1
|
Kar S, Das RS, Bera T, Das S, Mukherjee A, Mondal A, Sengupta A, Guha S. Targeted NIR Fluorescent Mechanically Interlocked Molecules-Peptide Bioconjugate for Live Cancer Cells Submitochondrial Stimulated Emission Depletion Super-Resolution Microscopy. Bioconjug Chem 2025; 36:223-232. [PMID: 39792079 DOI: 10.1021/acs.bioconjchem.4c00476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Herein, a water-soluble, ultrabright, near-infrared (NIR) fluorescent, mechanically interlocked molecules (MIMs)-peptide bioconjugate is designed with dual targeting capabilities. Cancer cell surface overexpressed αVβ3 integrin targeting two RGDS tetrapeptide residues is tethered at the macrocycle of MIMs-peptide bioconjugate via Cu(I)-catalyzed click chemistry on the Wang resin, and mitochondria targeting lipophilic cationic TPP+ functionality is conjugated at the axle dye. Living carcinoma cell selective active targeting, subsequently cell penetration, mitochondrial imaging, including the ultrastructure of cristae, and real-time tracking of malignant mitochondria by MIMs-peptide bioconjugate (RGDS)2-Mito-MIMs-TPP+ are established by stimulated emission depletion (STED) super-resolved fluorescence microscopy. Water-soluble NIR (RGDS)2-Mito-MIMs-TPP+ is an effective class of MIMs-peptide bioconjugate with promising photophysics; for instance, remarkable photostability and thermal stability, strong and narrow NIR abs/em bands with high quantum yield, ultrabrightness, decent fluorescence lifetime, reasonable stability against cellular nucleophiles, biocompatibility, noncytotoxicity, and dual-targeted living cancer cell submitochondrial imaging ability are all indispensable criteria for targeted super-resolved STED microscopy.
Collapse
Affiliation(s)
- Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
2
|
Favret JM, Dzyuba SV. Synthetic Approaches Toward Phosphorus-Containing BODIPY and Squaraine Dyes: Enhancing Versatility of Small-Molecule Fluorophores. Molecules 2024; 30:116. [PMID: 39795173 PMCID: PMC11721786 DOI: 10.3390/molecules30010116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 12/29/2024] [Indexed: 01/13/2025] Open
Abstract
Phosphorus-containing fluorophores provide a versatile framework for tailoring photophysical properties, enabling the design of advanced fluorogenic materials for various applications. Boron dipyrromethene (BODIPY) and squaraine dyes are of interest due to their multifaceted modularity and synthetic accessibility. Incorporating phosphorus-based functional groups into BODIPY or squaraine scaffolds has been achieved through a plethora of synthetic methods, including post-dye assembly functionalization. These modifications often influence key spectroscopic properties and molecular functionality by expanding their utility in bioimaging, sensing, photosensitization, and theranostic applications. By leveraging the tunable nature of phosphorus-containing moieties, these dyes hold immense promise for addressing current challenges in spectroscopy, imaging, and material designs while unlocking new opportunities for advanced functional systems in chemistry, biology, and medicine.
Collapse
Affiliation(s)
| | - Sergei V. Dzyuba
- Department of Chemistry and Biochemistry, Texas Christian University, Fort Worth, TX 76129, USA;
| |
Collapse
|
3
|
Mukherjee A, Kar S, Das S, Bera T, Mondal A, Sengupta A, Guha S. Design of an Acidic pH-Activated NIR Fluorescent Convertible Rhodamine-Hemicyanine Probe-Peptide Conjugate for Living Cancer Cell Active Targeted Selective Tracking of Lysosomes. Chemistry 2024; 30:e202402146. [PMID: 38923172 DOI: 10.1002/chem.202402146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024]
Abstract
We have synthesized an acidic pH-activatable dual targeting ratiometric fluorescent probe-peptide conjugate using the SPPS protocol on Rink amide AM resin. Living carcinoma cell specific active targeting, successive cell penetration, and selective staining of lysosomes are accomplished. Real-time monitoring of lysosomes, 3D, and multicolor cancer cell imaging are also attained. The de novo design consists of the integration of multifunctionality into a single molecular scaffold, e. g., RGDS peptide residue to target cancer cell surface overexpressed receptor αVβ3 integrin, live-cell penetrating organic unsymmetrical rhodamine-hemicyanine chromophore comprising a lysosome targeting morpholine group, and an acidic pH openable spiro-lactam ring for a visible-to-NIR switchable ratiometric response. Water-soluble fluorescent probe-peptide conjugate exhibits intramolecular spirolactamization at basic pH through Arg amide N. The visible spirolactam state predominantly exists at physiological and basic pH and can be switched to the highly conjugated NIR open amide state (λem=735 nm) through spiro-lactam ring opening triggered by acidic pH with a huge bathochromic shift (Δλabs=336 nm, ΔλFL=265 nm). Moreover, pH-sensitive ratiometric optical switching is achieved. This in situ acidic cancer cell lysosome activatable multifunctional fluorophore-peptide conjugate shows augmented molar absorptivity, enhanced quantum yield, and improved fluorescence lifetime at acidic lysosomal pH; negligible cytotoxicity; and dual targeted ratiometric imaging capability of living cancer cell selective lysosomes with a pKa value of 5.1.
