1
|
Pu L. Regioselective Substitution of BINOL. Chem Rev 2024; 124:6643-6689. [PMID: 38723152 PMCID: PMC11117191 DOI: 10.1021/acs.chemrev.4c00132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 05/23/2024]
Abstract
1,1'-Bi-2-naphthol (BINOL) has been extensively used as the chirality source in the fields of molecular recognition, asymmetric synthesis, and materials science. The direct electrophilic substitution at the aromatic rings of the optically active BINOL has been developed as one of the most convenient strategies to structurally modify BINOL for diverse applications. High regioselectivity has been achieved for the reaction of BINOL with electrophiles. Depending upon the reaction conditions and substitution patterns, various functional groups can be introduced to the specific positions, such as the 6-, 5-, 4-, and 3-positions, of BINOL. Ortho-lithiation at the 3-position directed by the functional groups at the 2-position of BINOL have been extensively used to prepare the 3- and 3,3'-substituted BINOLs. The use of transition metal-catalyzed C-H activation has also been explored to functionalize BINOL at the 3-, 4-, 5-, 6-, and 7-positions. These regioselective substitutions of BINOL have allowed the construction of tremendous amount of BINOL derivatives with fascinating structures and properties as reviewed in this article. Examples for the applications of the optically active BINOLs with varying substitutions in asymmetric catalysis, molecular recognition, chiral sensing and materials are also provided.
Collapse
Affiliation(s)
- Lin Pu
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
2
|
Tomczyk I, Kalek M. Electrochemical Dearomatizing Methoxylation of Phenols and Naphthols: Synthetic and Computational Studies. Chemistry 2024; 30:e202303916. [PMID: 38315289 DOI: 10.1002/chem.202303916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 02/07/2024]
Abstract
The electrochemical oxidative dearomatizing methoxylation of phenols and naphthols was developed. It provides an alternative route for the preparation of methoxycyclohexadienones, important and versatile synthetic intermediates, that eliminates the need for stoichiometric high-energy chemical oxidants and generates hydrogen as a sole by-product. The reaction proceeds in a simple constant current mode, in an undivided cell, and it employs standardized instrumentation. A collection of methoxycyclohexadienones derived from various 2,4,6-tri-substituted phenols and 1-substituted-2-naphthols was obtained in moderate to excellent yields. These include a complex derivative of estrone, as well as methoxylated dearomatized 1,1'-bi-2-naphthols (BINOLs). The mechanism of the reaction was subject to profound investigations using density functional theory calculations. In particular, the reactivity of two key intermediates, phenoxyl radical and phenoxenium ion, was carefully examined. The obtained results shed light on the pathway leading to the desired product and rationalize experimentally observed selectivities regarding a side benzylic methoxylation and the preference for the functionalization at the para over the ortho position. They also uncover the structure-selectivity relationship, inversely correlating the steric bulk of the substrate with its propensity to undergo the side-reaction. Moreover, the loss of stereochemical information from enantiopure BINOL substrates during the reaction is rationalized by the computations.
Collapse
Affiliation(s)
- Ireneusz Tomczyk
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| | - Marcin Kalek
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warsaw, Poland
| |
Collapse
|
3
|
He R, Liu Y, Yang X, Zheng Z, Xu Z, Takeda N, Unno M, Xu L. 13-8-13-Membered Tricyclic Ladder-Type Siloxanes Hybridized with BINOLs: Synthesis, Characterization, and Fluorescence Sensing of Fluorides. Inorg Chem 2023; 62:14991-14997. [PMID: 37677105 DOI: 10.1021/acs.inorgchem.3c01780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Developing fluorescent chemosensors with sensitivity and high specificity for recognizing fluorides is still challenging. Herein, four innovative compounds based on 13-8-13-membered tricyclic ladder-type siloxanes hybridized with BINOLs (abbreviated as TLS-BINOLs) were prepared through the B(C6F5)3-catalyzed Piers-Rubinsztajn reaction. The well-defined ladder-type structure of the TLS-BINOLs was determined by X-ray crystallographic analysis. Additionally, the fluorescent sensing ability of the TLS-BINOLs toward anions was studied. Our finding revealed that all four ladder-type compounds (TLS-BINOLs) exhibited high specificity in recognizing fluorides through fluoride-triggered structural decomposition. The detection limits for fluorides were determined to be 0.37, 0.35, 0.39, and 0.48 μM for the respective TLS-BINOLs. The nonemissive product induced by the fluorides was also determined using single-crystal X-ray diffraction analysis.
