1
|
Sekine K, Yue G, Kajiwara J, Wu D, Shiozuka A, Kuninobu Y. Photoinduced Carbamoylarylation of Alkynes with N-Aryl Oxamic Acids. Org Lett 2025; 27:3947-3951. [PMID: 40176465 DOI: 10.1021/acs.orglett.5c00866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
1,2-Difunctionalization of alkynes is an attractive synthetic protocol, because it can achieve a high step economy and provide various complex organic molecules. This study demonstrates the visible-light-induced carbamoylarylation of terminal alkynes using N-aryl oxamic acids as bifunctional reagents. The transformation involves the addition of carbamoyl radicals to alkenes, resulting in 1,4-aryl migration via C(aryl)-N bond cleavage to afford the corresponding arylacrylamides in moderate to good yields.
Collapse
Affiliation(s)
- Kohei Sekine
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Gaofan Yue
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - June Kajiwara
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Di Wu
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Akira Shiozuka
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| | - Yoichiro Kuninobu
- Institute for Materials Chemistry and Engineering, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
- Department of Interdisciplinary Engineering Sciences, Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasugakoen, Kasuga-shi, Fukuoka 816-8580, Japan
| |
Collapse
|
2
|
Dai WT, Wen CC, Lin HJ, Huang MH. Photocatalyzed Aerobic Oxidation of Thiols to Disulfides Using Cu 2O Polyhedra. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18268-18274. [PMID: 40079127 PMCID: PMC11955942 DOI: 10.1021/acsami.4c21206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/11/2025] [Accepted: 03/07/2025] [Indexed: 03/14/2025]
Abstract
To further demonstrate semiconductor facet effect to photocatalytic organic transformations and address a lack of using simple polyhedral semiconductor particles for disulfide bond formation, Cu2O cubes, octahedra, and rhombic dodecahedra were used to photocatalyze aerobic oxidation of 4-methylbenzenethiol. After reaction condition optimization, Cu2O crystals and N,N,N',N'-tetramethylethylenediamine (TMEDA) were added to 4-methylbenzenethiol in ethanol for thiol oxidation to 1,2-di-p-tolyldisulfane under 390 nm light-emitting diode (LED) lamp irradiation for just 5 min. Rhombic dodecahedra gave the highest product yield, followed by octahedra, cubes, and commercial Cu2O powder. Cu2O rhombic dodecahedra were subsequently employed to photocatalyze thiols bearing a diverse scope of substituents with satisfactory yields. Reactive species trapping experiments were performed to support a plausible reaction mechanism. Semiconductor crystals with surface control can be a simple but highly effective strategy for enhancing photocatalytic organic transformations.
Collapse
Affiliation(s)
- Wan-Ting Dai
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Chun-Chia Wen
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Hsi-Jui Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| | - Michael H. Huang
- Department of Chemistry, National Tsing Hua University, Hsinchu 300044, Taiwan
| |
Collapse
|
3
|
Kumari AH, Kumar JJ, Reddy RJ. Vicinal Thiosulfonylation of ortho-(Alkynyl)benzyl Thiosulfonates/Sulfurothioates for Direct Synthesis of Sulfonyl-Derived Isothiochromenes. J Org Chem 2025; 90:3628-3638. [PMID: 40043147 DOI: 10.1021/acs.joc.4c02967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
A new type of ortho-(alkynyl)benzyl thiosulfonates and ortho-(alkynyl)benzyl sulfurothioates (Bunte salts) have been prepared for the first time to investigate vicinal thiosulfonylation. A unique Au-catalyzed atom transfer radical cyclization (ATRC) of ortho-alkynyl benzyl thiosulfonates has been successfully achieved, producing sulfonyl-derived isothiochromenes as a major product through a favored 6-endo-dig cyclization. Additionally, the vicinal thiosulfonylation of Bunte salts with sodium sulfinates has been realized under the influence of Mn(OAc)3·2H2O to afford 4-sulfonyl-isothiochromene derivatives exclusively. A range of sulfonyl-derived isothiochromenes were readily accessed in promising yields, including gram-scale reactions. Of note, postsynthetic transformations and possible mechanistic insights were uncovered.
