1
|
Chen LJ, Ying RN, Wang XQ, Xie DT, Dong J, Lin HY, Da-Wei W, Yang GF. Discovery of Triketone-Indazolones as Novel 4-Hydroxyphenylpyruvate Dioxygenase Inhibiting-Based Herbicides. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1112-1121. [PMID: 39811931 DOI: 10.1021/acs.jafc.4c08544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
4-Hydroxyphenylpyruvate dioxygenase (HPPD) is a crucial herbicide target in current research, playing an important role in the comprehensive management of resistant weeds. However, the limited crop selectivity and less effectiveness against grass weeds of many existing HPPD inhibitors, limit their further application. To address these issues, a series of novel HPPD inhibitors with fused ring structures were designed and synthesized by introducing an electron-rich indazolone ring and combining it with the classical triketone pharmacophore structure. The cocrystal structure of representative compound III-7 complexed with Arabidopsis thaliana HPPD (AtHPPD) was obtained at 2.0 Å resolution to guide the optimization of the designed inhibitor. The optimization results showed that 5-(2-hydroxy-6-oxocyclohex-1-ene-1-carbonyl)-1,4-dimethyl-2-(3-(methylthio)phenyl)-1,2-dihydro-3H-indazol-3-one, III-15, was the most active AtHPPD inhibitor, with an IC50 value of 12 nM, nearly 30 times higher efficacy than mesotrione. Greenhouse herbicidal activity tests demonstrated that compound III-15 exhibited excellent herbicidal potency at 30-120 g ai/ha. Notably, it maintained high safety for peanuts even at 120 g ai/ha. Our results showed that compound III-15 is promising as a new candidate HPPD herbicide for use in the peanut fields.
Collapse
Affiliation(s)
- Li-Jun Chen
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Rui-Ning Ying
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Xian-Quan Wang
- Shandong Cynda (chemical) CO., Ltd., Boxing Economic Development, Shandong, Binzhou 256500, PR China
| | - Ding-Tao Xie
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Jin Dong
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Hong-Yan Lin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Wang Da-Wei
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| | - Guang-Fu Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|
2
|
Suo Y, Li K, Ling X, Yan K, Lu W, Yue J, Chen X, Duan Z, Lu X. Discovery Small-Molecule p300 Inhibitors Derived from a Newly Developed Indazolone-Focused DNA-Encoded Library. Bioconjug Chem 2024; 35:1251-1257. [PMID: 39116103 DOI: 10.1021/acs.bioconjchem.4c00307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
The DNA-encoded library (DEL) is a robust tool for chemical biology and drug discovery. In this study, we developed a DNA-compatible light-promoted reaction that is highly efficient and plate-compatible for DEL construction based on the formation of the indazolone scaffold. Employing this high-efficiency approach, we constructed a DEL featuring an indazolone core, which enabled the identification of a novel series of ligands specifically targeting E1A-binding protein (p300) after DEL selection. Taken together, our findings underscore the feasibility of light-promoted reactions in DEL synthesis and unveil promising avenues for developing p300-targeting inhibitors.
Collapse
Affiliation(s)
- Yanrui Suo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kaige Li
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road ,Nanjing 210023, China
| | - Xing Ling
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Kenian Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Weiwei Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Jinfeng Yue
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiaohua Chen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Zhiqiang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
| | - Xiaojie Lu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road ,Nanjing 210023, China
| |
Collapse
|
3
|
Pan M, Shen Y, Li Y, Shen C, Li W. B 2(OH) 4-Mediated Reductive Ring-Opening of N-Tosyl Aziridines by Nitroarenes: A Green and Regioselective Access to Vicinal Diamines. J Org Chem 2024; 89:8656-8667. [PMID: 38831644 DOI: 10.1021/acs.joc.4c00591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The nucleophilic ring-opening of aziridine derivatives provides an important synthetic tool for the preparation of various β-functionalized amines. Amines as nucleophiles are employed to prepare synthetically useful 1,2-diamines in the presence of various catalysts or activators. Herein, the B2(OH)4-mediated reductive ring-opening transformation of N-tosyl aziridines by nitroarenes was developed. This aqueous protocol employed nitroarenes as cheap and readily available amino sources and proceeds under external catalyst-free conditions. Control experiments and DFT calculations pointed to the in situ reduction of nitroarenes to aryl amines via N-aryl boramidic acid (E) and an SN1-type ring-opening of N-tosylaziridines by the resultant aryl amines with high regioselectivity.
