1
|
Gao P, Zhu Y, Zhou T, Utecht-Jarzyńska G, Szostak R, Szostak M. Pd-Catalyzed Decarbonylative Suzuki-Miyaura Cross-Coupling of Pyramidalized N-Mesyl Amides by a Tandem N-C(O)/C-C Bond Activation. J Org Chem 2024; 89:17463-17474. [PMID: 39580811 PMCID: PMC12035879 DOI: 10.1021/acs.joc.4c02152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
The Suzuki-Miyaura biaryl cross-coupling is the pivotal technology for carbon-carbon coupling in pharmaceutical, polymer, and agrochemical fields. A long-standing challenge has been the development of efficient precursors for the decarbonylative cross-coupling of amide bonds. Herein, we report a highly chemoselective palladium-catalyzed Suzuki-Miyaura cross-coupling of N-mesyl amides for the synthesis of biaryls by a tandem N-C(O)/C-C bond activation with high selectivity for decarbonylative cleavage. The results demonstrate the first example of a decarbonylative coupling (-CO) of amide bonds activated by an atom-economic, low-cost, and benign N-pyramidalized mesyl group (>30 examples). The reaction shows high generality and functional group tolerance and can be applied in late-stage functionalization of pharmaceuticals. Notably, N-mesyl amides are significantly more reactive than other classes of amides in the decarbonylative Suzuki cross-coupling manifold. Density functional theory (DFT) studies demonstrate considerably lower barrier for rate-limiting transmetalation using N-mesyl amides. The study establishes N-mesyl amides as versatile precursors for Suzuki-Miyaura cross-coupling to afford valuable biaryls and opens the door to deploy N-mesyl amides in challenging cross-couplings of amides by decarbonylation.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Yawei Zhu
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | | | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
2
|
Yu IF, Wilson JW, Hartwig JF. Transition-Metal-Catalyzed Silylation and Borylation of C-H Bonds for the Synthesis and Functionalization of Complex Molecules. Chem Rev 2023; 123:11619-11663. [PMID: 37751601 DOI: 10.1021/acs.chemrev.3c00207] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The functionalization of C-H bonds in organic molecules containing functional groups has been one of the holy grails of catalysis. One synthetically important approach to the diverse functionalization of C-H bonds is the catalytic silylation or borylation of C-H bonds, which enables a broad array of downstream transformations to afford diverse structures. Advances in both undirected and directed methods for the transition-metal-catalyzed silylation and borylation of C-H bonds have led to their rapid adoption in early-, mid-, and late-stage of the synthesis of complex molecules. In this Review, we review the application of the transition-metal-catalyzed silylation and borylation of C-H bonds to the synthesis of bioactive molecules, organic materials, and ligands. Overall, we aim to provide a picture of the state of art of the silylation and borylation of C-H bonds as applied to the synthesis and modification of diverse architectures that will spur further application and development of these reactions.
Collapse
Affiliation(s)
- Isaac F Yu
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jake W Wilson
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
3
|
Gao P, Rahman MM, Zamalloa A, Feliciano J, Szostak M. Classes of Amides that Undergo Selective N-C Amide Bond Activation: The Emergence of Ground-State Destabilization. J Org Chem 2023; 88:13371-13391. [PMID: 36054817 DOI: 10.1021/acs.joc.2c01094] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ground-state destabilization of the N-C(O) linkage represents a powerful tool to functionalize the historically inert amide bond. This burgeoning reaction manifold relies on the availability of amide bond precursors that participate in weakening of the nN → π*C=O conjugation through N-C twisting, N pyramidalization, and nN electronic delocalization. Since 2015, acyl N-C amide bond activation through ground-state destabilization of the amide bond has been achieved by transition-metal-catalyzed oxidative addition of the N-C(O) bond, generation of acyl radicals, and transition-metal-free acyl addition. This Perspective summarizes contributions of our laboratory in the development of new ground-state-destabilized amide precursors enabled by twist and electronic activation of the amide bond and synthetic utility of ground-state-destabilized amides in cross-coupling reactions and acyl addition reactions. The use of ground-state-destabilized amides as electrophiles enables a plethora of previously unknown transformations of the amide bond, such as acyl coupling, decarbonylative coupling, radical coupling, and transition-metal-free coupling to forge new C-C, C-N, C-O, C-S, C-P, and C-B bonds. Structural studies of activated amides and catalytic systems developed in the past decade enable the view of the amide bond to change from the "traditionally inert" to "readily modifiable" functional group with a continuum of reactivity dictated by ground-state destabilization.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Md Mahbubur Rahman
