1
|
Spieß P, Sirvent A, Tiefenbrunner I, Sargueil J, Fernandes AJ, Arroyo‐Bondía A, Meyrelles R, Just D, Prado‐Roller A, Shaaban S, Kaiser D, Maulide N. Nms-Amides: An Amine Protecting Group with Unique Stability and Selectivity. Chemistry 2023; 29:e202301312. [PMID: 37283481 PMCID: PMC10946766 DOI: 10.1002/chem.202301312] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 06/08/2023]
Abstract
p-Toluenesulfonyl (Tosyl) and nitrobenzenesulfonyl (Nosyl) are two of the most common sulfonyl protecting groups for amines in contemporary organic synthesis. While p-toluenesulfonamides are known for their high stability/robustness, their use in multistep synthesis is plagued by difficult removal. Nitrobenzenesulfonamides, on the other hand, are easily cleaved but display limited stability to various reaction conditions. In an effort to resolve this predicament, we herein present a new sulfonamide protecting group, which we term Nms. Initially developed through in silico studies, Nms-amides overcome these previous limitations and leave no room for compromise. We have investigated the incorporation, robustness and cleavability of this group and found it to be superior to traditional sulfonamide protecting groups in a broad range of case studies.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Ana Sirvent
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| | - Irmgard Tiefenbrunner
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Jules Sargueil
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Anthony J. Fernandes
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| | - Ana Arroyo‐Bondía
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Ricardo Meyrelles
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Vienna Doctoral School in ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - David Just
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | | | - Saad Shaaban
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Daniel Kaiser
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
| | - Nuno Maulide
- Institute of Organic ChemistryUniversity of ViennaWähringer Straße 381090ViennaAustria
- Christian-Doppler Laboratory for Entropy-Oriented Drug DesignUniversity of ViennaJosef-Holaubek-Platz 21090ViennaAustria
| |
Collapse
|
2
|
Xu WK, Guo JM, Liu CH, Sun JT, Lv M, Wei BG. AgNTf 2 catalyzed cycloaddition of N-acyliminium ions with alkynes for the synthesis of the 3,4-dihydro-1,3-oxazin-2-one skeleton. Org Biomol Chem 2022; 20:5086-5094. [PMID: 35698865 DOI: 10.1039/d2ob00900e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
A catalyzed process for the synthesis of the 4,6-substituted 3,4-dihydro-1,3-oxazin-2-one skeleton has been developed through cycloaddition of in situ generated acyliminium intermediates with alkynes. A range of chain N,O-acetals and terminal alkynes were amenable for this mild transformation. As a result, a series of desired cycloaddition products were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Wen-Ke Xu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jia-Ming Guo
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Chang-Hong Liu
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Jian-Ting Sun
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Min Lv
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| | - Bang-Guo Wei
- Department of Natural Medicine, School of Pharmacy, Fudan University, 826 Zhangheng Road, Shanghai 201203, China.
| |
Collapse
|
3
|
Reviriot Y, Michelet B, Beaud R, Martin‐Mingot A, Guégan F, Thibaudeau S, Rodriguez J, Bonne D. Hidden Heptacyclic Chiral
N
‐Acyl Iminium Ions: A New Entry to Enantioenriched Polycyclic Azepanes and Azocanes by Superacid‐Promoted Intramolecular Pictet‐Spengler Reaction. Chemistry 2022; 28:e202200432. [DOI: 10.1002/chem.202200432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yasmin Reviriot
- Aix Marseille Université CNRS, Centrale Marseille iSm2 Marseille Marseille France
| | - Bastien Michelet
- Université de Poitiers UMR-CNRS 7285 IC2MP 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Rodolphe Beaud
- Aix Marseille Université CNRS, Centrale Marseille iSm2 Marseille Marseille France
| | - Agnès Martin‐Mingot
- Université de Poitiers UMR-CNRS 7285 IC2MP 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Frédéric Guégan
- Université de Poitiers UMR-CNRS 7285 IC2MP 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Sébastien Thibaudeau
- Université de Poitiers UMR-CNRS 7285 IC2MP 4 rue Michel Brunet, TSA 51106 86073 Poitiers Cedex 9 France
| | - Jean Rodriguez
- Aix Marseille Université CNRS, Centrale Marseille iSm2 Marseille Marseille France
| | - Damien Bonne
- Aix Marseille Université CNRS, Centrale Marseille iSm2 Marseille Marseille France
| |
Collapse
|
4
|
Wang R, Zhang W, Tang Y, Qi ZH, Yu YH, Tan HB, Tang DY, Xu ZG, Chen ZZ. A four-component domino reaction for the synthesis of novel bridgehead nitrogen-containing pyrido[1,2-d][1,4]diazepines. NEW J CHEM 2022. [DOI: 10.1039/d1nj04233e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
An efficient methodology for the synthesis of a new family of novel bridgehead nitrogen-containing pyrido[1,2-d][1,4]diazepines has been described and its mechanism has been proposed, which follows a ring-closure and ring-cleavage pathway.