Collapse
Affiliation(s)
- Mengni Pan
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yue Shen
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chaoren Shen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
4
|
Mondal K, Ghosh P, Hajra A. An Electrochemical Oxo-amination of 2H-Indazoles: Synthesis of Symmetrical and Unsymmetrical Indazolylindazolones. Chemistry 2024; 30:e202303890. [PMID: 38147010 DOI: 10.1002/chem.202303890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 12/27/2023]
Abstract
We have established a supporting-electrolyte free electrochemical method for the synthesis of indazolylindazolones through oxygen reduction reaction (eORR) induced 1,3-oxo-amination of 2H-indazoles where 2H-indazole is used as both aminating agent as well as the precursor of indazolone. Moreover, we have merged indazolone and indazole to get unsymmetrical indazolylindazolones through direct electrochemical cross-dehydrogenative coupling (CDC). This exogenous metal-, oxidant- and catalyst-free protocol delivered a number of multi-functionalized products with high tolerance of diverse functional groups.
Collapse
Affiliation(s)
- Koushik Mondal
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Payel Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
5
|
Wang G, Tan Y, Zou H, Sui X, Wang Z, Satz AL, Kuai L, Su W, Zhang Q. DNA-Compatible Cyclization Reaction to Access 1,3,4-Oxadiazoles and 1,2,4-Triazoles. Org Lett 2024; 26:1353-1357. [PMID: 38335275 DOI: 10.1021/acs.orglett.3c04240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
DNA-encoded chemical library (DECL) technology is a commonly employed screening platform in both the pharmaceutical industry and academia. To expand the chemical space of DECLs, new and robust DNA-compatible reactions are sought after. In particular, DNA-compatible cyclization reactions are highly valued, as these reactions tend to be atom economical and thus may provide lead- and drug-like molecules. Herein, we report two new methodologies employing DNA-conjugated thiosemicarbazides as a common precursor, yielding highly substituted 1,3,4-oxadiazoles and 1,2,4-triazoles. These two novel DNA-compatible reactions feature a high conversion efficiency and broad substrate scope under mild conditions that do not observably degrade DNA.
Collapse
Affiliation(s)
- Gaonan Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Yu Tan
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Hanzhi Zou
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Xihang Sui
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Zhanlong Wang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | | | - Letian Kuai
- WuXi AppTec, 55 Cambridge Parkway, 8th Floor, Cambridge, Massachusetts 02142, United States
| | - Wenji Su
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| | - Qi Zhang
- WuXi AppTec, 288 Fute Zhong Road, Waigaoqiao Free Trade Zone, Shanghai 200131, China
| |
Collapse
|
6
|
Rajan R, Karthikeyan S, Desikan R. Synthesis, Structural Elucidation, In Silico and In Vitro Studies of New Class of Methylenedioxyphenyl-Based Amide Derivatives as Potential Myeloperoxidase Inhibitors for Cardiovascular Protection. ACS OMEGA 2024; 9:7850-7868. [PMID: 38405500 PMCID: PMC10882620 DOI: 10.1021/acsomega.3c07555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/18/2023] [Accepted: 12/21/2023] [Indexed: 02/27/2024]
Abstract
Novel methylenedioxyphenyl-based amides, especially N-(4-methoxybenzyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (MDC) and N-(3-acetylphenyl)-6-nitrobenzo-[1,3]-dioxole-5-carboxamide (ADC), potential cardiovascular preventive agents, are successfully synthesized, and their chemical structures are verified by 1H and 13C NMR, Fourier transform infrared (FT-IR), high-resolution mass spectrometry (HRMS), and single-crystal X-ray diffraction (SC-XRD) analyses. Data obtained from SC-XRD reveal that MDC and ADC are both monoclinic molecules with Z = 2 and 4, respectively. From density functional theory (DFT) calculations, 3.54 and 3.96 eV are the energy gaps of the optimized MDC and ADC structures, respectively. MDC and ADC exhibit an electrophilicity index value of more than 1.5 eV, suggesting that they can act as an electrophile, facilitating bond