Collapse
Affiliation(s)
- Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Shreya Das
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| | - Arunima Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, 700032, Kolkata, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, 700032, Kolkata, India
| |
Collapse
|
4
|
Dai XY, Song Q, Zhou WL, Liu Y. Cucurbit[8]uril Confinement-Based Secondary Coassembly for High-Efficiency Phosphorescence Energy Transfer Behavior. JACS AU 2024; 4:216-227. [PMID: 38274263 PMCID: PMC10806769 DOI: 10.1021/jacsau.3c00642] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/27/2024]
Abstract
Aqueous supramolecular long-lived near-infrared (NIR) material is highly attractive but still remains great challenge. Herein, we report cucurbit[8]uril confinement-based secondary coassembly for achieving NIR phosphorescence energy transfer in water, which is fabricated from dicationic dodecyl-chain-bridged 4-(4-bromophenyl)-pyridine derivative (G), cucurbit[8]uril (CB[8]), and polyelectrolyte poly(4-styrene-sulfonic sodium) (PSS) via the hierarchical confinement strategy. As compared to the dumbbell-shaped G, the formation of unprecedented linear polypseudorotaxane G⊂CB[8] with nanofiber morphology engenders an emerging phosphorescent emission at 510 nm due to the macrocyclic confinement effect. Moreover, benefiting from the following secondary assembly confinement, such tight polypseudorotaxane G⊂CB[8] can further assemble with anionic polyelectrolyte PSS to yield uniform spherical nanoparticle, thereby significantly strengthening phosphorescence performance with an extended lifetime (i.e., 2.39 ms, c.f., 45.0 μs). Subsequently, the organic dye Rhodamine 800 serving as energy acceptor can be slightly doped into the polyelectrolyte assembly, which enables the occurrence of efficient phosphorescence energy transfer process with efficiency up to 80.1% at a high donor/acceptor ratio, and concurrently endows the final system with red-shifted and long-lived NIR emission (710 nm). Ultimately, the as-prepared assembly is successfully exploited as versatile imaging agent for NIR window labeling and detecting in living cells.
Collapse
Affiliation(s)
- Xian-Yin Dai
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Qi Song
- School
of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical
Sciences, Taian, Shandong 271016, P. R. China
| | - Wei-Lei Zhou
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College
of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
5
|
Ratto A, Honek JF. Oxocarbon Acids and their Derivatives in Biological and Medicinal Chemistry. Curr Med Chem 2024; 31:1172-1213. [PMID: 36915986 DOI: 10.2174/0929867330666230313141452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 03/15/2023]
Abstract
The biological and medicinal chemistry of the oxocarbon acids 2,3- dihydroxycycloprop-2-en-1-one (deltic acid), 3,4-dihydroxycyclobut-3-ene-1,2-dione (squaric acid), 4,5-dihydroxy-4-cyclopentene-1,2,3-trione (croconic acid), 5,6-dihydroxycyclohex- 5-ene-1,2,3,4-tetrone (rhodizonic acid) and their derivatives is reviewed and their key chemical properties and reactions are discussed. Applications of these compounds as potential bioisosteres in biological and medicinal chemistry are examined. Reviewed areas include cell imaging, bioconjugation reactions, antiviral, antibacterial, anticancer, enzyme inhibition, and receptor pharmacology.
