1
|
Zhu C, Lin J, Bao X, Wu J. Development of N-centered radical scavengers that enables photoredox-catalyzed transition-metal-free radical amination of alkyl pinacol boronates. Nat Commun 2025; 16:3225. [PMID: 40185738 PMCID: PMC11971404 DOI: 10.1038/s41467-025-58347-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 03/20/2025] [Indexed: 04/07/2025] Open
Abstract
In recent years, amination of alkylboronates through ionic copper catalysis or boron-ate complex 1,2-metalation has been well established, but complementary radical processes remain less studied before. Herein, based on rational design, we develop several imine-type N-centered radical scavengers and apply them to the radical amination of alkylboronates. The reaction proceeds under mild photoredox-catalyzed transition-metal-free conditions and features excellent functional group tolerance. It also enables the preparation of a range of medicinally valuable amine derivatives from complex natural products. Further application of this reagent in C-H amination, deoxygenative amination, decarboxylative amination and three component trifluoromethylative/sulfonylative aminations are also realized. Further mechanistic studies and DFT calculations are conducted to provide detailed evidence for the mechanism.
Collapse
Affiliation(s)
- Changlei Zhu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China
| | - Jiaxin Lin
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, China
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China
| | - Xiaoguang Bao
- Innovation Center for Chemical Sciences, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, 199 Ren-Ai Road, Suzhou Industrial Park, Suzhou, Jiangsu, China.
- Jiangsu Key Laboratory of Advanced Negative Carbon Technologies, Soochow University, Suzhou, Jiangsu, China.
| | - Jingjing Wu
- Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Cai YM, Liu XT, Xu LL, Shang M. Electrochemical Ni-Catalyzed Decarboxylative C(sp 3 )-N Cross-Electrophile Coupling. Angew Chem Int Ed Engl 2024; 63:e202315222. [PMID: 38299697 DOI: 10.1002/anie.202315222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/22/2023] [Accepted: 01/31/2024] [Indexed: 02/02/2024]
Abstract
A new electrochemical transformation is presented that enables chemists to couple simple alkyl carboxylic acid derivatives with an electrophilic amine reagent to construct C(sp3 )-N bond. The success of this reaction hinges on the merging of cooperative electrochemical reduction with nickel catalysis. The chemistry exhibits a high degree of practicality, showcasing its wide applicability with 1°, 2°, 3° carboxylic acids and remarkable compatibility with diverse functional groups, even in the realm of late-stage functionalization. Furthermore, extensive mechanistic studies have unveiled the engagement of alkyl radicals and iminyl radicals; and elucidated the multifaceted roles played by i Pr2 O, Ni catalyst, and electricity.
Collapse
Affiliation(s)
- Yue-Ming Cai
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiao-Ting Liu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Lin-Lin Xu
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Ming Shang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Zhangjiang Institute for Advanced Study, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|
3
|
Ma B, Gong Y, Long Y, Chen Z, Yuan Y, Yang J. Synthesis of Acylhydroquinones through Visible-Light-Mediated Hydroacylation of Quinones with α-Keto Acids. J Org Chem 2024; 89:1669-1680. [PMID: 38204383 DOI: 10.1021/acs.joc.3c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
A mild and eco-friendly visible-light-induced protocol for the hydroacylation of quinones with α-keto acids has been developed. In the absence of any catalyst or additive, the decarboxylative hydroacylation proceeded smoothly under visible-light irradiation at room temperature. A wide range of quinones and α-keto acids were well-tolerated and afforded hydroacylation products up to 88% isolated yield. The reaction can be scaled up, and the induced groups are useful for further synthetic applications. Preliminarily, mechanistic studies indicated that photoactive quinones absorb visible light to facilitate the transformation.
Collapse
Affiliation(s)
- Ben Ma
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yawen Gong
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yun'e Long
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Zhiyong Chen
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yong Yuan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Jingya Yang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
4
|
Wang C, Yang N, Li C, He J, Li H. Tuning Benzylic C-H Functionalization of (Thio)xanthenes with Electrochemistry. Molecules 2023; 28:6139. [PMID: 37630392 PMCID: PMC10459638 DOI: 10.3390/molecules28166139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/13/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Here, we report a tunable electrochemical benzylic C-H functionalization of (thio)xanthenes with terminal alkynes and nitriles in the absence of any catalyst or external chemical oxidant. The benzylic C-H functionalization can be well controlled by varying the electrochemical conditions, affording the specific coupling products via C-C and C-N bond formation.
Collapse
Affiliation(s)
- Changji Wang
- School of Chemical Engineering, Anhui University of Science and Technology, 168 Taifeng Road, Huainan 232001, China
| | - Na Yang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Chao Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| | - Jian He
- Hefei New Online Technology Co., Ltd., Hefei 235000, China;
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei 235000, China; (N.Y.); (C.L.)
| |
Collapse
|
5
|
Cao S, Li H, Teng X, Si H, Chen R, Zhu Y. Access to Fully Substituted Dihydropyrimidines via Dual Copper/Photoredox‐Catalyzed Domino Annulation of Oxime Esters and Imines. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
6
|
Cao S, Yuan W, Li Y, Teng X, Si H, Chen R, Zhu Y. Photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN: access to antifungal active tetrasubstituted pyrazines. Chem Commun (Camb) 2022; 58:7200-7203. [PMID: 35671164 DOI: 10.1039/d2cc02480b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A photoredox/copper cocatalyzed domino cyclization of oxime esters with TMSCN has been developed. A range of structurally novel tetrasubstituted pyrazines have been obtained. This method features high bond-forming efficiency, high step economy, broad substrate scope, and gram-scale synthesis. Moreover, preliminary bioactivity evaluation of pyrazine products shows their promising antifungal activities.