formation with biomolecules. Hirshfeld surface analysis demonstrates that more than 25% of atomic interactions in both MDC and ADC are from H···H interactions. Based on pharmacokinetic predictions, MDC and ADC exhibit drug-like properties, and molecular docking simulations revealed favorable interactions with active site pockets. Both MDC and ADC achieved higher docking scores of -7.74 and -7.79 kcal/mol, respectively, with myeloperoxidase (MPO) protein. From docking results, MPO was found to be most favorable followed by dipeptidyl peptidase-4 (DPP-4) and α-glucosidase (α-GD). Antioxidant, anti-inflammatory, and in vitro enzymatic studies of MDC and ADC indicate that MDC is more selective toward MPO and more potent than ADC. The application of MDC to inhibit myeloperoxidase could be ascertained to reduce the cardiovascular risk factor. This can be supported from the results of computational docking (based on hydrogen bonding and docking score), in vitro antioxidant and anti-inflammatory properties, and MPO enzymatic inhibition (based on the percentage of inhibition and IC50 values).
Collapse
Affiliation(s)
- Reshma Rajan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| | - Sambantham Karthikeyan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| | - Rajagopal Desikan
- Department of Chemistry,
School of Advanced Sciences, Vellore Institute
of Technology, Vellore 632014, Tamilnadu, India
| |
Collapse
|
7
|
Liu Q, Liu X, Li Y, Zhou Y, Zhao L, Liang X, Liu H. Construction of Diversified Penta-Spiro-Heterocyclic and Fused-Heterocyclic Frameworks with Potent Antitumor Activity. Chemistry 2023; 29:e202301553. [PMID: 37370192 DOI: 10.1002/chem.202301553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 06/29/2023]
Abstract
Multiple-spiro/fused-heterocyclic frameworks containing indazolone are structurally unique and represent a class of potentially dominant skeletons. In this work, we successfully fulfilled Rh(III)-catalyst mediated substrate- and pH- controlled strategies to construct four novel types of complicated penta-spiro/fused-heterocyclic frameworks via C-H activation/[4+1] and [4+2] annulation cascades. This method had mild reaction conditions, a broad scope of substrates, moderate to good yields, and valuable applications, which could realize for the first time the generation of the novel di-spiro-heterocyclic and multiple fused-heterocyclic products with unique structures. More importantly, novel spiro[cyclohexane-indazolo[1,2-a]indazole] scaffold constructed by this method exhibited potent antitumor activity against a variety of refractory solid tumors and hematological malignancies in vitro. Overall, our work provided new insights into the construction of complex and diverse multiple spiro/fused-heterocyclic systems and offered novel valuable lead compounds for the discovery of antitumor drugs.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuyi Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yazhou Li
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yu Zhou
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Linxiang Zhao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Hong Liu
- State Key Laboratory of Drug Research Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, Liaoning, 110016, China
| |
Collapse
|
8
|
Kim K, Kim JH, Choi H, Lee B, Lee J, Ok KM, Lee TH, Kim H. Synthesis and Anti-Inflammatory Activity of N(2)-Arylindazol-3(2 H)-One Derivatives: Copper-Promoted Direct N-Arylation via Chan-Evans-Lam Coupling. Molecules 2023; 28:6706. [PMID: 37764482 PMCID: PMC10538006 DOI: 10.3390/molecules28186706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Inflammatory-related diseases are becoming increasingly prevalent, leading to a growing focus on the development of anti-inflammatory agents, with a particular emphasis on creating novel structural compounds. In this study, we present a highly efficient synthetic method for direct N-arylation to produce a variety of N(2)-arylindazol-3(2H)-ones 3, which exhibit anti-inflammatory activity. The Chan-Evans-Lam (CEL) coupling of N(1)-benzyl-indazol-3-(2H)-ones 1 with arylboronic acids 2 in the presence of a copper complex provided the corresponding N(2)-arylindazol-3(2H)-ones 3 in good-to-excellent yields, as identified with NMR, MS, and X-ray crystallography techniques. The cell viability and anti-inflammatory effects of the synthesized compounds (3 and 5) were briefly assessed using the MTT method and Griess assay. Among them, compounds 5 exhibited significant anti-inflammatory effects with negligible cell toxicity.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi, Republic of Korea
