1
|
Wu H, Luo R, Peng J, Han Z, Zhang R, Xu Z, Zhu W, Liu H, Li C. B(MIDA)-directed site-selective intermolecular halofluoroalkylation of alkenes: synthesis of diversely functionalized building blocks. Chem Sci 2025; 16:2710-2717. [PMID: 39802697 PMCID: PMC11718511 DOI: 10.1039/d4sc07900k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
α-Halo borides are generally constructed via Matteson homologation, and the synthesis of both fluorinated and functionalized ambiphilic boronates is challenging and has received inadequate attention. Herein, we describe the N-methyliminodiacetyl boronate [B(MIDA)]-directed halogenation of alkenes via a complementary sequence involving fluoroalkyl radical addition followed by guided radical-to-metal oxidative addition and C-X reductive elimination. The alkali cation and functional groups in B(MIDA) enable coulombic interaction and weak attraction with halogens, which could weaken the Pd-X bond and assist in C-X bond formation and is verified by DFT calculations. As a result, a wide variety of highly functionalized fluorinated α-halo boronates, including drugs and natural products, are obtained in good or moderate yields through the unique catalytic manifold. Notably, the trifunctionalized (F, X, B) building block could be transformed into diverse modified fluorinated products.
Collapse
Affiliation(s)
- Hengbo Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Ruitong Luo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Jingjing Peng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Zijian Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Renjie Zhang
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Zhijian Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Weiliang Zhu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
| | - Hong Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Chunpu Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences No.19A Yuquan Road Beijing 100049 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| |
Collapse
|
2
|
Eghbarieh N, Hanania N, Masarwa A. Stereodefined polymetalloid alkenes synthesis via stereoselective boron-masking of polyborylated alkenes. Nat Commun 2023; 14:2022. [PMID: 37041219 PMCID: PMC10090189 DOI: 10.1038/s41467-023-37733-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/28/2023] [Indexed: 04/13/2023] Open
Abstract
Polyborylated-alkenes are valuable polymetalloid reagents in modern organic synthesis, providing access to a wide array of transformations, including the construction of multiple C-C and C-heteroatom bonds. However, because they contain similar boryl groups, many times their transformation faces the main challenge in controlling the chemo-, regio- and stereoselectivity. One way to overcome these limitations is by installing different boron groups that can provide an opportunity to tune their reactivity toward better chemo-, regio- and stereoselectivity. Yet, the preparation of polyborylated-alkenes containing different boryl groups has been rare. Herein we report concise, highly site-selective, and stereoselective boron-masking strategies of polyborylated alkenes. This is achieved by designed stereoselective trifluorination and MIDA-ation reactions of readily available starting polyborylated alkenes. Additionally, the trifluoroborylated-alkenes undergo a stereospecific interconversion to Bdan-alkenes. These transition-metal free reactions provide a general and efficient method for the conversion of polyborylated alkenes to access 1,1-di-, 1,2-di-, 1,1,2-tris-(borylated) alkenes containing BF3M, Bdan, and BMIDA, a family of compounds that currently lack efficient synthetic access. Moreover, tetraborylethene undergoes the metal-free MIDA-ation reaction to provide the mono BMIDA tetraboryl alkene selectively. The mixed polyborylalkenes are then demonstrated to be useful in selective C-C and C-heteroatom bond-forming reactions. Given its simplicity and versatility, these stereoselective boron-masking approaches hold great promise for organoboron synthesis and will result in more transformations.
Collapse
Affiliation(s)
- Nadim Eghbarieh
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Nicole Hanania
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Ahmad Masarwa
- Institute of Chemistry, The Center for Nanoscience and Nanotechnology, Casali Center for Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel.
| |
Collapse
|
3
|
A Convenient, Rapid, Conventional Heating Route to MIDA Boronates. Molecules 2022; 27:molecules27165052. [PMID: 36014293 PMCID: PMC9414357 DOI: 10.3390/molecules27165052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/11/2022] [Accepted: 08/04/2022] [Indexed: 12/02/2022] Open
Abstract
A cheap, conventional, sealed heating reactor proved to be a useful alternative to a microwave reactor in the synthesis of a >20-member MIDA boronate library (MIDA = N-methyliminodiacetic acid). Reaction times were 10 min and work-ups were minimal, saving on energy and solvent usage.
Collapse
|
4
|
Bubliauskas A, Blair DJ, Powell‐Davies H, Kitson PJ, Burke MD, Cronin L. Digitizing Chemical Synthesis in 3D Printed Reactionware. Angew Chem Int Ed Engl 2022; 61:e202116108. [PMID: 35257447 PMCID: PMC9186708 DOI: 10.1002/anie.202116108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Indexed: 12/12/2022]
Abstract
Chemistry digitization requires an unambiguous link between experiments and the code used to generate the experimental conditions and outcomes, yet this process is not standardized, limiting the portability of any chemical code. What is needed is a universal approach to aid this process using a well-defined standard that is composed of syntheses that are employed in modular hardware. Herein we present a new approach to the digitization of organic synthesis that combines process chemistry principles with 3D printed reactionware. This approach outlines the process for transforming unit operations into digitized hardware and well-defined instructions that ensure effective synthesis. To demonstrate this, we outline the process for digitizing 3 MIDA boronate building blocks, an ester hydrolysis, a Wittig olefination, a Suzuki-Miyaura coupling reaction, and synthesis of the drug sulfanilamide.