Collapse
Affiliation(s)
- Arram Haritha Kumari
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Jangam Jagadesh Kumar
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| | - Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India
| |
Collapse
|
4
|
Zheng M, Zhuang X, Jia Q, Ren Q, Wu J. Photoredox-Catalyzed Multicomponent α-Sulfonylation of Terminal Alkynes. Org Lett 2024. [PMID: 39526832 DOI: 10.1021/acs.orglett.4c03828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A generality-oriented and adaptive α-sulfonylation of alkynes via photoinduced multicomponent radical cross-coupling of terminal alkynes with sulfinates and a variety of alcohols, thiophenols, or selenophenols has been explored. This protocol features mild conditions, good functional group tolerability, broad substrate scope, excellent chemo-, site-, and stereoselectivity, and applicability to late-stage functionalization. It provides a modular platform for the synthesis of value-added structurally diverse α-sulfonyl-containing multisubstituted alkenes from simple precursors.
Collapse
Affiliation(s)
- Mingyue Zheng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xin Zhuang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Qianfa Jia
- Chongqing Key Laboratory for New Chemical Materials of Shale Gas, College of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, P. R. China
| | - Qiao Ren
- College of Pharmaceutical Science, Southwest University, Chongqing 400715, P. R. China
| | - Jicheng Wu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| |
Collapse
|
5
|
Hu XB, Chen Y, Zhu CL, Xu H, Zhou X, Rao W, Hang XC, Chu XQ, Shen ZL. Cross-Electrophile Couplings of Benzyl Sulfonium Salts with Thiosulfonates via C-S Bond Activation. J Org Chem 2024; 89:13601-13607. [PMID: 39228065 DOI: 10.1021/acs.joc.4c01786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
A zinc-mediated cross-electrophile coupling of benzyl sulfonium salts with thiosulfonates via C-S bond cleavage was achieved. The reductive thiolation proceeded well under transition metal-free conditions to afford the desired benzyl sulfides in good yields, exhibiting both broad substrate scope and good functionality tolerance. In addition, the reaction could be applied to the use of selenosulfonate as an effective selenylation agent and be subjected to scale-up synthesis.
Collapse
Affiliation(s)
- Xuan-Bo Hu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Yuwei Chen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Chen-Long Zhu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiao-Chun Hang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
6
|
Guo Y, Lin G, Zhang M, Xu J, Song Q. Photo-induced decarboxylative C-S bond formation to access sterically hindered unsymmetric S-alkyl thiosulfonates and SS-alkyl thiosulfonates. Nat Commun 2024; 15:7313. [PMID: 39181875 PMCID: PMC11344762 DOI: 10.1038/s41467-024-51334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Due to the high reactivity and versatility of benzenesulfonothioates, significant advancements have been made in constructing C-S bonds. However, there are certain limitations in the synthesis of S-thiosulfonates and SS-thiosulfonates, especially when dealing with substantial steric hindrance, which poses a significant challenge. Herein, we present an innovative approach for assembling unsymmetric S-thiosulfonates and unsymmetric SS-thiosulfonates through the integration of dual copper/photoredox catalysis. Moreover, we also realized the one-pot strategy by directly using carboxylic acids as raw materials by in-situ activation of them to access S-thiosulfonates and SS-thiosulfonates without further purification and presynthesis of NHPI esters. The envisaged synthesis and utilization of these reagents are poised to pioneer an innovative pathway for fabricating a versatile spectrum of mono-, di-, and polysulfide compounds. Furthermore, they introduce a class of potent sulfenylating reagents, empowering the synthesis of intricate unsymmetrical disulfides that were previously challenging to access.
Collapse
Affiliation(s)
- Yu Guo
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Guotao Lin
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Mengjie Zhang
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Jian Xu
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
| | - Qiuling Song
- Institute of Next Generation Matter Transformation, College of Material Sciences Engineering, Huaqiao University, Xiamen, 361021, Fujian, China.