| | - Jeong Ho Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi, Republic of Korea
| | - Heejae Choi
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi, Republic of Korea
| | - Byeongno Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi, Republic of Korea
| | - Jihyun Lee
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Kang Min Ok
- Department of Chemistry, Sogang University, Seoul 04107, Republic of Korea
| | - Tae Hoon Lee
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi, Republic of Korea
| | - Hakwon Kim
- Department of Applied Chemistry, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin-si 17104, Gyeonggi, Republic of Korea
| |
Collapse
|
9
|
Zhang L, Yan H, Fan Y, Luo X, Pan Y, Liu Y, Cai Y, Xia Q. Cu-Catalyzed Regioselective C-H Amination of 2 H-Indazoles for the Synthesis of Indazole-Containing Indazol-3(2 H)-ones. J Org Chem 2023; 88:5731-5744. [PMID: 36996408 DOI: 10.1021/acs.joc.3c00187] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2023]
Abstract
A copper-catalyzed C3 amination of 2H-indazoles with 2H-indazoles and indazol-3(2H)-ones under mild conditions was developed. A series of indazole-containing indazol-3(2H)-one derivatives were produced in moderate to excellent yields. The mechanistic studies suggest that the reactions probably proceed through a radical pathway.
Collapse
Affiliation(s)
- Lina Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Hang Yan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yueyue Fan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiande Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingqiao Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yishu Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuepiao Cai
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qinqin Xia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
10
|
Bai J, Li S, Zhu R, Li Y, Li W. B 2(OH) 4-Mediated Reductive Transamidation of N-Acyl Benzotriazoles with Nitro Compounds En Route to Aqueous Amide Synthesis. J Org Chem 2023; 88:3714-3723. [PMID: 36888556 DOI: 10.1021/acs.joc.2c02995] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
We herein developed a reductive transamidation reaction between N-acyl benzotriazoles (AcBt) and organic nitro compounds or NaNO2 under mild conditions. This protocol employed the stable and readily available B2(OH)4 as the reducing agent and H2O as the ideal solvent. N-Deuterated amides can be synthesized when conducting the reaction in D2O. A reasonable reaction mechanism involving bond metathesis between the AcBt amide and amino boric acid intermediate was proposed to explain the unique nature of AcBt.
Collapse
Affiliation(s)
- Jin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Shangzhang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Riqian Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Yang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Wanfang Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| |
Collapse
|
11
|
Panjacharam P, Ulabala V, Jayakumar J, Rajasekhara Reddy S. Emerging trends in the sustainable synthesis of N-N bond bearing organic scaffolds. Org Biomol Chem 2023; 21:2632-2652. [PMID: 36883312 DOI: 10.1039/d3ob00300k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
Abstract
N-N bond bearing organic frameworks such as azos, hydrazines, indazoles, triazoles and their structural moieties have piqued the interest of organic chemists due to the intrinsic nitrogen electronegativity. Recent methodologies with atom efficacy and a greener approach have overcome the synthetic obstacles of N-N bond construction from N-H. As a result, a wide range of amine oxidation methods have been reported early on. This review's vision emphasizes the emerging methods of N-N bond formation, particularly photo, electro, organo and transition metal free chemical methods.