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Alfredo Zamalloa
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Jessica Feliciano
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
4
|
Gao P, Xu J, Zhou T, Liu Y, Bisz E, Dziuk B, Lalancette R, Szostak R, Zhang D, Szostak M. L-Shaped Heterobidentate Imidazo[1,5-a]pyridin-3-ylidene (N,C)-Ligands for Oxidant-Free Au I /Au III Catalysis. Angew Chem Int Ed Engl 2023; 62:e202218427. [PMID: 36696514 PMCID: PMC9992098 DOI: 10.1002/anie.202218427] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/26/2023]
Abstract
In the last decade, major advances have been made in homogeneous gold catalysis. However, AuI /AuIII catalytic cycle remains much less explored due to the reluctance of AuI to undergo oxidative addition and the stability of the AuIII intermediate. Herein, we report activation of aryl halides at gold(I) enabled by NHC (NHC=N-heterocyclic carbene) ligands through the development of a new class of L-shaped heterobidentate ImPy (ImPy=imidazo[1,5-a]pyridin-3-ylidene) N,C ligands that feature hemilabile character of the amino group in combination with strong σ-donation of the carbene center in a rigid conformation, imposed by the ligand architecture. Detailed characterization and control studies reveal key ligand features for AuI /AuIII redox cycle, wherein the hemilabile nitrogen is placed at the coordinating position of a rigid framework. Given the tremendous significance of homogeneous gold catalysis, we anticipate that this ligand platform will find widespread application.
Collapse
Affiliation(s)
- Pengcheng Gao
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Jihong Xu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Tongliang Zhou
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Yanhong Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Elwira Bisz
- Department of Chemistry, Opole University, 48 Oleska Street, Opole 45-052 (Poland)
| | - Błażej Dziuk
- Department of Chemistry, University of Science and Technology, Norwida 4/6, Wroclaw 50-373 (Poland)
| | - Roger Lalancette
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| | - Roman Szostak
- Department of Chemistry, Wroclaw University, F. Joliot-Curie 14, Wroclaw 50-383 (Poland)
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100 (China)
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102 (United States)
| |
Collapse
|
5
|
Liu C, Szostak M. Amide N-C Bond Activation: A Graphical Overview of Acyl and Decarbonylative Coupling. SYNOPEN 2023; 7:88-101. [PMID: 38037650 PMCID: PMC10686541 DOI: 10.1055/a-2035-6733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
This Graphical Review provides an overview of amide bond activation achieved by selective oxidative addition of the N-C(O) acyl bond to transition metals and nucleophilic acyl addition, resulting in acyl and decarbonylative coupling together with key mechanistic details pertaining to amide bond distortion underlying this reactivity manifold.
Collapse
Affiliation(s)
- Chengwei Liu
- Department of Chemistry, Shanghai University, 99 Shangda Road, Shanghai 200444, China
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, NJ 07102, USA
| |
Collapse
|
6
|
Singh S, Kandasamy J. Synthesis of 1,3‐dicarbonyl compounds using N‐Cbz amides as an acyl source under transition metal‐free conditions at room temperature. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shweta Singh
- IIT BHU: Indian Institute of Technology BHU Varanasi Chemistry INDIA
| | - Jeyakumar Kandasamy
- Indian Institute of Technology (BHU) Chemistry Varanasi 221005 Varanasi INDIA
| |
Collapse
|
7
|
Wu FW, Mao YJ, Pu J, Li HL, Ye P, Xu ZY, Lou SJ, Xu DQ. Ni-catalysed deamidative fluorination of amides with electrophilic fluorinating reagents. Org Biomol Chem 2022; 20:4091-4095. [PMID: 35522070 DOI: 10.1039/d2ob00519k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We describe here a Ni-catalysed deamidative fluorination of diverse amides with electrophilic fluorinating reagents. Different types of amides including aromatic amides and olefinic amides were well compatible, affording the corresponding acyl fluorides in good to excellent yields.