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, 350108, China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, Henan, China.
| |
Collapse
|
7
|
Zhao Z, Zhang H, Yan H, Yu X, Gu L, Zhang S. Electrophotocatalytic Tellurosulfonylation of Alkynes for the Synthesis of β-(Telluro)vinyl Sulfones. Org Lett 2024; 26:6114-6119. [PMID: 38968081 DOI: 10.1021/acs.orglett.4c01831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Difunctionalization of alkynes has gained a lot of interest in current organic chemistry. Herein, we developed an electrophotocatalytic multicomponent cascade reaction of alkynes and indoles with sulfinic acid sodium salts using elemental tellurium as the tellurium source. Using synergistic anodic oxidation and visible-light irradiation, various β-(telluro)vinyl sulfones have been prepared. This strategy features mild reaction conditions, excellent substrate scope, readily available starting materials, and great functional group tolerance.
Collapse
Affiliation(s)
- Zhiheng Zhao
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Huiping Zhang
- College of Chemistry, Chemical Engineering and Materials, Jining University, Qufu, Shandong 273155, P. R. China
| | - Hongyan Yan
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Xixi Yu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Lijun Gu
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang, Guizhou 550025, P. R. China
| | - Shengyong Zhang
- School of Pharmacy, Fourth Military Medical University, Xi'an, Shaanxi 710032, P. R. China
| |
Collapse
|
8
|
Wang T, Zong YY, Yang B, Huang T, Jin XL, Liu Q. Visible-Light-Driven Unsymmetric gem-Difunctionalization of Vinyl Azides with Thiosulfonates or Selenosulfonates. Org Lett 2024; 26:1683-1687. [PMID: 38363953 DOI: 10.1021/acs.orglett.4c00183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Thiosulfonylation and selenosulfonylation of vinyl azides with thiosulfonates and selenosulfonates were achieved using Cu(dap)2Cl as a photosensitizer under visible-light irradiation. This reaction is the application of a vinyl azide substrate in a group transfer radical addition (GTRA) reaction, through β-difunctionalization, to obtain a variety of unsymmetric difunctionalized N-unprotected enamines.
Collapse
Affiliation(s)
- Tao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yuan-Yuan Zong
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Biao Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Tao Huang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiao-Ling Jin
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Qiang Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
9
|
Taniguchi N, Hyodo M, Pan LW, Ryu I. Photocatalytic C(sp 3)-H thiolation by a double S H2 strategy using thiosulfonates. Chem Commun (Camb) 2023. [PMID: 38018244 DOI: 10.1039/d3cc05149h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Site-selective C(sp3)-H thiolation using thiosulfonates has been achieved using the decatungstate anion as a photocatalyst. Using the protocol, a variety of thiolated compounds were synthesized in good yields. The transformation consists of a cascade of double SH2 reactions, HAT and ArS group transfer, and PCET (proton-coupled electron transfer) of the leaving arylsulfonyl radical to arylsulfinic acid thus allowing the catalyst, W10O324-, to be recovered.
Collapse
Affiliation(s)
- Nobukazu Taniguchi
- Faculty of Liberal Arts, Sciences and Global Education, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Mamoru Hyodo
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
| | - Lin-Wei Pan
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| | - Ilhyong Ryu
- Institute for Research Promotion, Osaka Metropolitan University, Sakai, Osaka 599-8531, Japan.
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.
| |
Collapse
|
10
|
Wu X, Gao B. Hydrosulfonylation of Unactivated Alkenes and Alkynes by Halogen-Atom Transfer (XAT) Cleavage of S VI-F Bond. Org Lett 2023. [PMID: 38019153 DOI: 10.1021/acs.orglett.3c03628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
A photochemical halogen-atom transfer (XAT) method for generating sulfonyl radicals from aryl sulfonyl fluorides has been developed. It allows the hydrosulfonylation of unactivated alkenes, which was challenging to achieve through our previous single-electron transfer route. This reaction has excellent functional group tolerance and substrate scope under mild conditions.
Collapse
Affiliation(s)
- Xing Wu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bing Gao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
11
|
Kumar S, Ali Shah B. Exploring the Divergent Reactivity of Vinyl Radicals Emanating from Alkynes and Thiols via Photoredox Catalysis. Chem Asian J 2023; 18:e202300693. [PMID: 37656003 DOI: 10.1002/asia.202300693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Organic chemistry has seen a surge in visible-light-driven transformations, which offer unique reaction pathways and access to new synthetic possibilities. We aim to provide a comprehensive understanding of state-of-the-art photo-mediated alkyne functionalization, with a focus on the reactive behavior of vinyl radicals. This review outlines our contributions to the field, including developing new methods for forming carbon-carbon and carbon-heteroatom bonds.