Collapse
Affiliation(s)
| | - Vijayasree Ulabala
- Department of Chemistry, Rajiv Gandhi University of Knowledge Technology (RGUKT), Nuzvid 521202, India.
| | | | | |
Collapse
|
12
|
Zhao G, Wang H, Luo J, He X, Xiong F, Li Y, Zhang G, Li Y. Multicomponent DNA-Compatible Synthesis of an Annelated Benzodiazepine Scaffold for Focused Chemical Libraries. Org Lett 2023; 25:665-670. [PMID: 36693020 DOI: 10.1021/acs.orglett.2c04293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Annelated benzodiazepines are attractive drug-like scaffolds with a broad spectrum of biological activities. Incorporation of this heterocyclic core into DNA-encoded chemical libraries (DELs) via multicomponent assembly is highly demanded. Herein, we developed a DNA-compatible method to generate the tricyclic benzodiazepine scaffold via catalyst-free three-component condensation using a broad range of aldehyde, o-phenylenediamine, and diketone sources. With either aldehyde or o-phenylenediamine conjugated with DNA tags, functionalized 1,5-benzodiazepine scaffolds were efficiently forged, expanding the chemical space of the diazepine-centered drug-like DEL.
Collapse
Affiliation(s)
- Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Huihong Wang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Pharmaceutical Department of Chongqing Three Gorges Central Hospital, Chongqing University Three Gorges Hospital, 404100 Chongqing, P. R. China
| | - Jie Luo
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Xun He
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Feng Xiong
- Shenzhen Innovation Center for Small Molecule Drug Discovery Co., Ltd., Shenzhen 518110, China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
13
|
Gao Y, Sun Y, Zhao G, Zhang G, Li Y, Li Y. On-DNA Synthesis of Functionalized 4 H-Pyran Scaffolds for Focused DNA-Encoded Chemical Libraries. Org Lett 2022; 24:6664-6669. [PMID: 36053053 DOI: 10.1021/acs.orglett.2c02714] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The functionalized 4H-pyran scaffold has aroused synthetic attention because it is widely found in many interesting pharmacologically relevant compounds. We here disclose its incorporation into DNA-encoded chemical libraries, combining this scaffold with the merits of scaffold architecture in drug design. Under the optimized DNA-compatible conditions, functionalized 4H-pyrans were efficiently formed with a broad substrate scope. Among the 4H-pyrans formed, the axial structure features rotational restriction, and the spirocyclic structure provides rigidity and three-dimensionality. These efforts open the door for the construction of DNA-encoded chemical libraries with more consideration for this structural architecture.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, P. R. China.,Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, P. R. China.,Beijing National Laboratory for Molecular Sciences, Beijing 100190, P. R. China
| |
Collapse
|
14
|
Chandran R, Sharma A, Tiwari KN. Molecular Rearrangement of 2‐Substituted Indazolones: Unorthodox Access to 2‐Carboxylate‐2,3‐dihydroquinazolin‐4‐(1H)‐one Scaffold. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- R. Chandran
- National Institute of Pharmaceutical Education and Research Raebareli Department of Medicinal Chemistry INDIA
| | - Abha Sharma
- National Institute of Pharmaceutical Education and Research Raebareli Department of Medicinal Chemistry INDIA
| | - Keshri Nath Tiwari
- Sanjay Ghodawat University Kolhapur Department of Chemistry Atigre 416118 Kolhapur INDIA
| |
Collapse
|
15
|
Bieniek JC, Grünewald M, Winter J, Schollmeyer D, Waldvogel SR. Electrochemical Synthesis of
N
,
N
’‑ Disubstituted Indazolin-3-ones via Intramolecular Anodic DehydrogenativeN-NCoupling Reaction. Chem Sci 2022; 13:8180-8186. [PMID: 35919432 PMCID: PMC9278119 DOI: 10.1039/d2sc01827f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022] Open
Abstract