Collapse
Affiliation(s)
- Feng-Wei Wu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Yang-Jie Mao
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Jun Pu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Huan-Le Li
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Peng Ye
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Zhen-Yuan Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Shao-Jie Lou
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| | - Dan-Qian Xu
- Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.
| |
Collapse
|
8
|
Cervantes-Reyes A, Smith AC, Chinigo GM, Blakemore DC, Szostak M. Decarbonylative Pd-Catalyzed Suzuki Cross-Coupling for the Synthesis of Structurally Diverse Heterobiaryls. Org Lett 2022; 24:1678-1683. [PMID: 35200025 PMCID: PMC9069322 DOI: 10.1021/acs.orglett.2c00267] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heteroaromatic biaryls are core scaffolds found in a plethora of pharmaceuticals; however, their direct synthesis by the Suzuki cross-coupling is limited to heteroaromatic halide starting materials. Here, we report a direct synthesis of diverse nitrogen-containing heteroaromatic biaryls by Pd-catalyzed decarbonylative Suzuki cross-coupling of widely available heterocyclic carboxylic acids with arylboronic acids. The practical and modular nature of this cross-coupling enabled the straightforward preparation of >45 heterobiaryl products using pyridines, pyrimidines, pyrazines, and quinolines in excellent yields. We anticipate that the modular nature of this protocol will find broad application in medicinal chemistry and drug discovery research.
Collapse
Affiliation(s)
- Alejandro Cervantes-Reyes
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| | - Aaron C Smith
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Gary M Chinigo
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - David C Blakemore
- Medicine Design, Pfizer, Inc., Groton, Connecticut 06340, United States
| | - Michal Szostak
- Department of Chemistry, Rutgers University, 73 Warren Street, Newark, New Jersey 07102, United States
| |
Collapse
|
9
|
Xu Y, Long Y, Ye R, Li Q, Ke F, Zhou X. Fe( iii)-catalysed selective C–N bond cleavage of N-phenylamides by an electrochemical method. RSC Adv 2022; 12:24217-24221. [PMID: 36128521 PMCID: PMC9403817 DOI: 10.1039/d2ra04709h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/17/2022] [Indexed: 11/21/2022] Open
Abstract
An Fe(iii)-catalysed transformation of secondary N-phenyl substituted amides to primary amides by an electrochemical method is developed. Regioselective aryl C–H oxygenation occurs during the reaction, promoting selective C(phenyl)-N bond cleavage to form primary amides in yields of up to 92%. An Fe(iii)-catalysed transformation of secondary N-phenyl substituted amides to primary amides by an electrochemical method is developed.![]()
Collapse
Affiliation(s)
- Yiwen Xu
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Yang Long
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Runyou Ye
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Qiang Li
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Fang Ke
- School of Pharmacy, Fujian Provincial Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou 350004, China
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| |
Collapse
|
10
|
Long Y, Zhou W, Li Q, Zhou X. Transition metal-catalyzed arylation of unstrained C-C single bonds. Org Biomol Chem 2021; 19:9809-9828. [PMID: 34734614 DOI: 10.1039/d1ob01707a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Carbon-carbon bond activation is one of the most challenging and important research areas in organic chemistry. Selective C-C bond activation of unstrained substrates is difficult to achieve owing to its inert nature and competitive side reactions, but the ubiquitous presence of C-C bonds in organic molecules makes this transformation attractive and of vital importance. Moreover, transition metal-catalyzed arylation of unstrained C-C single bonds can realize the cleavage of old C-C bonds and introduce important aryl groups into the carbon chain to construct new C-C bonds at the same time, providing a powerful and straightforward method to reconstruct the skeleton of the molecules. In recent years, considerable progress has been made in the area of direct arylation of C-C bonds, and β-C elimination or oxidative addition strategies play key roles in these transformations. This review summarizes recent achievements of transition metal-catalyzed arylation of unstrained C-C bonds, demonstrated by various kinds of substrates including alcohol, nitrile and carbonyl compounds, and each example is detailed by its corresponding mechanism, catalytic system and scope of the substrate.
