1
|
Pal S, Nandi R, Manna AS, Bag D, Rahaman R, Maiti DK. Cu(I)-Catalyzed C(sp 3)-H Functionalization of Amino Acids with Benzimidate and Reactive Oxygen Species (ROS) To Synthesize Triazines and 2-Pyrrolidinones. Org Lett 2024. [PMID: 39526848 DOI: 10.1021/acs.orglett.4c03536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
An easily accessible Cu(I)-catalyzed regioselective oxidative C-N/C-O cross-coupling organic transformation has been disclosed for the syntheses of variably functionalized triazines and N-benzoylpyrrolidin-2-ones through the involvement of C(sp3)-H bond functionalization, which is unknown in the literature. This general synthetic method is extended for decarboxylative oxidation of amino acids to install carbonyl functionality. It facilitates the formation of 2-3 new bonds through the cross-coupling strategy involving benzimidates, amino acids, and in situ-generated reactive oxygen species (ROS) from the aerial O2 as the sole oxidant. The key utilities of the new reactions are demonstrated by its operational simplicity, regioselectivity, robustness, and broad substrate scope with high yields.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Debanjana Bag
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata-700009, India
| |
Collapse
|
2
|
Zhang G, Feng B, Wang Y, Chen J, Ma X, Song Q. 1,1-Oxycarbonation of Terminal Alkynes via Sequential Borylation, 1,2-Migration, and Oxidation with Oxone. Org Lett 2024; 26:3109-3113. [PMID: 38552168 DOI: 10.1021/acs.orglett.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Alkynes are readily available and multifunctional synthetic intermediates, but their 1,1-oxofunctionalization remains challenging. Herein, we report a 1,1-oxycarbonation of terminal alkynes to construct ketones through sequential borylation, 1,2-carbon migration, and oxidation with Oxone as the proton source and oxidant. The synthetic potential of this transformation is showcased by the broad functional groups, scale-up synthesis, and diverse product transformations.
Collapse
Affiliation(s)
- Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yutong Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinglong Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Pal S, Nandi R, Manna AS, Aich S, Maiti DK. Cu I-Catalyzed Radical Reaction of Benzimidates to Form Valuable 4,5-Dihydrooxazoles through Regioselective Aerobic Oxidative Cross-Coupling. J Org Chem 2024; 89:2703-2717. [PMID: 38295826 DOI: 10.1021/acs.joc.3c02773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A straightforward Cu(I)-catalyzed oxidative cross-coupled organic transformation has been developed under mild conditions for the construction of functionalized 4,5-dihydrooxazoles through a four-bond-forming regiocontrolled C-C/C-N/C-O coupling strategy emerging benzimidates, paraformaldehyde, and 1,3-diketo analogues using eco-friendly O2 as the sole oxidant. The fundamental features of these designed approaches involve operational simplicity, selectivity, generality, and a broad substrate scope with high yields under the same reaction conditions.
Collapse
Affiliation(s)
- Subhasis Pal
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Rajesh Nandi
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Anindya S Manna
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Shobhon Aich
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
4
|
Bhat MUS, Ganie MA, Shah BA. Metal-Free Tunable 1,2-Difunctionalization of Terminal Alkynes: Synthesis of β-Substituted α,β-Unsaturated Ketones. Chemistry 2023; 29:e202302294. [PMID: 37691543 DOI: 10.1002/chem.202302294] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/25/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
A metal-free tunable 1,2-difunctionalization of the terminal alkynes showcasing a tandem installation of C-C and C-S bonds has been developed. The key enabling factor for the approach is the use of acetic acid as an acyl source to synthesize β-substituted α,β-unsaturated ketones. The reaction at room temperature leads to the regioselective acylation at the terminal carbon of alkynes, whereas at -78 °C, the acylation occurs at the more substituted carbon.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| | - Majid Ahmad Ganie
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| | - Bhahwal Ali Shah
- Natural Product and Medicinal Chemistry Division, Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu, 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 20002, India
| |
Collapse
|
5
|
Bleton O, Beaucage N, Guerrero-Morales J, Collins SK. Photocatalytic Thiol-Yne Reactions of Alkynyl Sulfides. J Org Chem 2023. [PMID: 38019972 DOI: 10.1021/acs.joc.3c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Thiol-yne reactions typically employ thiols and terminal alkynes as the reaction partners. The thiol-yne reaction of alkynyl sulfides and thiols is possible when employing a nonmetal photocatalyst eosin Y, green LED irradiation, under an air atmosphere. Alkynyl sulfides were transformed in good overall yields (58-90% total yields, 11 examples) favoring the cis isomer. No addition to the α-position of the alkynyl sulfide is observed, and regioselectivity is believed to be controlled through the stabilization of radical intermediates by the adjacent sulfur atom. Furthermore, control experiments with "all-carbon" internal alkynes demonstrate that alkynyl sulfides possess improved reactivity and regioselectivity profiles during thiol-yne processes.