The use of electricity as a traceless oxidant enables a sustainable and novel approach to N,N′-disubstituted indazolin-3-ones by an intramolecular anodic dehydrogenative N–N coupling reaction. This method is characterized by mild reaction conditions, an easy experimental setup, excellent scalability, and a high atom economy. It was used to synthesize various indazolin-3-one derivatives in yields up to 78%, applying inexpensive and sustainable electrode materials and a low supporting electrolyte concentration. Mechanistic studies, based on cyclic voltammetry experiments, revealed a biradical pathway. Furthermore, the access to single 2-aryl substituted indazolin-3-ones by cleavage of the protecting group could be demonstrated. A novel sustainable electrochemical synthetic route to N,N′-disubstituted indazolin-3-ones by direct anodic oxidation with mild reaction conditions, a simple galvanostatic setup, broad scope and excellent scalability is established.![]()
Collapse
Affiliation(s)
- Jessica C Bieniek
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Michele Grünewald
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Johannes Winter
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Dieter Schollmeyer
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| | - Siegfried R Waldvogel
- Department of Chemistry, Johannes Gutenberg University Duesbergweg 10-14 Mainz 55128 Germany https://www.aksw.uni-mainz.de/
| |
Collapse
|
16
|
Gao Y, Sun Y, Fang X, Zhao G, Li X, Zhang G, Li Y, Li Y. Development of on-DNA vinyl sulfone synthesis for DNA-encoded chemical libraries. Org Chem Front 2022. [DOI: 10.1039/d2qo00881e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We present the development of an efficient synthetic route to generate a DNA-compatible vinyl sulfone functional group, and the subsequent chemical transformations demonstrated the feasibility of our method in DEL construction.
Collapse
Affiliation(s)
- Yuting Gao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yang Sun
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xianfu Fang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Guixian Zhao
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Xufeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Gong Zhang
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yangfeng Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
| | - Yizhou Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Chongqing University, 401331 Chongqing, P. R. China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400044 Chongqing, P. R. China
- Beijing National Laboratory for Molecular Sciences, 100190 Beijing, P. R. China
| |
Collapse
|
17
|
Bhattacharjee S, Laru S, Hajra A. Hypervalent iodine( iii)-mediated oxidative dearomatization of 2 H-indazoles towards indazolyl indazolones. Org Biomol Chem 2022; 20:8893-8897. [DOI: 10.1039/d2ob01776h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We accomplished a [bis(trifluoroacetoxy)iodo]benzene mediated oxidative dearomatization of 2H-indazoles, obtaining a new family of N-1 indazolyl indazolone derivatives in good to excellent yields through C–N and C–O bond formations.
Collapse
Affiliation(s)
- Suvam Bhattacharjee
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, West Bengal, India
| |
Collapse
|
18
|
Qi J, Liu S, Seydimemet M, Wang X, Lu X. A General Set of DNA-Compatible Reactions for Preparing DNA-Tagged Multisubstituted Pyrroles. Bioconjug Chem 2021; 32:2290-2294. [PMID: 34699185 DOI: 10.1021/acs.bioconjchem.1c00427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
DNA-encoded library (DEL) technology provided a powerful screening platform for identifying potential bioactive small molecules with high affinity to biologically interesting targets. Essential to a successful DEL campaign are the drug-like small molecular moieties of DNA-encoded libraries with expanded chemical space. Our laboratory has been working on developing and producing novel DNA-encoded libraries that complement current reported DELs. Herein, we demonstrated a general set of DNA-compatible reactions that enable the preparation of pyrrole-based DNA-encoded libraries in which the DNA tags are linked to the N position of the pyrrole central core. Further diversification could be rapidly incorporated into the pyrrole scaffold by robust iodination and Suzuki coupling reactions.