Collapse
Affiliation(s)
- Yang Long
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Wuxin Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Qiang Li
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| | - Xiangge Zhou
- College of Chemistry, Sichuan University, Chengdu 610064, P. R. China.
| |
Collapse
|
11
|
Li Z, Zhao F, Ou W, Huang P, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Pei‐Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 China
- School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences 1 Sub-lane Xiangshan Hangzhou 310024 China
| |
Collapse
|
12
|
Han B, Zhang J, Jiao H, Wu L. Zirconium-hydride-catalyzed site-selective hydroboration of amides for the synthesis of amines: Mechanism, scope, and application. CHINESE JOURNAL OF CATALYSIS 2021. [DOI: 10.1016/s1872-2067(21)63853-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
13
|
Li Z, Zhao F, Ou W, Huang PQ, Wang X. Asymmetric Deoxygenative Alkynylation of Tertiary Amides Enabled by Iridium/Copper Bimetallic Relay Catalysis. Angew Chem Int Ed Engl 2021; 60:26604-26609. [PMID: 34596947 DOI: 10.1002/anie.202111029] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 12/15/2022]
Abstract
A variety of inert tertiary amides have been successfully transformed into synthetically important chiral propargylamines in high yields with good to excellent enantioselectivities via a relayed sequence of Ir catalyzed partial reduction and Cu/GARPHOS catalyzed asymmetric alkynylation with terminal alkynes. The reaction was readily extended to some drug molecules and the transformations of representative products have been demonstrated, thus attesting the practical utilities and the robust nature of the protocol.
Collapse
Affiliation(s)
- Zhaokun Li
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Feng Zhao
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wei Ou
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Qiang Huang
- Department of Chemistry and Fujian Provincial Key Laboratory of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Xiaoming Wang
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China.,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China
| |
Collapse
|
14
|
Xie. P, Qin Z, Zhang S, Hong X. Understanding the Structure‐Activity Relationship of Ni‐Catalyzed Amide C−N Bond Activation using Distortion/Interaction Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100672] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Pei‐Pei Xie.
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Zhi‐Xin Qin
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Shuo‐Qing Zhang
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies Department of Chemistry Zhejiang University Hangzhou 310027 P.R. China
| |
Collapse
|
15
|
Doherty S, Knight JG, Tran TST, Alharbi HY, Perry DO. The Synthesis of Biarylmonophosphonates via Palladium-Catalyzed Phosphonation, Iridium-Catalyzed C-H Borylation, Palladium-Catalyzed Suzuki–Miyaura Cross-Coupling. Catal Letters 2021. [DOI: 10.1007/s10562-021-03643-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Abstract
The iridium-catalyzed C-H borylation of diethyl phenylphosphonate results in nonselective mono and bisborylation to afford a near statistical mixture of 3-, 3,5- and 4-boryl substituted aryl phosphonates whereas 3-substituted aryl phosphonates undergo highly regioselective C-H borylation to afford the corresponding meta-phosphonate substituted arylboronic esters as the sole product; the resulting boronic esters were used as nucleophilic reagents in a subsequent palladium-catalyzed Suzuki–Miyaura cross-coupling to generate a range of biarylmonophosphonates. Gratifyingly, the Suzuki–Miyaura cross-coupling can be conducted without purifying the boronic ester which greatly simplifies the synthetic procedure.
Graphical Abstract
Collapse
|
16
|
Li W, Zhang S, Feng X, Yu X, Yamamoto Y, Bao M. A Strategy for Amide C–N Bond Activation with Ruthenium Catalyst: Selective Aromatic Acylation. Org Lett 2021; 23:2521-2526. [DOI: 10.1021/acs.orglett.1c00464] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Wenkuan Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Sheng Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiujuan Feng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Xiaoqiang Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| | - Yoshinori Yamamoto
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
- Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Ming Bao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116023, China
| |
Collapse
|
17
|
Zhao MN, Ning GW, Yang DS, Fan MJ, Zhang S, Gao P, Zhao LF. Iron-Catalyzed Cycloaddition of Amides and 2,3-Diaryl-2 H-azirines To Access Oxazoles via C-N Bond Cleavage. J Org Chem 2021; 86:2957-2964. [PMID: 33443426 DOI: 10.1021/acs.joc.0c02843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A novel and efficient iron-catalyzed cycloaddition reaction using readily available 2,3-diaryl-2H-azirines and primary amides is reported. A wide range of trisubstituted oxazoles could be achieved in good yields with good functional group compatibility. In this transformation, two C-N bonds were cleaed and new C-N and C-O bonds were formed.