Collapse
Affiliation(s)
- Shujun Cao
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Weidong Yuan
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yun Li
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Xinjie Teng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Huaxing Si
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Rongshun Chen
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| | - Yingguang Zhu
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, P. R. China.
| |
Collapse
|
7
|
Chen X, Liu H, Gao H, Li P, Miao T, Li H. Electrochemical Regioselective Cross-Dehydrogenative Coupling of Indoles with Xanthenes. J Org Chem 2021; 87:1056-1064. [PMID: 34964353 DOI: 10.1021/acs.joc.1c02346] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An electrochemical cross-dehydrogenative coupling of indoles with xanthenes has been established at room temperature. This coupling reaction could proceed in the absence of any catalyst or external oxidant, and generate the indole derivatives in moderate yields. Mechanistic experiments support that a radical pathway maybe involved in this reaction system.
Collapse
Affiliation(s)
- Xinyu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongqiang Liu
- China Synchem Technology Co., Ltd., Bengbu, Anhui 233000, P. R. China
| | - Hui Gao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.,Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Tao Miao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
8
|
Kweon B, Kim C, Kim S, Hong S. Remote C−H Pyridylation of Hydroxamates through Direct Photoexcitation of
O
‐Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202112364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Changha Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Seonyul Kim
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry Korea Advanced Institute of Science and Technology (KAIST) Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations Institute for Basic Science (IBS) Daejeon 34141 Republic of Korea
| |
Collapse
|
9
|
Kweon B, Kim C, Kim S, Hong S. Remote C-H Pyridylation of Hydroxamates through Direct Photoexcitation of O-Aryl Oxime Pyridinium Intermediates. Angew Chem Int Ed Engl 2021; 60:26813-26821. [PMID: 34636478 DOI: 10.1002/anie.202112364] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Indexed: 01/22/2023]
Abstract
Herein, we report an efficient strategy for the remote C-H pyridylation of hydroxamates with excellent ortho-selectivity by designing a new class of photon-absorbing O-aryl oxime pyridinium salts generated in situ from the corresponding pyridines and hydroxamates. When irradiated by visible light, the photoexcitation of oxime pyridinium intermediates generates iminyl radicals via the photolytic N-O bond cleavage, which does not require an external photocatalyst. The efficiency of light absorption and N-O bond cleavage of the oxime pyridinium salts can be modulated through the electronic effect of substitution on the O-aryl ring. The resultant iminyl radicals enable the installation of pyridyl rings at the γ-CN position, which yields synthetically valuable C2-substituted pyridyl derivatives. This novel synthetic approach provides significant advantages in terms of both efficiency and simplicity and exhibits broad functional group tolerance in complex settings under mild and metal-free conditions.
Collapse
Affiliation(s)
- Byeongseok Kweon
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Seonyul Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea.,Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Push–Pull Effect on the Gas-Phase Basicity of Nitriles: Transmission of the Resonance Effects by Methylenecyclopropene and Cyclopropenimine π-Systems Substituted by Two Identical Strong Electron Donors. Symmetry (Basel) 2021. [DOI: 10.3390/sym13091554] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The gas-phase basicity of nitriles can be enhanced by a push–pull effect. The role of the intercalated scaffold between the pushing group (electron-donor) and the pulling (electron-acceptor) nitrile group is crucial in the basicity enhancement, simultaneously having a transmission function and an intrinsic contribution to the basicity. In this study, we examine the methylenecyclopropene and the N-analog, cyclopropenimine, as the smallest cyclic π systems that can be considered for resonance propagation in a push–pull system, as well as their derivatives possessing two strong pushing groups (X) attached symmetrically to the cyclopropene scaffold. For basicity and push–pull effect investigations, we apply theoretical methods (DFT and G2). The effects of geometrical and rotational isomerism on the basicity are explored. We establish that the protonation of the cyano group is always favored. The push–pull effect of strong electron donor X substituents is very similar and the two π-systems appear to be good relays for this effect. The effects of groups in the two cyclopropene series are found to be proportional to the effects in the directly substituted nitrile series X–C≡N. In parallel to the basicity, changes in electron delocalization caused by protonation are also assessed on the basis of aromaticity indices. The calculated proton affinities of the nitrile series reported in this study enrich the gas-phase basicity scale of nitriles to around 1000 kJ mol−1.
Collapse
|
11
|
Patel RI, Sharma S, Sharma A. Cyanation: a photochemical approach and applications in organic synthesis. Org Chem Front 2021. [DOI: 10.1039/d1qo00162k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarises the photocatalytic cyanation strategies to construct C(sp2)–CN, C(sp3)–CN and X–CN (X = N, S) bonds.
Collapse
Affiliation(s)
- Roshan I. Patel
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Shivani Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| | - Anuj Sharma
- Department of Chemistry
- Indian Institute of Technology Roorkee
- Roorkee-247667
- India
| |
Collapse
|
12
|
Zhang W, Bu J, Wang L, Li P, Li H. Sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes: an approach toward the carbazole skeleton. Org Chem Front 2021. [DOI: 10.1039/d1qo00739d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A mild sunlight-mediated [3 + 2] cycloaddition of azobenzenes with arynes has been established for the construction of the carbazole backbone.
Collapse
Affiliation(s)
- Wenjie Zhang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Jiahui Bu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Lei Wang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
- Advanced Research Institute and Department of Chemistry, Taizhou University, Taizhou, Zhejiang 318000, P. R. China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Shanghai 200032, P. R. China
| | - Pinhua Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| | - Hongji Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P.R. China
| |
Collapse
|