Collapse
Affiliation(s)
- Amanda Ratto
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - John F Honek
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
6
|
Das RS, Maiti D, Kar S, Bera T, Mukherjee A, Saha PC, Mondal A, Guha S. Design of Water-Soluble Rotaxane-Capped Superparamagnetic, Ultrasmall Fe 3O 4 Nanoparticles for Targeted NIR Fluorescence Imaging in Combination with Magnetic Resonance Imaging. J Am Chem Soc 2023; 145:20451-20461. [PMID: 37694929 DOI: 10.1021/jacs.3c06232] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Integrating an NIR fluorescent probe with a magnetic resonance imaging (MRI) agent to harvest complementary imaging information is challenging. Here, we have designed water-soluble, biocompatible, noncytotoxic, bright-NIR-emitting, sugar-functionalized, mechanically interlocked molecules (MIMs)-capped superparamagnetic ultrasmall Fe3O4 NPs for targeted multimodal imaging. Dual-functional stoppers containing an unsymmetrical NIR squaraine dye interlocked within a macrocycle to construct multifunctional MIMs are developed with enhanced NIR fluorescence efficiency and durability. One of the stoppers of the axle is composed of a lipophilic cationic TPP+ functionality to target mitochondria, and the other stopper comprises a dopamine-containing catechol group to anchor at the surface of the synthesized Fe3O4 NPs. Fe3O4 NPs surface-coated with targeted NIR rotaxanes help to deliver ultrasmall magnetic NPs specifically inside the mitochondria. Two carbohydrate moieties are conjugated with the macrocycle of the rotaxane via click chemistry to improve the water solubility of MitoSQRot-(Carb-OH)2-DOPA-Fe3O4 NPs. Water-soluble, rotaxane-capped Fe3O4 NPs are used for live-cell mitochondria-targeted NIR fluorescence confocal imaging, 3D and multicolor imaging in combination with T2-weighted MRI on a 9.4 T MR scanner with a high relaxation rate (r2) of 180.7 mM-1 s-1. Biocompatible, noncytotoxic, ultrabright NIR rotaxane-capped superparamagnetic ultrasmall monodisperse Fe3O4 NPs could be a promising agent for targeted multimodal imaging applications.
Collapse
Affiliation(s)
- Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Debabrata Maiti
- Division of Medical Engineering, School of Medicine, The Jikei University, Tokyo 105-8461, Japan
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Pranab Chandra Saha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Aniruddha Mondal
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
7
|
Liu HJ, Zhu MS, Zhang G, Sun R, Xu YJ, Ge JF. Viscosity probes towards different organelles with red emission based on an identical hemicyanine structure. Analyst 2023; 148:4463-4469. [PMID: 37565801 DOI: 10.1039/d3an00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
A series of viscosity probes targeting different organelles were obtained using a single hemicyanine dye as the matrix structure. Specifically, probes 1a-d were obtained by introducing four amines (6-amino-2H-chromen-2-one, N-(2-aminoethyl)-4-methylbenzenesulfonamide, dodecan-1-amine and N,N diphenylbenzene-1,4-diamine) into the indole hemicyanine dye of the carboxylic acid with a D-π-A structure. Their maximum absorption wavelengths were in the range 570-586 nm and they had relatively large molar absorption coefficients, while their maximum emission wavelengths in the red light region were in the range 596-611 nm. Moreover, their fluorescence intensity in glycerol was 35-184 times higher than that in phosphate buffer solution (PBS). The lg(Fl) and lg η of probes 1a-d showed good linearity with high correlation coefficients according to the Förster-Hoffman equation. In addition, cell staining experiments demonstrated that 1a-c could target lysosomes, endoplasmic reticulum and mitochondria, respectively. They could also undergo viscosity-detectable changes in the corresponding organelles under the action of the corresponding ion carriers.
Collapse
Affiliation(s)
- Hong-Jiao Liu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Ming-Sen Zhu
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Gang Zhang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ru Sun
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
| | - Yu-Jie Xu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Jian-Feng Ge
- College of Chemistry, Chemical Engineering and Material Science, Soochow University, 199 Ren'Ai Road, Suzhou 215123, China.
- Jiangsu Key Laboratory of Medical Optics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| |
Collapse
|
8
|
Gharai PK, Khan J, Mallesh R, Garg S, Saha A, Ghosh S, Ghosh S. Vanillin Benzothiazole Derivative Reduces Cellular Reactive Oxygen Species and Detects Amyloid Fibrillar Aggregates in Alzheimer's Disease Brain. ACS Chem Neurosci 2023; 14:773-786. [PMID: 36728363 DOI: 10.1021/acschemneuro.2c00771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The misfolding of amyloid beta (Aβ) peptides into Aβ fibrillary aggregates is a major hallmark of Alzheimer's disease (AD), which responsible for the excess production of hydrogen peroxide (H2O2), a prominent reactive oxygen species (ROS) from the molecular oxygen (O2) by the reduction of the Aβ-Cu(I) complex. The excessive production of H2O2 causes oxidative stress and inflammation in the AD brain. Here, we have designed and developed a dual functionalized molecule VBD by using π-conjugation (C═C) in the backbone structure. In the presence of H2O2, the VBD can turn into fluorescent probe VBD-1 by cleaving of the selective boronate ester group. The fluorescent probe VBD-1 can undergo intramolecular charge transfer transition (ICT) by a π-conjugative system, and as a result, its emission increases from the yellow (532 nm) to red (590 nm) region. The fluorescence intensity of VBD-1 increases by 3.5-fold upon binding with Aβ fibrillary aggregates with a high affinity (Kd = 143 ± 12 nM). Finally, the VBD reduces the cellular toxic H2O2 as proven by the CCA assay and DCFDA assay and the binding affinity of VBD-1 was confirmed by using in vitro histological staining in 8- and 18-month-old triple transgenic AD (3xTg-AD) mice brain slices.