Collapse
Affiliation(s)
- Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
12
|
Liu H, Li G, Peng Z, Zhang S, Zhou X, Liu Q, Wang J, Liu Y, Jia T. Tagging Peptides with a Redox Responsive Fluorescent Probe Enabled by Photoredox Difunctionalization of Phenylacetylenes with Sulfinates and Disulfides. JACS AU 2022; 2:2821-2829. [PMID: 36590269 PMCID: PMC9795567 DOI: 10.1021/jacsau.2c00577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/07/2022] [Indexed: 05/09/2023]
Abstract
Herein, we describe a photoredox three-component atom-transfer radical addition (ATRA) reaction of aryl alkynes directly with dialkyl disulfides and alkylsulfinates, circumventing the utilization of chemically unstable and synthetically challenging S-alkyl alkylthiosulfonates as viable addition partners. A vast array of (E)-β-alkylsulfonylvinyl alkylsulfides was prepared with great regio- and stereoselectivity. Moreover, this powerful tactic could be employed to tag cysteine residues of complex polypeptides in solution or on resin merging with solid phase peptide synthesis (SPPS) techniques. A sulfonyl-derived redox responsive fluorescent probe could be conveniently introduced on the peptide, which displays green fluorescence in cells while showing blue fluorescence in medium. The photophysical investigations reveal that the red shift of the emission fluorescence is attested to reduction of carbonyl group to the corresponding hydroxyl moiety. Interestingly, the fluorescence change of tagged peptide could be reverted in cells by treatment of H2O2, arising from the reoxidation of hydroxyl group back to ketone by the elevated level of reactive oxygen species (ROS).
Collapse
Affiliation(s)
- Hong Liu
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Guolin Li
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Zhiyuan Peng
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Shishuo Zhang
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
| | - Xin Zhou
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Qingchao Liu
- Department
of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi’an, Shanxi 710069, P. R. China
| | - Junfeng Wang
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Materia Medica/Innovation Academy of South
China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xinggang Road, Guangzhou 510301, P. R. China
| | - Yonghong Liu
- CAS
Key Laboratory of Tropical Marine Bio-resources and Ecology/Guangdong
Key Laboratory of Marine Materia Medica/Innovation Academy of South
China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xinggang Road, Guangzhou 510301, P. R. China
- E-mail:
| | - Tiezheng Jia
- Research
Center for Chemical Biology and Omics Analysis, Department of Chemistry,
and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen, Guangdong 518055, P. R. China
- State
Key Laboratory of Elemento-Organic Chemistry, Nankai University, 94
Weijin Road, Tianjin 300071, P. R. China
- E-mail:
| |
Collapse
|
13
|
Wang L, Li M, Ning Z, Zhang X, Fu Y, Du Z. Copper- and Visible-Light-Catalyzed Cascade Radical Cyclization of N-Propargylindoles with Cyclic Ethers. J Org Chem 2022; 88:6374-6381. [PMID: 36269585 DOI: 10.1021/acs.joc.2c01713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient visible-light-assisted, copper-catalyzed tandem radical cyclization of N-propargylindoles with cyclic ethers is established. A series of 2-oxoalkyl-9H-pyrrolo[1,2-a]indol-9-ones with potential biological activities were synthesized in moderate yields by using a dual catalytic system with copper acetate as a transition metal catalyst and eosin Y as a visible light catalyst. The investigation of reaction mechanism shows that it goes through a cascade oxoalkyl radical addition, cyclization, and oxidation process.