Collapse
Affiliation(s)
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical SciencesUniversity of IllinoisUrbana-ChampaignIL 61801USA
| | | | | | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical SciencesUniversity of IllinoisUrbana-ChampaignIL 61801USA
| | - Leroy Cronin
- School of ChemistryThe University of GlasgowGlasgowG12 8QQUK
| |
Collapse
|
5
|
Qian J, Chen ZH, Liu Y, Li Y, Li Q, Huang SL, Wang H. Synthesis of allenyl-B(MIDA) via hydrazination/fragmentation reaction of B(MIDA)-propargylic alcohol. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.04.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
6
|
Bubliauskas A, Blair DJ, Powell‐Davies H, Kitson PJ, Burke MD, Cronin L, Acknow. Digitizing Chemical Synthesis in 3D Printed Reactionware. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Daniel J. Blair
- Roger Adams Laboratory, School of Chemical Sciences University of Illinois Urbana-Champaign IL 61801 USA
| | | | - Philip J. Kitson
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | - Martin D. Burke
- Roger Adams Laboratory, School of Chemical Sciences University of Illinois Urbana-Champaign IL 61801 USA
| | - Leroy Cronin
- School of Chemistry The University of Glasgow Glasgow G12 8QQ UK
| | | |
Collapse
|
7
|
Li S, Li M, Li SS, Wang J. Pd-Catalyzed coupling of benzyl bromides with BMIDA-substituted N-tosylhydrazones: synthesis of trans-alkenyl MIDA boronates. Chem Commun (Camb) 2021; 58:399-402. [PMID: 34908049 DOI: 10.1039/d1cc06170d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A palladium-catalyzed stereoselective synthesis of alkenyl boronates from N-methyliminodiacetyl boronate (BMIDA)-substituted N-tosylhydrazone and benzyl bromides is developed. A range of trans-alkenyl MIDA boronates as single stereoisomers were obtained in moderate yields with good functional group compatibility. The resultant boronate products may be transformed to other boron-containing compounds and may also be directly used in cross-coupling reactions.
Collapse
Affiliation(s)
- Shichao Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Muyao Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Shu-Sen Li
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China.
| | - Jianbo Wang
- Beijing National Laboratory of Molecular Sciences (BNLMS), Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry, Peking University, Beijing 100871, China. .,The State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
8
|
Xu C, He C, Li N, Yang S, Du Y, Matyjaszewski K, Pan X. Regio- and sequence-controlled conjugated topological oligomers and polymers via boronate-tag assisted solution-phase strategy. Nat Commun 2021; 12:5853. [PMID: 34615871 PMCID: PMC8494804 DOI: 10.1038/s41467-021-26186-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/20/2021] [Indexed: 12/03/2022] Open
Abstract
The regulation of polymer topology and the precise control over the monomer sequence is crucial and challenging in polymer science. Herein, we report an efficient solution-phase synthetic strategy to prepare regio- and sequence-controlled conjugated polymers with topological variations via the usage of methyliminodiacetic acid (MIDA) boronates. Based on the solubility of MIDA boronates and their unusual binary affinity for silica gel, the synthesized regio- and sequence-defined conjugated oligomers can be rapidly purified via precipitation or automatic liquid chromatography. These synthesized discrete oligomers can be used for iterative exponential and sequential growth to obtain linear and dendrimer-like star polymers. Moreover, different topological sequence-controlled conjugated polymers are conveniently prepared from these discrete oligomers via condensation polymerization. By investigating the structure-property relationship of these polymers, we find that the optical properties are strongly influenced by the regiochemistry, which may give inspiration to the design of optoelectronic polymeric materials.
Collapse
Affiliation(s)
- Chaoran Xu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Congze He
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Ning Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Shicheng Yang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Yuxuan Du
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Center for Macromolecular Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, United States.
| | - Xiangcheng Pan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, 200438, China.
| |
Collapse
|
9
|
Nandy S, Paul S, Das KK, Kumar P, Ghorai D, Panda S. Synthesis and reactivity of alkynyl boron compounds. Org Biomol Chem 2021; 19:7276-7297. [PMID: 34374405 DOI: 10.1039/d1ob00465d] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Over the last century, there have been considerable developments in organoboron chemistry due to the stability, non-toxicity, and easy commercial availability of various boronic esters. Several organoboron reagents have emerged and play an increasingly important role in everyday organic synthesis. Among them, alkynyl boron compounds have attracted significant attention due to their easy synthesis and diverse reactivity. In this review, we summarize the advancement of research on alkynyl boron compounds, highlighting their importance in the synthesis of valuable compounds.