Collapse
Affiliation(s)
- Mi-Na Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Gui-Wan Ning
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - De-Suo Yang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Ming-Jin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Sheng Zhang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Peng Gao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| | - Li-Fang Zhao
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, P. R. China
| |
Collapse
|
18
|
Li CX, Ning Q, Zhao W, Cao HJ, Wang YP, Yan H, Lu CS, Liang Y. Rh-Catalyzed Decarbonylative Cross-Coupling between o-Carboranes and Twisted Amides: A Regioselective, Additive-Free, and Concise Late-Stage Carboranylation. Chemistry 2021; 27:2699-2706. [PMID: 32969106 DOI: 10.1002/chem.202003634] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/06/2020] [Indexed: 12/17/2022]
Abstract
The convenient cross-coupling of sp2 or sp3 carbons with a specific boron vertex on carborane cage represents significant synthetic values and insurmountable challenges. In this work, we report an Rh-catalyzed reaction between o-carborane and N-acyl-glutarimides to construct various Bcage -C bonds. Under the optimized condition, the removable imine directing group (DG) leads to B(3)- or B(3,6)-C couplings, while the pyridyl DG leads to B(3,5)-Ar coupling. In particular, an unexpected rearrangement of amide reagent is observed in pyridyl directed B(4)-C(sp3 ) formation. This scalable protocol has many advantages, including easy access, the use of cheap and widely available coupling agents, no requirement of an external ligand, base or oxidant, high efficiency, and a broad substrate scope. Leveraging the RhI dimer and twisted amides, this method enables straightforward access to diversely substituted and therapeutically important carborane derivatives at boron site, and provides a highly valuable vista for carborane-based drug screening.
Collapse
Affiliation(s)
- Chun-Xiao Li
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Ning
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Wenxuan Zhao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hou-Ji Cao
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Ping Wang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Hong Yan
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Chang-Sheng Lu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key, Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
19
|
Lu H, Zhao TT, Bai JH, Ye D, Xu PF, Wei H. Divergent Coupling of Benzocyclobutenones with Indoles via C-H and C-C Activations. Angew Chem Int Ed Engl 2020; 59:23537-23543. [PMID: 32896964 DOI: 10.1002/anie.202010244] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 11/07/2022]
Abstract
Highly selective divergent coupling reactions of benzocyclobutenones and indoles, in which the chemoselectivity is controlled by catalysts, are reported herein. The substrates undergo C2(indole)-C8(benzocyclobutenone) coupling to produce benzylated indoles and benzo[b]carbazoles in the Ni- and Ru-catalyzed reactions. A completely different selectivity pattern C2(indole)-C2(benzocyclobutenone) coupling to form arylated indoles is observed in the Rh-catalyzed reaction. Preliminary mechanistic studies suggest C-H and C-C activations in the reaction pathway. Synthetic utility of this protocol is demonstrated by the selective synthesis of three different types of carbazoles from the representative products.
Collapse
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Tian-Tian Zhao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Jin-Hua Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Dan Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an, 710069, China
| |
Collapse
|
20
|
Lu H, Zhao T, Bai J, Ye D, Xu P, Wei H. Divergent Coupling of Benzocyclobutenones with Indoles via C−H and C−C Activations. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Tian‐Tian Zhao
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jin‐Hua Bai
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Dan Ye
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| | - Peng‐Fei Xu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hao Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry & Materials Science Northwest University Xi'an 710069 China
| |
Collapse
|
21
|
Chen P, Luo K, Yu X, Yuan X, Liu X, Lin J, Jin Y. Cu-Catalyzed Direct Amination of Cyclic Amides via C-OH Bond Activation Using DMF. Org Lett 2020; 22:6547-6551. [PMID: 32806150 DOI: 10.1021/acs.orglett.0c02320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein, we describe a Cu-catalyzed approach to directly accessing aromatic heterocyclic amines from cyclic amides. The most-reported methods for cyclic amide conversions to aromatic heterocyclic amines use an activating group, such as a halogen atom or a trifluoromethane sulfonyl group. However, subsequent elimination of activating groups during the amination process results in significant waste. This copper-catalyzed direct amination of cyclic amides in DMF forms aromatic heterocyclic amines with environmental friendliness and readily available reagents. A plausible radical mechanism has been proposed for the reaction. Meanwhile, the coordinating effect of the N1 atom is key to the success of this reaction, which provides assistance to the copper ions for the activation and amination of C-O bonds.
Collapse
Affiliation(s)
- Peng Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Kaixiu Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Xianglin Yu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Xu Yuan
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Xiaoyu Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Jun Lin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, P.R. China
| |
Collapse
|