Collapse
Affiliation(s)
- Luyao Wang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Mengting Li
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhitao Ning
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Xi Zhang
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Ying Fu
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| | - Zhengyin Du
- Key Laboratory of Eco-functional Polymer Materials of the Ministry of Education, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, P. R. China
| |
Collapse
|
14
|
Xi D, Lu C, Jing D, Zheng K. Carbothiolation of Styrenes by Visible‐Light‐Induced Thiyl Radicals: C3‐Functionalization of Benzofuran‐2(3H)‐ones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Dailin Xi
- Sichuan University Chemistry 610064 Chengdu CHINA
| | - Cong Lu
- Sichuan University Chemistry 610064 Chengdu CHINA
| | - Dong Jing
- Sichuan University Chemistry 610064 Chengdu CHINA
| | - Ke Zheng
- Sichuan University College of Chemistry wangjiang road 29# 610064 chengdu CHINA
| |
Collapse
|
15
|
Li J, Liu B, Hu Y, Li X, Huo Y, Chen Q. Hypervalent iodine-induced disulfenylation of thiophene derivatives with thiophenols. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Xiao X, Tian HY, Huang YQ, Lu YJ, Fang JJ, Zhou GJ, Chen FE. Atom- and step-economic 1,3-thiosulfonylation of activated allenes with thiosulfonates to access vinyl sulfones/sulfides. Chem Commun (Camb) 2022; 58:6765-6768. [PMID: 35612002 DOI: 10.1039/d2cc01731h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new type of organocatalyzed 1,3-thiosulfonylation has been developed to straightforwardly access highly functionalized vinyl sulfones, which features mild conditions, atom- and step-economy, practicability, conciseness, and environmental friendliness. Moreover, these valuable products can be transformed to vinyl sulfides via a base-promoted isomerization. The versatile route can efficiently and rapidly introduce SCD3 groups with excellent levels of deuterium content (>99% D) by utilizing our newly developed SCD3 reagents. Gram-scale operations and further transformations are smoothly carried out, providing promising applications for drug discovery.
Collapse
Affiliation(s)
- Xiao Xiao
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn.,Zhejiang Hisoar Pharmaceutical Co., Ltd, Taizhou 318000, China
| | - Hong-Yu Tian
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Yin-Qiu Huang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Yin-Jie Lu
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Jing-Jie Fang
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Gao-Jie Zhou
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn
| | - Fen-Er Chen
- Institute of Pharmaceutical Science and Technology, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China. ,cn.,Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433, China.,Shanghai Engineering Center of Industrial Asymmetric Catalysis for Chiral Drugs, Shanghai 200433, China
| |
Collapse
|
17
|
Bi WZ, Zhang WJ, Li CY, Shao LH, Liu QP, Feng SX, Geng Y, Chen XL, Qu LB. Photoexcited sulfenylation of C(sp 3)-H bonds in amides using thiosulfonates. Org Biomol Chem 2022; 20:3902-3906. [PMID: 35502883 DOI: 10.1039/d2ob00557c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photoexcited sulfenylation of C(sp3)-H bonds in amides is developed for the synthesis of sulfenyl amides using thiosulfonates as a sulfur source. In the presence of easily available and inexpensive Na2-eosin Y, TBHP and K2CO3, various sulfenyl amides can be obtained under the irradiation of blue light at room temperature.
Collapse
Affiliation(s)
- Wen-Zhu Bi
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Wen-Jie Zhang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Chen-Yu Li
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Lu-Hao Shao
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Qing-Pu Liu
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Su-Xiang Feng
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China. .,Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases co-constructed by Henan province & Education Ministry of P. R. China, Zhengzhou, 450046, China
| | - Yang Geng
- Department of Pharmacy, Zhengzhou Railway Vocational and Technical College, Zhengzhou, 450046, China.