Collapse
Affiliation(s)
- Oliver Bleton
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Noémie Beaucage
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Javier Guerrero-Morales
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| | - Shawn K Collins
- Département de Chimie, Centre for Green Chemistry and Catalysis, Université de Montréal, Complexe des Sciences, 1375 Avenue Thérèse-Lavoie-Roux, Montréal H2 V 0B3, Québec, Canada
| |
Collapse
|
6
|
Kumar S, Ali Shah B. Exploring the Divergent Reactivity of Vinyl Radicals Emanating from Alkynes and Thiols via Photoredox Catalysis. Chem Asian J 2023; 18:e202300693. [PMID: 37656003 DOI: 10.1002/asia.202300693] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 08/30/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
Organic chemistry has seen a surge in visible-light-driven transformations, which offer unique reaction pathways and access to new synthetic possibilities. We aim to provide a comprehensive understanding of state-of-the-art photo-mediated alkyne functionalization, with a focus on the reactive behavior of vinyl radicals. This review outlines our contributions to the field, including developing new methods for forming carbon-carbon and carbon-heteroatom bonds.
Collapse
Affiliation(s)
- Sourav Kumar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Natural Products & Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
7
|
Sahoo AK, Rakshit A, Pan A, Dhara HN, Patel BK. Visible/solar-light-driven thiyl-radical-triggered synthesis of multi-substituted pyridines. Org Biomol Chem 2023; 21:1680-1691. [PMID: 36723155 DOI: 10.1039/d3ob00009e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
A light-triggered synthesis of thio-functionalized pyridines is demonstrated using γ-ketodinitriles, thiols, and eosin Y as the photocatalyst. The reaction proceeds via the selective attack on one of the cyano groups by an in situ generated thiyl radical. The reaction also proceeds with nearly equal efficiency using direct sunlight. Large-scale synthesis and a few useful synthetic transformations of the substituted pyridines are also performed.
Collapse
Affiliation(s)
- Ashish Kumar Sahoo
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Avishek Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Hirendra Nath Dhara
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India.
| |
Collapse
|
8
|
Hou YJ, Li Y, Zhao ZW, Fan TG, Sun BX, Wang XN, Li YM. Oxidative Dehydrogenative Coupling of Thiols with Alkanes for the Synthesis of Sulfoxides. Org Lett 2023; 25:517-521. [PMID: 36649602 DOI: 10.1021/acs.orglett.2c04238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An oxidative dehydrogenative coupling of thiols with alkanes via direct C(sp3)-H bond functionalization to form a new C-S bond and S═O double bond was developed. The present reaction features the use of readily available reagents and high step- and atom-efficiency, thus providing an efficient access to sulfoxides. A possible mechanism is proposed.
Collapse
Affiliation(s)
- Yu-Jian Hou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Yi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhi-Wei Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Tai-Gang Fan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Bo-Xun Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xu-Nan Wang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Ya-Min Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
9
|
Ganie MA, Bhat MUS, Rizvi MA, Raheem S, Shah BA. Photoredox-Promoted Selective Synthesis of C-5 Thiolated 2-Aminothiazoles from Terminal Alkynes. Org Lett 2022; 24:7757-7762. [PMID: 36240126 DOI: 10.1021/acs.orglett.2c03064] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A mild photoredox approach enabling the first one-step synthesis of thiolated 2-aminothiazoles has been reported. Notably, the incorporation of thio group on electron-rich heteroarenes such as aminothiazoles via conventional nucleophilic aromatic substitution (SNAr) presents a significant challenge owing to polarity mismatch. Herein, we present a remarkable site-selective installation of thio group at the C-5 position of the electron-rich aminothiazole skeleton and successfully used them for the postfunctionalization of drugs and natural products.