Collapse
Affiliation(s)
- Prabir Kumar Gharai
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Juhee Khan
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Rathnam Mallesh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| | - Shubham Garg
- Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India
| | - Abhijit Saha
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India
| | - Subhajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India
| | - Surajit Ghosh
- Organic and Medicinal Chemistry and Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, WB, India.,Department of Bioscience & Bioengineering, Indian Institute of Technology, Jodhpur, NH 65, Surpura Bypass Road, Karwar, Rajasthan 342037, India.,National Institute of Pharmaceutical Education and Research, Kolkata, Chunilal Bhawan 168, Maniktala Main Road, Kolkata 700054, India
| |
Collapse
|
9
|
Das RS, Mukherjee A, Kar S, Bera T, Das S, Sengupta A, Guha S. Construction of Red Fluorescent Dual Targeting Mechanically Interlocked Molecules for Live Cancer Cell Specific Lysosomal Staining and Multicolor Cellular Imaging. Org Lett 2022; 24:5907-5912. [PMID: 35925778 DOI: 10.1021/acs.orglett.2c02114] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have designed and synthesized red fluorescent mechanically interlocked molecules with dual targeting functionality for live cancer cell specific active targeting followed by selective internalization and imaging of malignant lysosomes along with real-time tracking, 3D, and multicolor cellular imaging applications.
Collapse
Affiliation(s)
- Rabi Sankar Das
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Ayan Mukherjee
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Samiran Kar
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Tapas Bera
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| | - Shreya Das
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Arunima Sengupta
- Department of Life Sciences and Biotechnology, Jadavpur University, Kolkata 700032, India
| | - Samit Guha
- Department of Chemistry, Organic Chemistry Section, Jadavpur University, Kolkata 700032, India
| |
Collapse
|
10
|
Zhang L, Wang JL, Ba XX, Hua SY, Jiang P, Jiang FL, Liu Y. Multifunction in One Molecule: Mitochondrial Imaging and Photothermal & Photodynamic Cytotoxicity of Fast-Response Near-Infrared Fluorescent Probes with Aggregation-Induced Emission Characteristics. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7945-7954. [PMID: 33588525 DOI: 10.1021/acsami.0c20283] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
HJS and DHJS, two near-infrared emissive and mitochondria-targeted therapy probes, have been designed. They exhibited photothermal & photodynamic cytotoxicity and aggregation-induced emission (AIE) characteristics. Interestingly, we could receive fluorescence immediately after adding the probes without washing in 1 min. They could quickly enter cancer cells and selectively localized to the mitochondria firstly. When the concentration of probes was low (<5 μM), they could respond sensitively to the mitochondrial membrane potential and would selectively enter the mitochondria with red fluorescence. However, when the concentration was high (≥5 μM), they would preferentially enter the mitochondria and have the property of dual-channel fluorescence imaging (red and near-infrared) even after 24 h. What's more, they increased the intracellular reactive oxygen species (ROS) levels, decreased the mitochondrial membrane potentials, and then induced apoptosis, which were proved by confocal imaging and flow cytometry experiments. In addition, the results of photothermal experiment and cytotoxicity test showed that the probes had good photothermal and photodynamic toxicity to cancer cells. In vitro and in vivo experiments also proved the excellent near-infrared (NIR) imaging ability, good biocompatibility and certain inhibition of tumor growth ability of DHJS.
Collapse
Affiliation(s)
- Lu Zhang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Jiang-Lin Wang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Xiao-Xu Ba
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Si-Yu Hua
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Peng Jiang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery (MOE), School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, P. R. China
| | - Feng-Lei Jiang
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Liu
- Sauvage Center for Molecular Sciences, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
- State Key Laboratory of Separation Membrane and Membrane Process, School of Chemistry and Chemical Engineering & School of Environmental Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
- Institute of Advanced Materials and Nanotechnology & Hubei Province Key Laboratory of Coal Conversion and New Type of Carbon Materials, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|