| | - Xiao-Lan Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| | - Ling-Bo Qu
- College of Chemistry, Zhengzhou University, Zhengzhou, 450052, China
| |
Collapse
|
18
|
|
19
|
Zhang D, Hu L, Yang C, Li X, Teng M, Liu B, Huang G. Tetramethylammonium Iodide (TMAI)‐Promoted Sulfenylation/Annulation of Enaminones with Thiosulfonates. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100694] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- De‐Run Zhang
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Lin‐Ping Hu
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Cai‐Yun Yang
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Xia Li
- Department of Library Yunnan Normal University Kunming 650500 P. R. China
| | - Ming‐Yu Teng
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Bo Liu
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| | - Guo‐Li Huang
- School of Chemistry and Chemical Engineering Yunnan Normal University Kunming 650500 P. R. China
| |
Collapse
|
20
|
Zheng Y, Qian S, Xu P, Zheng B, Huang S. Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Yu T, Song D, Xu Y, Liu B, Chen N, Liu Y. Study on the Application of Thios/Selenium Sulfonates as Radical Reagent. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202204037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
22
|
Yu S, Chen Z, Chen Q, Lin S, He J, Tao G, Wang Z. Research Progress in Synthesis and Application of Thiosulfonates. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202203036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Liu Y, Zhang N, Xu Y, Chen Y. Visible-Light-Induced Radical Cascade Reaction of 1-Allyl-2-ethynylbenzoimidazoles with Thiosulfonates to Assemble Thiosulfonylated Pyrrolo[1,2- a]benzimidazoles. J Org Chem 2021; 86:16882-16891. [PMID: 34739244 DOI: 10.1021/acs.joc.1c02082] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A visible-light-induced radical domino reaction of 1-allyl-2-ethynylbenzoimidazoles with thiosulfonates was developed, which generated the thiosulfonylated pyrrolo[1,2-a]benzimidazoles in moderate to good yields. This reaction proceeded under transition-metal-free conditions with good functional group tolerance and high regioselectivity. The possible pathway involved thiosulfonates were activated through the energy transfer route promoted by photocatalysis.
Collapse
Affiliation(s)
- Yan Liu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Niuniu Zhang
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanli Xu
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Yanyan Chen
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| |
Collapse
|
24
|
Sahoo AK, Dahiya A, Das B, Behera A, Patel BK. Visible-Light-Mediated Difunctionalization of Alkynes: Synthesis of β-Substituted Vinylsulfones Using O- and S-Centered Nucleophiles. J Org Chem 2021; 86:11968-11986. [PMID: 34346693 DOI: 10.1021/acs.joc.1c01350] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
An inimitable illustration of a green-light-induced, regioselective difunctionalization of terminal alkynes has been disclosed using sodium arylsulfinates and carboxylic acids in the presence of eosin Y as the photocatalyst. The present methodology is further demonstrated by employing NH4SCN as an S-centered nucleophile instead of carboxylic acid. The mechanistic investigation reveals a radical-induced iodosulfonylation followed by a base-mediated nucleophilic substitution. The mechanism is supported by various studies, viz., radical-trapping experiment, fluorescence quenching, and CV studies. In this protocol, (Z)-β-substituted vinylsulfones are obtained, exclusively covering a broad range of alkynes and nucleophiles, which are often unaddressed. The present strategy can tolerate structurally discrete substrates with steric bulk and different electronic properties, which provides a straightforward and practical pathway for the synthesis of highly functionalized (Z)-β-substituted vinylsulfones. Herein, C-O and C-S bonds are assembled simultaneously with the concomitant introduction of important functional groups, viz., ester, thiocyanate, and sulfone.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Ahalya Behera
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
25
|
Kim W, Kim HY, Oh K. Oxidation Potential-Guided Electrochemical Radical-Radical Cross-Coupling Approaches to 3-Sulfonylated Imidazopyridines and Indolizines. J Org Chem 2021; 86:15973-15991. [PMID: 34185997 DOI: 10.1021/acs.joc.1c00873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Oxidation potential-guided electrochemical radical-radical cross-coupling reactions between N-heteroarenes and sodium sulfinates have been established. Thus, simple cyclic voltammetry measurement of substrates predicts the likelihood of successful radical-radical coupling reactions, allowing the simple and direct synthetic access to 3-sulfonylated imidazopyridines and indolizines. The developed electrochemical radical-radical cross-coupling reactions to sulfonylated N-heteroarenes boast the green synthetic nature of the reactions that are oxidant- and metal-free.