Collapse
Affiliation(s)
- Rui Wang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Wei Zhang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ying Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Ze-Hui Qi
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Yuan-Hui Yu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Hong-Bo Tan
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Dian-Yong Tang
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhi-Gang Xu
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| | - Zhong-Zhu Chen
- National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing Collaborative Innovation Center of Targeted and Innovative Therapeutics, College of Pharmacy & IATTI, Chongqing University of Arts and Sciences, Chongqing 402160, China
| |
Collapse
|
5
|
Biswas S, Porashar B, Arandhara PJ, Saikia AK. Synthesis of pyrimido[2,1- a]isoindolone and isoindolo[2,1- a]quinazolinone via intramolecular aza-Prins type reaction. Chem Commun (Camb) 2021; 57:11701-11704. [PMID: 34693411 DOI: 10.1039/d1cc04554g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel aza-Prins type cyclization reaction involving N-acyliminium ions and amides is reported for the synthesis of tetrahydropyrimido[2,1-a]isoindole-2,6-dione and 6,6a-dihydroisoindolo[2,1-a]quinazoline-5,11-dione derivatives in excellent yields. The strategy features inexpensive reagents, mild reaction conditions, and metal-free synthesis of N-heterocyclic frameworks. Further, post-synthetic modification results in the unprecedented formation of its triazole, tetracyclic diazacyclopenta[def]phenanthrene-1,4(9a1H)-dione and carbonyl derivatives.
Collapse
Affiliation(s)
- Subhamoy Biswas
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Bikoshita Porashar
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Pallav Jyoti Arandhara
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| | - Anil K Saikia
- Department of Chemistry, Indian Institute of Technology, Guwahati, 781039, Assam, India.
| |
Collapse
|
6
|
Han X, Nie X, Feng Y, Wei B, Si C, Lin G. Intermolecular [4 + 2] process of N-acyliminium ions with simple olefins for construction of functional substituted-1,3-oxazinan-2-ones. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Mao ZY, Nie XD, Feng YM, Si CM, Wei BG, Lin GQ. Cu(OTf) 2 catalyzed Ugi-type reaction of N, O-acetals with isocyanides for the synthesis of pyrrolidinyl and piperidinyl 2-carboxamides. Chem Commun (Camb) 2021; 57:9248-9251. [PMID: 34519320 DOI: 10.1039/d1cc03113a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The Cu(OTf)2 catalyzed Ugi-type reactions of N,O-acetals with isocyanides have been described for the synthesis of pyrrolidinyl and piperidinyl 2-carboxamides. 4-Hydroxy-5-substituted-prolinamides can be obtained in high diastereoselectivities (2,4-cis/trans > 19 : 1) and a stereoselective model was proposed for 2,4-cis selectivity. Moreover, 4-F-VH 032, a novel analog of the VHL ligand, was conveniently obtained by utilizing the present method.
Collapse
Affiliation(s)
- Zhuo-Ya Mao
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Xiao-Di Nie
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Yi-Man Feng
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Chang-Mei Si
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Bang-Guo Wei
- School of Pharmacy and Institutes of Biomedical Sciences, Fudan University, 220 Handan Road, Shanghai, 200433, China.
| | - Guo-Qiang Lin
- Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
8
|
Zheng Y, Perfetto A, Luise D, Ciofini I, Miesch L. Direct Synthesis of CF 2H-Substituted 2-Amidofurans via Copper-Catalyzed Addition of Difluorinated Diazoacetone to Ynamides. Org Lett 2021; 23:5528-5532. [PMID: 34190568 DOI: 10.1021/acs.orglett.1c01876] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The significance of molecules containing difluoromethyl groups is driven by their potential applications in pharmaceutical and agrochemical science. Methods for the incorporation of lightly fluorinated groups such as CF2H have been less well developed. Here we report the use of difluorinated diazoacetone as a practical reagent for the direct synthesis of CF2H-substituted 2-amidofurans through addition to ynamides. These newly designed difluorinated amidofurans were elaborated to create new nitrogen-containing frameworks that would be challenging to obtain otherwise.
Collapse
Affiliation(s)
- Yongxiang Zheng
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| | - Anna Perfetto
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Davide Luise
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Ilaria Ciofini
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Chemical Theory and Modelling Group, F-75005 Paris, France
| | - Laurence Miesch
- Equipe Synthèse Organique et Phytochimie, Institut de Chimie, CNRS-UdS, UMR 7177, 4 rue Blaise Pascal, CS 90032, 67081 Strasbourg, France
| |
Collapse
|
9
|
Xu W, Guo J, Chen Z, Si C, Wei B. Titanium Tetrachloride‐Mediated Approach to Access 2‐Chloro‐2‐Substituted Isoindolin‐1‐ones through the Addition of Alkynes to Acyliminium ions. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Wen‐Ke Xu
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Jia‐Ming Guo
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Zhao‐Dan Chen
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Chang‐Mei Si
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| | - Bang‐Guo Wei
- Department of Natural Medicine School of Pharmacy Fudan University 826 Zhangheng Road Shanghai 201203 China
| |
Collapse
|