Collapse
Affiliation(s)
- Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
10
|
Rahaman R, Hoque MT, Maiti DK. Organophotoredox-Catalyzed Sulfurization of Alkenes and Alkynes: Selective and Controlled Synthesis of Sulfoxides, β-Hydroxysulfoxides, and β-Keto Sulfides. Org Lett 2022; 24:6885-6890. [PMID: 36129312 DOI: 10.1021/acs.orglett.2c02307] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A visible-light organophotoredox-catalyzed sulfurization of alkenes and alkynes with aromatic and heteroaromatic thiols using eco-friendly air (O2) as the sole oxidant has been demonstrated. The established method delivers a novel, benign, and metal-free strategy for the difunctionalization of alkenes and alkynes using organophotoredox catalyst Eosin Y. The selective and controlled synthetic approach shows good substrate generality to afford sulfoxides, β-hydroxysulfoxides, and β-keto sulfides in high yield and excellent regioselectivity.
Collapse
Affiliation(s)
- Rajjakfur Rahaman
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Md Tanjul Hoque
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92 A. P. C. Road, Kolkata 700009, India
| |
Collapse
|
11
|
Guo Z, Li K, Li H, Wang X, Zhang J, Xie M. Acid‐Promoted Carbon‐Carbon Triple Bond Cleavage of Ynones for the Synthesis of Benzo[
d
]oxazoles/Benzo[
d
]thiazoles and 1‐Arylethan‐1‐ones. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zi‐Yi Guo
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Ke‐Ru Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Hang Li
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Xu Wang
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Ji‐Tan Zhang
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| | - Mei‐Hua Xie
- Key Laboratory of Functional Molecular Solids (Ministry of Education) Anhui Key Laboratory of Molecular Based Materials College of Chemistry and Materials Science Anhui Normal University Wuhu 241002 China
| |
Collapse
|
12
|
Bhat MUS, Ganie MA, Rizvi MA, Raheem S, Shah BA. Photoredox Catalyzed Thioformylation of Terminal Alkynes Using Nitromethane as a Formyl Source. Org Lett 2022; 24:6658-6663. [PMID: 36047745 DOI: 10.1021/acs.orglett.2c02695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A photoredox thioformylation of terminal alkynes using nitromethane as a formyl anion equivalent, thereby leading to the synthesis of (E)-1,2-difunctionalized acrylaldehyde, has been described. The current strategy introduces an adaptable aldehyde function across an alkyne and offers a new route to synthesizing α-alkyl/aryl aldehydes.
Collapse
Affiliation(s)
- Muneer-Ul-Shafi Bhat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Majid Ahmad Ganie
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
13
|
Ganie MA, Bhat MUS, Rizvi MA, Raheem S, Shah BA. Synthesis of 1,2-oxazetidines with a free -NH group via photoredox catalysis. Chem Commun (Camb) 2022; 58:8508-8511. [PMID: 35801422 DOI: 10.1039/d2cc02892a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
A photoredox approach enabling one-step synthesis of oxazetidines with a free -NH group via the combined use of alkyne, thiophenol, and azide has been reported. The synthesized oxazetidine with the free -NH group was stable enough for various late-stage transformations such as methylation, acetylation, tosylation, and ring-opening reaction to afford synthetically useful α-aminoketones.