Collapse
Affiliation(s)
- Rongrong He
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Yujia Liu
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Xiaoyue Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Zhanjiang Zheng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Zheng Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Nobuhiro Takeda
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Masafumi Unno
- Department of Chemistry and Chemical Biology, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu 376-8515, Japan
| | - Liwen Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Liu H, Gong ZR, Lin ML, Luo W, Xu YJ, Dong L. C-O Coupling/[4+2] Cycloaddition Tandem Reactions via Oxidative Dearomatization of BINOLs: Access to Bridged Polycyclic Compounds. J Org Chem 2023; 88:3916-3926. [PMID: 36849248 DOI: 10.1021/acs.joc.2c02817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Intramolecular C-H activation/C-O coupling, dearomatization, and [4+2] cycloaddition of BINOL units have been well developed in a one-pot approach with maleimide derivatives as the dienophiles. This tandem catalytic system generates a variety of functionalized bridged polycyclic products in a step-economical manner, which greatly enriches the modification methods and strategies for the BINOL skeletons.
Collapse
Affiliation(s)
- Hao Liu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zi-Rong Gong
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Meng-Ling Lin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Wen Luo
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yan-Jun Xu
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan 610066, China
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
5
|
Zhang H, Wirth T. Oxidation of BINOLs by Hypervalent Iodine Reagents: Facile Synthesis of Xanthenes and Lactones. Chemistry 2022; 28:e202200181. [PMID: 35225370 PMCID: PMC9311707 DOI: 10.1002/chem.202200181] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Indexed: 12/13/2022]
Abstract
Xanthene derivatives have broad applications in medicines, fluorescent probes, dyes, food additives, etc. Therefore, much attention was focused on developing the synthetic methods to prepare these compounds. Binaphthyl‐based xanthene derivatives were prepared through the oxidation of BINOLs promoted by the hypervalent iodine reagent iodosylbenzene (PhIO). Nine‐membered lactones were obtained through a similar oxidative reaction when iodoxybenzene (PhIO2) was used. Additionally, one‐pot reactions of BINOLs, PhIO and nucleophiles such as alcohols and amines were also investigated to provide alkoxylated products and amides in good to excellent yields.
Collapse
Affiliation(s)
- Huaiyuan Zhang
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK.,Lanzhou Petrochemical University of Vocational Technology, Lanzhou, 730060, P. R. China
| | - Thomas Wirth
- School of Chemistry, Cardiff University, Park Place, Main Building, Cardiff, CF10 3AT, UK
| |
Collapse
|
6
|
Zhang SS, Xue J, Gu Q, Jiang X, You SL. Dearomatization reaction of β-naphthols with disulfurating reagents. Org Biomol Chem 2021; 19:8761-8771. [PMID: 34581384 DOI: 10.1039/d1ob01731d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
p-TsOH-catalyzed intermolecular dearomatization reactions of β-naphthols with disulfurating reagents were developed. Various β-naphthalenones bearing a quaternary carbon stereogenic center were obtained smoothly in good to excellent yields with high chemoselectivity in the presence of 5 mol% p-TsOH. This reaction features mild reaction conditions and excellent functional group tolerance.
Collapse
Affiliation(s)
- Shan-Shan Zhang
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Jiahui Xue
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Qing Gu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Xuefeng Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, China.
| | - Shu-Li You
- Chang-Kung Chuang Institute, East China Normal University, Shanghai 200062, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| |
Collapse
|
7
|
Chen HW, Song QH. Regioselective benzoyloxylative dearomatization of naphthols by benzoyl peroxide under catalyst-free conditions. Org Biomol Chem 2021; 19:7161-7164. [PMID: 34378620 DOI: 10.1039/d1ob01274f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A direct regioselective benzoyloxylative dearomatization of both α- and β-naphthols by benzoyl peroxide under an air atmosphere, and radical inhibitor- and catalyst-free conditions at room temperature is described. The methodology provides a new efficient strategy for the construction of α-ketol derivatives bearing an oxo-quaternary carbon center from naphthols with good to excellent yields.
Collapse
Affiliation(s)
- Hong-Wei Chen
- Hefei National Laboratory for Physical Sciences at Microscale & Department of Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | | |
Collapse
|
8
|
Pedrazzani R, An J, Monari M, Bandini M. New Chiral BINOL‐Based Phosphates for Enantioselective [Au(I)]‐Catalyzed Dearomatization of β‐Naphthols with Allenamides. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100166] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Riccardo Pedrazzani
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Juzeng An
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Magda Monari
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
| | - Marco Bandini
- Dipartimento di Chimica “Giacomo Ciamician” Alma Mater Studiorum – Università di Bologna Via Selmi 2 40126 Bologna Italy
- Consorzio C.I.N.M.P.I.S. Via Selmi 2 40126 Bologna Italy
| |
Collapse
|