Fengjie Xia
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Lucas Vidal
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Cédric Totée
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| | | | - Armelle Ouali
- ICGM, Univ Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
11
|
Gao W, Zhang D, Zhang X, Cai X, Xie P, Loh TP. One-Pot and Unsymmetrical Bis-Allylation of Malononitrile with Conjugated Dienes and Allylic Alcohols. Org Lett 2022; 24:9355-9360. [PMID: 36519800 DOI: 10.1021/acs.orglett.2c03405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A Pd/Ca catalytic system to promote the unsymmetrical bis-allylation of malononitrile was developed by selecting conjugated dienes and allylic alcohols as allylic reagents. This catalytic system suppressed the competitive symmetrical bis-allylation process and guaranteed the desired unsymmetrical bis-allylation with high chemoselectivity. A wide range of conjugated dienes and allylic alcohols were tolerated well in this transformation, and diverse 1,6-dienes were obtained with high efficiency.
Collapse
Affiliation(s)
- Wenxiu Gao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Dong Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xiaoyu Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Xinying Cai
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, Jiangsu 211816, China.,College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou, Henan 450001, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
12
|
Luo Z, Liu ZQ, Yang TT, Zhuang X, Hong CM, Zou FF, Xue ZY, Li QH, Liu TL. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP)-Assisted Catalyst-Free Sulfonation of Allylic Alcohols with Sulfinyl Amides. Org Lett 2022; 24:741-745. [PMID: 34989575 DOI: 10.1021/acs.orglett.1c04206] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A highly regioselective and catalyst-free sulfonation of allylic alcohols with sulfinyl amides has been realized. Such a mix-and-go procedure provides a convenient approach to synthetically various allylic sulfones under mild reaction conditions. Furthermore, this novel reaction shows ample substrate scope and outstanding functional group tolerance and could also be scaled-up. Meanwhile, it is the first example that sulfinyl amides act as a powerful sulfur nucleophile in the reactions. 1,1,1,3,3,3-Hexafluoro-2-propanol (HFIP) as a solvent plays a critical role in allylic sulfonation.
Collapse
Affiliation(s)
- Zhen Luo
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zheng-Qiang Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Ting-Ting Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xin Zhuang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Chuan-Ming Hong
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Fei-Fei Zou
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Zhi-Yong Xue
- Hubei Key Laboratory of Biomass Fibers and Eco-dyeing & Finishing, College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430073, China
| | - Qing-Hua Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Tang-Lin Liu
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
13
|
Lv Y, Cui H, Meng N, Yue H, Wei W. Recent advances in the application of sulfinic acids for the construction of sulfur-containing compounds. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.06.068] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Liu C, Li H, Wang B, Guo Z, Wang Y, Zhang J, Xie M. Temperature Controlled Di- and Monosulfonylation of Propargyl Alcohols with Sodium Sulfinates: Switchable Access to (E)-Allyl, Vinyldisulfones and Propargyl Sulfones. Org Chem Front 2022. [DOI: 10.1039/d1qo01906f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A switchable di- and monosulfonylation of propargyl alcohols with sodium sulfinates is developed, which successfully affords (E)-allyl, vinyldisulfones and propargyl sulfones in good to excellent yields, respectively. The salient features...
Collapse
|
15
|
Li B, Zeng W, Wang L, Geng Z, Loh TP, Xie P. Visible-Light-Induced Trifluoromethylation of Allylic Alcohols. Org Lett 2021; 23:5235-5240. [PMID: 34156254 DOI: 10.1021/acs.orglett.1c01767] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
An organic photoredox-catalyzed dehydroxylative trifluoromethylation of allylic alcohols was developed in an environmentally benign manner. In this reaction, the readily available CF3SO2Na was selected as the trifluoromethylation reagent. The in situ generated byproduct SO2 was reutilized to activate C-OH bond, which enabled this dehydroxylative trifluoromethylation to be performed conveniently. A variety of multifunctionalized CF3-allylic compounds were obtained in high yields and excellent stereoselectivity.
Collapse
Affiliation(s)
- Bowen Li
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Wubing Zeng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Lin Wang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhishuai Geng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Teck-Peng Loh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 Singapore
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
16
|
Palladium-catalyzed substitution of allylic alcohols with sulfinate salts: A synthesis of bicalutamide. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
17
|
Abstract
A green method for the sulfination of allenic carbonyl compounds to access a wide variety of vinylic sulfones is developed. This reaction works in aqueous media under very mild conditions. This reaction is atom economic. A wide variety of vinylic sulfones could be obtained in moderate to excellent yields with wide functional group tolerance. The efficiency of this method is demonstrated in some reactions where the desired products can be isolated by filtration.
Collapse
Affiliation(s)
- Jeffrey Goh
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Manikantha Maraswami
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| | - Teck-Peng Loh
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China.,Yangtze River Delta Research Institute, Northwestern Polytechnical University (NPU), 27 Zigang Road, Taicang, Jiangsu 215400, China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371
| |
Collapse
|
18
|
Li S, Qiu J, Li B, Sun Z, Xie P, Loh TP. Practical allylation with unactivated allylic alcohols under mild conditions. Org Chem Front 2021. [DOI: 10.1039/d1qo00490e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A practical palladium/calcium catalytic system was developed for dehydrative allylation with unactivated allylic alcohols.
Collapse
Affiliation(s)
- Shuangshuang Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Ju Qiu
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Bowen Li
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Zuolian Sun
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing 211816
- P. R. China
- Division of Chemistry and Biological Chemistry
| |
Collapse
|
19
|
Yu J, Chang X, Ma R, Zhou Q, Wei M, Cao X, Ma X. Water‐Promoted Dehydrative Tsuji–Trost Reaction of Non‐Derivatized Allylic Alcohols with Sulfinic Acids. European J Org Chem 2020. [DOI: 10.1002/ejoc.202001306] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Jing Yu
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xueping Chang
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Ruitian Ma
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Mengmeng Wei
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xinhua Cao
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| | - Xiantao Ma
- College of Chemistry and Chemical Engineering Green Catalysis & Synthesis Key Laboratory of Xinyang City Xinyang Normal University 464000 Xinyang Henan China
| |
Collapse
|