Collapse
Affiliation(s)
- Majid Ahmad Ganie
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Muneer-Ul-Shafi Bhat
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | | | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad-201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| |
Collapse
|
14
|
Kumar S, Kumar J, Naqvi T, Raheem S, Rizvi MA, Shah BA. Synthesis of (E)‐β‐Iodovinyl Sulfones via Photoredox Catalyzed Difunctionalization of Terminal Alkynes. CHEMPHOTOCHEM 2022. [DOI: 10.1002/cptc.202200110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sourav Kumar
- IIIM: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine Natural Product & Medicinal Chemistry INDIA
| | - Jaswant Kumar
- IIIM: Council of Scientific & Industrial Research Indian Institute of Integrative Medicine Natural Product & Medicinal Chemistry INDIA
| | - Tahira Naqvi
- Govt College for Women, MA Road, Srinagar Chemistry INDIA
| | | | | | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine CSIR Natural Product Chemistry Microbes Canal Road 180001 Jammu INDIA
| |
Collapse
|
15
|
Murray PD, Cox JH, Chiappini ND, Roos CB, McLoughlin EA, Hejna BG, Nguyen ST, Ripberger HH, Ganley JM, Tsui E, Shin NY, Koronkiewicz B, Qiu G, Knowles RR. Photochemical and Electrochemical Applications of Proton-Coupled Electron Transfer in Organic Synthesis. Chem Rev 2022; 122:2017-2291. [PMID: 34813277 PMCID: PMC8796287 DOI: 10.1021/acs.chemrev.1c00374] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Indexed: 12/16/2022]
Abstract
We present here a review of the photochemical and electrochemical applications of multi-site proton-coupled electron transfer (MS-PCET) in organic synthesis. MS-PCETs are redox mechanisms in which both an electron and a proton are exchanged together, often in a concerted elementary step. As such, MS-PCET can function as a non-classical mechanism for homolytic bond activation, providing opportunities to generate synthetically useful free radical intermediates directly from a wide variety of common organic functional groups. We present an introduction to MS-PCET and a practitioner's guide to reaction design, with an emphasis on the unique energetic and selectivity features that are characteristic of this reaction class. We then present chapters on oxidative N-H, O-H, S-H, and C-H bond homolysis methods, for the generation of the corresponding neutral radical species. Then, chapters for reductive PCET activations involving carbonyl, imine, other X═Y π-systems, and heteroarenes, where neutral ketyl, α-amino, and heteroarene-derived radicals can be generated. Finally, we present chapters on the applications of MS-PCET in asymmetric catalysis and in materials and device applications. Within each chapter, we subdivide by the functional group undergoing homolysis, and thereafter by the type of transformation being promoted. Methods published prior to the end of December 2020 are presented.
Collapse
Affiliation(s)
- Philip
R. D. Murray
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - James H. Cox
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nicholas D. Chiappini
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Casey B. Roos
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | | | - Benjamin G. Hejna
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Suong T. Nguyen
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Hunter H. Ripberger
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Jacob M. Ganley
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Elaine Tsui
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Nick Y. Shin
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Brian Koronkiewicz
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Guanqi Qiu
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| | - Robert R. Knowles
- Department of Chemistry, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
16
|
Xiao Q, Tong QX, Zhong JJ. Recent Advances in Visible-Light Photoredox Catalysis for the Thiol-Ene/Yne Reactions. Molecules 2022; 27:molecules27030619. [PMID: 35163886 PMCID: PMC8839682 DOI: 10.3390/molecules27030619] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/14/2022] [Accepted: 01/17/2022] [Indexed: 02/04/2023] Open
Abstract
Visible-light photoredox catalysis has been established as a popular and powerful tool for organic transformations owing to its inherent characterization of environmental friendliness and sustainability in the past decades. The thiol-ene/yne reactions, the direct hydrothiolation of alkenes/alkynes with thiols, represents one of the most efficient and atom-economic approaches for the carbon-sulfur bonds construction. In traditional methodologies, harsh conditions such as stoichiometric reagents or a specialized UV photo-apparatus were necessary suffering from various disadvantages. In particular, visible-light photoredox catalysis has also been demonstrated to be a greener and milder protocol for the thiol-ene/yne reactions in recent years. Additionally, unprecedented advancements have been achieved in this area during the past decade. In this review, we will summarize the recent advances in visible-light photoredox catalyzed thiol-ene/yne reactions from 2015 to 2021. Synthetic strategies, substrate scope, and proposed reaction pathways are mainly discussed.