Collapse
Affiliation(s)
- Jingjing Qi
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
| | - Sixiu Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mengnisa Seydimemet
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
| | - Xuan Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
| | - Xiaojie Lu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Road, Zhang Jiang Hi-Tech Park, Pudong, Shanghai, 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| |
Collapse
|
19
|
Fair RJ, Walsh RT, Hupp CD. The expanding reaction toolkit for DNA-encoded libraries. Bioorg Med Chem Lett 2021; 51:128339. [PMID: 34478840 DOI: 10.1016/j.bmcl.2021.128339] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/13/2021] [Accepted: 08/20/2021] [Indexed: 12/30/2022]
Abstract
Over the past decade, DNA-encoded libraries (DELs) have emerged as a leading platform for small molecule drug discovery among pharmaceutical companies, biotech companies and academic drug hunters alike. This revolutionary technology has tremendous potential that is yet to be fully realized, as the exploration of therapeutically relevant chemical space is fueled by the ever-expanding repertoire of DNA-compatible reactions used to construct the libraries. Advances in direct coupling reactions, like photo-catalytic cross couplings, unique cyclizations such as the formation of 1,2,4-oxadiazoles, and new functional group transformations are valuable contributions to the DEL reaction toolkit, and indicate where future reaction development efforts should focus in order to maximize the productivity of DELs.
Collapse
Affiliation(s)
| | - Ryan T Walsh
- X-Chem Inc., 100 Beaver Street, Waltham, MA 02453, USA
| | | |
Collapse
|
20
|
Wu R, Du T, Sun W, Shaginian A, Gao S, Li J, Wan J, Liu G. Functionalization of DNA-Tagged Alkenes Enabled by Visible-Light-Induced C–H Activation of N-Aryl Tertiary Amines. Org Lett 2021; 23:3486-3490. [DOI: 10.1021/acs.orglett.1c00924] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Rongfeng Wu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Wenbo Sun
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc., Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu 610200, Sichuan, P. R. China
| |
Collapse
|
21
|
Park JH, Wang HM, Shin MH, Lim H. Synthesis of a
DNA‐Encoded
Library of Pyrrolo[2,3
‐d
]pyrimidines. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Jun Hyung Park
- Department of Chemistry and Division of Advanced Material Science Pohang University of Science and Technology (POSTECH), Pohang 37673 South Korea
| | - Hee Myeong Wang
- Department of Chemistry and Division of Advanced Material Science Pohang University of Science and Technology (POSTECH), Pohang 37673 South Korea
| | - Min Hyeon Shin
- Department of Chemistry and Division of Advanced Material Science Pohang University of Science and Technology (POSTECH), Pohang 37673 South Korea
- POSTECH Biotech Center Pohang 37673 South Korea
| | - Hyun‐Suk Lim
- Department of Chemistry and Division of Advanced Material Science Pohang University of Science and Technology (POSTECH), Pohang 37673 South Korea
| |
Collapse
|
22
|
Wu R, Gao S, Du T, Cai K, Cheng X, Fan J, Feng J, Shaginian A, Li J, Wan J, Liu G. Exploring Aldol Reactions on DNA and Applications to Produce Diverse Structures: An Example of Expanding Chemical Space of DNA-Encoded Compounds by Diversity-Oriented Synthesis. Chem Asian J 2020; 15:4033-4037. [PMID: 33119184 DOI: 10.1002/asia.202001105] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/19/2020] [Indexed: 12/27/2022]
Abstract
A DNA-encoded chemical library (DECL) is built with combinatorial chemistry, which works by bringing chemical fragments together to generate diverse structures. However, chemical diversity of DNA-encoded chemical libraries is often limited by DNA compatible synthetic reactions. This report shows a conceptual strategy to expand chemical space of DNA-encoded chemical libraries by incorporation of diversity-oriented synthesis in DECL synthesis. We developed Aldol reactions on DNA in a combinatorial way. After obtaining DNA-tagged α, β-unsaturated ketones which represent important chemical intermediates, many distinct structures with skeletal diversities are achieved by diversity-oriented synthesis.
Collapse
Affiliation(s)
- Rongfeng Wu
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Sen Gao
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Tian Du
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Kunliang Cai
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Xuemin Cheng
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jing Fan
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jing Feng
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Alex Shaginian
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jin Li
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Jinqiao Wan
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| | - Guansai Liu
- HitGen Inc. Building 6, No 8 Huigu 1st East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, P. R. China
| |
Collapse
|