Collapse
Affiliation(s)
- Soumilee Nandy
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | | | | | | | | | | |
Collapse
|
10
|
Liu J, Wang J, Si S, Xu J, Xue P. Hydrogean Peroxide Inducible Acid-Activatable Prodrug for Targeted Cancer Treatment. ChemMedChem 2021; 16:3231-3235. [PMID: 34288492 DOI: 10.1002/cmdc.202100354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/18/2021] [Indexed: 11/08/2022]
Abstract
Because some of the potentially most useful boronic acids are inherently unstable in blood plasma and exhibit poor selective retention in tumours, 2-heterocyclic N-methyliminodiacetic acid (MIDA) boronates provide a stable, spacious and highly effective harbor for prodrug conjugates. Herein we report MIDA boronates in conjunction with naphthalene-based fluorophores as suitable compounds for tumour diagnosis by virtue of their remarkable specificity and uniform benchtop stability. The shielding group was found to be effective at imparting stability under physiological conditions (pH 7.4), with rapid release of the drug upon exposure to the acidic microenvironment of the tumor. This approach significantly enhanced the efficiency of drug release and was found to exhibit fewer side effects, thus indicating its great potential for precision therapeutics.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, China
| | - Jinhua Wang
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, China
| | - Shuang Si
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, China
| | - Jinyi Xu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, China
| | - Peng Xue
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City, 734000, Gansu Province, China
| |
Collapse
|
11
|
Miller MK, Swierczynski MJ, Ding Y, Ball ZT. Boronic Acid Pairs for Sequential Bioconjugation. Org Lett 2021; 23:5334-5338. [PMID: 34212723 DOI: 10.1021/acs.orglett.1c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Boronic acids can play diverse roles when applied in biological environments, and employing boronic acid structures in tandem could provide new tools for multifunctional probes. This Letter describes a pair of boronic acid functional groups, 2-nitro-arylboronic acid (NAB) and (E)-alkenylboronic acid (EAB), that enable sequential cross-coupling through stepwise nickel- and copper-catalyzed processes. The selective coupling of NAB groups enables the preparation of stapled peptides, protein-protein conjugates, and other bioconjugates.
Collapse
Affiliation(s)
- Mary K Miller
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | | | - Yuxuan Ding
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Zachary T Ball
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
12
|
Saito H, Shimokawa J, Yorimitsu H. The dioxasilepanyl group as a versatile organometallic unit: studies on stability, reactivity, and utility. Chem Sci 2021; 12:9546-9555. [PMID: 34349929 PMCID: PMC8278973 DOI: 10.1039/d1sc02083h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 06/05/2021] [Indexed: 12/15/2022] Open
Abstract
Organic synthesis is performed based on precise choices of functional groups and reactions employed. In a multistep synthesis, an ideal functional group should be compatible with various reaction conditions and unaltered until it is subjected to a selective conversion. The current study was set out to search for a silicon functionality that meets these criteria. Here we have established a new silicon-based synthetic methodology centred on a bulky 7-membered dialkoxysilyl group (2,4,4,7,7-pentamethyl-1,3,2-dioxasilepan-2-yl) that uniquely has both stability and on-demand reactivity. The exceptional stability of this functional group was corroborated by both experimental and computational studies which demonstrated that key factors for its stability were a 7-membered structure and steric hindrance. In turn, the dioxasilepanyl group was found to become reactive and to be easily transformed in the presence of appropriate activators. Combined with the development of easy and robust methods to introduce the dioxasilepanyl group onto aryl rings, these findings have allowed a shorter and more efficient synthesis of a bioactive molecule, thus demonstrating the potential utility of the easily accessible dioxasilepanyl group in organic synthesis.
Collapse
Affiliation(s)
- Hayate Saito
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Jun Shimokawa
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| | - Hideki Yorimitsu
- Department of Chemistry, Graduate School of Science, Kyoto University Sakyo-ku Kyoto 606-8502 Japan
| |
Collapse
|
13
|
Hill SA, Steinfort R, Hartmann L. Progress, challenges and future directions of heterocycles as building blocks in iterative methodologies towards sequence-defined oligomers and polymers. Polym Chem 2021. [DOI: 10.1039/d1py00425e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Heterocyclic building blocks for iterative methodologies leading to sequence-defined oligomers and polymers are reviewed. Solid- as well as solution-phase methods, challenges surrounding these systems and potential future directions are presented.
Collapse
Affiliation(s)
- Stephen A. Hill
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Robert Steinfort
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| | - Laura Hartmann
- Institute of Organic and Macromolecular Chemistry
- Heinrich Heine University Düsseldorf
- 40225 Düsseldorf
- Germany
| |
Collapse
|