Collapse
Affiliation(s)
- Qian Xiao
- School of Chemistry and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China;
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
| | - Qing-Xiao Tong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| | - Jian-Ji Zhong
- Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Department of Chemistry, Shantou University, Shantou 515063, China
- The Chemistry and Chemical Engineering Laboratory of Guangdong Province, Shantou 515063, China
- Correspondence: (Q.-X.T.); (J.-J.Z.)
| |
Collapse
|
17
|
Zheng Y, Qian S, Xu P, Zheng B, Huang S. Electrochemical Oxidative Thiocyanosulfonylation of Aryl Acetylenes. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202209041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Kumar J, Ahmed A, Kumar S, Raheem S, Rizvi MA, Shah BA. Visible light-mediated synthesis of α-alkoxy/hydroxy diarylacetaldehydes from terminal alkynes. NEW J CHEM 2022. [DOI: 10.1039/d2nj01614a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light-mediated approach enabling the use of alcohols as nucleophiles in a one-step synthesis of α-alkoxy/hydroxy diarylacetaldehydes is reported.
Collapse
Affiliation(s)
- Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Ajaz Ahmed
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Sourav Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar, 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad, 201002, India
- Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu, 180001, India
| |
Collapse
|
19
|
Shah IH, Kumar S, Kumar J, Raheem S, Rizvi MA, Shah BA. Visible‐Light‐Mediated Synthesis of α‐Halomethyl Ketones from Terminal Alkynes. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Iftkhar Hussain Shah
- Academy of Scientific and Industrial Research (AcSIR) Ghaziabad 201002 India
- Natural Product & Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Sourav Kumar
- Academy of Scientific and Industrial Research (AcSIR) Ghaziabad 201002 India
- Natural Product & Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR) Ghaziabad 201002 India
- Natural Product & Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| | | | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR) Ghaziabad 201002 India
- Natural Product & Medicinal Chemistry CSIR-Indian Institute of Integrative Medicine Canal Road Jammu 180001 India
| |
Collapse
|
20
|
Mamat M, Liu C, Abdukerem D, Abdukader A. A visible-light-induced thiol addition/aerobic oxidation cascade reaction of epoxides and thiols for the synthesis of β-hydroxylsulfoxides. Org Biomol Chem 2021; 19:9855-9859. [PMID: 34761765 DOI: 10.1039/d1ob01826d] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A photochemical thiol addition/aerobic oxidation cascade reaction has been developed. This protocol enables efficient oxidative coupling of epoxides and thiols to access structurally valuable β-hydroxylsulfoxides. A broad range of functional groups are compatible to obtain moderate to good yields of the target products. Mechanistic studies revealed a sequential reaction pathway involving base-promoted thiol addition of thiols to epoxides and visible-light-induced aerobic oxygenation of thioethers.
Collapse
Affiliation(s)
- Marhaba Mamat
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| | - Changhong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| | - Dilshat Abdukerem
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| | - Ablimit Abdukader
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources; College of Chemistry, Xinjiang University, Shengli Road 666, Urumqi, 830046, P. R. China.
| |
Collapse
|
21
|
Wang J, Liu M, Zhang Y, Bi G, Zhao Y, Yang K, Huang X. Switchable Synthesis of Sulfoxides and α-Alkoxy-β-ketothioethers Regulated by Temperature in a Selectfluor-Methanol System. J Org Chem 2021; 86:14404-14419. [PMID: 34643084 DOI: 10.1021/acs.joc.1c01146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A switchable and benign protocol for chemoselective synthesis of sulfoxides and α-alkoxy-β-ketothioethers has been developed. It was determined that various thiophenols and alkenes/alkynes are compatible to realize the target compounds from a medium to a high yield by regulating the reaction temperature. In particular, methanol not only served as a solvent but also participated in the reaction process as a hydrogen donor. In this study, Selectfluor has been proved to be an efficient multifunctional reagent in the reaction system.