Collapse
Affiliation(s)
- Wansoo Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea.,Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Department of Global Innovative Drugs, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
26
|
Wang F, Rao W, Wang SY. Nickel-Catalyzed Reductive Thiolation of Unactivated Alkyl Bromides and Arenesulfonyl Cyanides. J Org Chem 2021; 86:8970-8979. [PMID: 34142832 DOI: 10.1021/acs.joc.1c00903] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The cross-electrophile coupling between unactivated alkyl bromides with arenesulfonyl cyanides catalyzed by Ni(acac)2 under reductive conditions to form unsymmetrical sulfides is developed. This approach for sulfide synthesis is practical, relies on available, unfunctionalized materials such as alkyl (pseudo)halides, and is scalable. This catalytic strategy provides a complementary method for the preparation of unsymmetrical alkyl-aryl sulfides under mild conditions with good functional group tolerance.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| | - Weidong Rao
- Key Laboratory of Biomass-based Green Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, P. R. China
| |
Collapse
|
27
|
Zhang CY, Zhu J, Cui SH, Xie XY, Wang XD, Wu L. Visible-Light-Induced 1,4-Hydroxysulfonylation of Vinyl Enynes with Sulfonyl Chlorides: The Bridge of Chloride Linking Water and Enynes. Org Lett 2021; 23:3530-3535. [PMID: 33881322 DOI: 10.1021/acs.orglett.1c00943] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
A novel visible-light-induced 1,4-hydroxysulfonylation of vinyl enynes with sulfonyl chlorides has been established, providing a highly efficient protocol to access multisubstituted sulfonyl allenic alcohols. Control experiments and mechanistic studies disclose that the target products result from sequential reactions of hydroxyl and tosyl radicals, among which chloride anion plays a key role to generate the requisite •OH, thus bridging water and enynes. Moreover, the vinyl pendant is believed to decisively affect the site-selectivity of hydroxyl radical.
Collapse
Affiliation(s)
- Cheng-Yun Zhang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Jie Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Su-Hang Cui
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Yu Xie
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xiao-Dong Wang
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Lei Wu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P.R. China.,College of Chemical Engineering, Xinjiang Agricultural University, Urumqi 830052, P.R. China
| |
Collapse
|
28
|
Zhou X, Peng Z, Wang PG, Liu Q, Jia T. Atom Transfer Radical Addition to Styrenes with Thiosulfonates Enabled by Synergetic Copper/Photoredox Catalysis. Org Lett 2021; 23:1054-1059. [PMID: 33428413 DOI: 10.1021/acs.orglett.0c04254] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A synergetic copper/photoredox catalyzed ATRA of styrenes and thiosulfonates is developed. Besides aryl ethylenes, the challenging α-substituted styrenes were employed to construct the benzylic quaternary carbon centers. Owing to the mild conditions as well as the high level of substrate compability, this ATRA could be applied to derivatize bioactive natural products in late stage, and to install fluorophores across alkenes. The mechanistic studies reveal sulfonyl radicals as the key intermediate in the transformation.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shanxi 710069, P. R. China.,Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Zhiyuan Peng
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P. R. China
| | - Peng George Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Qingchao Liu
- Department of Pharmaceutical Engineering, College of Chemical Engineering, Northwest University, Taibai North Road 229, Xi'an, Shanxi 710069, P. R. China
| | - Tiezheng Jia
- Shenzhen Grubbs Institute, Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, 1088 Xueyuan Boulevard, Shenzhen, Guangdong 518055, P. R. China.,State Key Laboratory of Elemento-Organic Chemistry, Nankai University, 300071, Tianjin, China
| |
Collapse
|
29
|
Wang F, Liu BX, Rao W, Wang SY. Metal-Free Chemoselective Reaction of Sulfoxonium Ylides and Thiosulfonates: Diverse Synthesis of 1,4-Diketones, Aryl Sulfursulfoxonium Ylides, and β-Keto Thiosulfones Derivatives. Org Lett 2020; 22:6600-6604. [PMID: 32806158 DOI: 10.1021/acs.orglett.0c02370] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A diverse chemoselective insertion reaction of sulfoxonium ylides and thiosulfonates under transition-metal-free conditions is developed, which successfully affords 1,4-diketone compounds, arylthiosulfoxide-ylides, and β-keto thiosulfones, respectively. The nucleophilic addition of two molecular sulfoxonium ylides to construct sulfone-substituted 1,4-dione compounds is the highlight of this work.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Bo-Xi Liu
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College and Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shun-Yi Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, 215123, China
| |
Collapse
|