Collapse
Affiliation(s)
- Jiateng Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| | - Mengxia Liu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| | - Yue Zhang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| | - Gehua Bi
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| | - Yi Zhao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| | - Kai Yang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| | - Xin Huang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, Shandong, P. R. China
| |
Collapse
|
22
|
Chalotra N, Shah IH, Raheem S, Rizvi MA, Shah BA. Visible-Light-Promoted Oxidative Annulation of Naphthols and Alkynes: Synthesis of Functionalized Naphthofurans. J Org Chem 2021; 86:16770-16784. [PMID: 34726928 DOI: 10.1021/acs.joc.1c01992] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A visible-light-mediated site-selective oxidative annulation of naphthols with alkynes for the synthesis of functionalized naphthofurans has been developed. The reaction relies on the in situ formation of an electron donor acceptor pair between phenylacetylene and thiophenol as the light-absorbing system to obviate the requirement of an added photocatalyst. The protocol facilitates the transformation of 1-naphthol and 2-naphthol as well as 1,4-naphthoquinone into a wide variety of highly functionalized naphthofurans.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Iftkhar Hussain Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Shabnam Raheem
- Department of Chemistry, University of Kashmir, Srinagar 190006, India
| | | | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| |
Collapse
|
23
|
Chalotra N, Kumar J, Naqvi T, Shah BA. Photocatalytic functionalizations of alkynes. Chem Commun (Camb) 2021; 57:11285-11300. [PMID: 34617556 DOI: 10.1039/d1cc04014f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, β-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Tahira Naqvi
- Govt. College for Women, MA Road, Srinagar 190001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
24
|
Manhas FM, Raheem S, Kumar J, Thakur P, Rizvi MA. A photosensitized metal free approach to α‐ketoamides:sequential oxidative amidationdiketonization of terminal alkynes. ChemistrySelect 2021. [DOI: 10.1002/slct.202101511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Farah Manzer Manhas
- Department of Chemistry Shoolini University Solan, Himachal Pradesh 173212 India
| | - Shabnam Raheem
- Department of Chemistry University of Kashmir Srinagar 190006, J&K India
| | - Jaswant Kumar
- Natural Product and Medicinal Chemistry Division CSIR-Indian Institute of Integrative Medicine Jammu 180001 India
| | - Pankaj Thakur
- Department of Environmental Sciences Central University of Himachal Pradesh Dharmshala 176215 India
| | - Masood Ahmad Rizvi
- Department of Chemistry University of Kashmir Srinagar 190006, J&K India
| |
Collapse
|
25
|
Day DP, Vargas JAM, Burtoloso ACB. Synthetic Routes Towards the Synthesis of Geminal α-Difunctionalized Ketones. CHEM REC 2021; 21:2837-2854. [PMID: 33533538 DOI: 10.1002/tcr.202000176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/11/2021] [Indexed: 12/25/2022]
Abstract
The importance of gem-difunctionalized ketones is represented by their broad applications across chemical boundaries over recent years. The interesting reactivities that this class of compounds possess have made them ideal building blocks to access high-value organic molecules. Furthermore, the gem-difunctionalized ketone moiety has featured in numerous bioactive molecules. For these reasons, a plethora of routes to access such significant molecules have been developed by research groups worldwide - this account looks at delineating the synthesis of gem-difunctionalized ketones from carbonyl substrates, diazo compounds, sulfur ylides and alkynyl reactants.
Collapse
Affiliation(s)
- David P Day
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| | - Jorge A M Vargas
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil.,Facultad de Ciencias Básicas, Universidad Santiago de Cali, Calle 5 # 62-00 Campus Pampalinda, Santiago de Cali, Colombia
| | - Antonio C B Burtoloso
- Instituto de Química de São Carlos, Universidade de São Paulo, CEP 13560-970, São Carlos, SP, Brasil
| |
Collapse
|
26
|
Manzer Manhas F, Kumar J, Raheem S, Thakur P, Rizvi MA, Shah BA. Photoredox‐Mediated Synthesis of β‐Hydroxydithioacetals from Terminal Alkynes. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000237] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Farah Manzer Manhas
- Department of Chemistry Shoolini University 173212 Solan Himachal Pradesh India
| | - Jaswant Kumar
- CSIR-Indian Institute of Integrative Medicine 180001 Jammu India
| | | | - Pankaj Thakur
- Department of Chemistry Shoolini University 173212 Solan Himachal Pradesh India
- Department of Environmental Sciences Central University of Himachal Pradesh 176215 Dharmshala India
| | | | - Bhahwal Ali Shah
- CSIR-Indian Institute of Integrative Medicine 180001 Jammu India
| |
Collapse
|