1
|
Maurya NK, Singh A, Sahu A, Kumar A, Kant R, Rao VG, Shukla SK, Kuram MR. Suzuki-Miyaura/Mizoroki-Heck coupling cascade to access 2,2'-bifunctionalized biaryls. Chem Commun (Camb) 2025; 61:1673-1676. [PMID: 39744986 DOI: 10.1039/d4cc05763e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Biaryl motifs are essential structural features in several drugs and functional molecules. Cyclic diaryliodonium has been scarcely explored as a bifunctional agent compared to ring opening and annulation reactions. Herein, a three-component cascade approach is developed to synthesize bifunctionalized biaryls employing cyclic diaryliodoniums as a biarylating agent. The mild conditions enabled a vast array of biarylated products in good yields in a single step. Furthermore, preliminary mechanistic details and photophysical properties have been investigated.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Anushka Singh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Ankita Sahu
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Asit Kumar
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Ruchir Kant
- Molecular and Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India
| | - Vishal Govind Rao
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India.
| | - Sanjeev K Shukla
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Sophisticated Analytical Instrument Facility & Research, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow, Uttar Pradesh 226031, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
2
|
Yoshimura A, Zhdankin VV. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chem Rev 2024; 124:11108-11186. [PMID: 39269928 PMCID: PMC11468727 DOI: 10.1021/acs.chemrev.4c00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/18/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024]
Abstract
Hypervalent iodine(III) compounds have found wide application in modern organic chemistry as environmentally friendly reagents and catalysts. Hypervalent iodine reagents are commonly used in synthetically important halogenations, oxidations, aminations, heterocyclizations, and various oxidative functionalizations of organic substrates. Iodonium salts are important arylating reagents, while iodonium ylides and imides are excellent carbene and nitrene precursors. Various derivatives of benziodoxoles, such as azidobenziodoxoles, trifluoromethylbenziodoxoles, alkynylbenziodoxoles, and alkenylbenziodoxoles have found wide application as group transfer reagents in the presence of transition metal catalysts, under metal-free conditions, or using photocatalysts under photoirradiation conditions. Development of hypervalent iodine catalytic systems and discovery of highly enantioselective reactions using chiral hypervalent iodine compounds represent a particularly important recent achievement in the field of hypervalent iodine chemistry. Chemical transformations promoted by hypervalent iodine in many cases are unique and cannot be performed by using any other common, non-iodine-based reagent. This review covers literature published mainly in the last 7-8 years, between 2016 and 2024.
Collapse
Affiliation(s)
- Akira Yoshimura
- Faculty
of Pharmaceutical Sciences, Aomori University, 2-3-1 Kobata, Aomori 030-0943, Japan
| | - Viktor V. Zhdankin
- Department
of Chemistry and Biochemistry, University
of Minnesota Duluth, Duluth, Minnesota 55812, United States
| |
Collapse
|
3
|
Feng J, Xi LL, Lu CJ, Liu RR. Transition-metal-catalyzed enantioselective C-N cross-coupling. Chem Soc Rev 2024; 53:9560-9581. [PMID: 39171573 DOI: 10.1039/d4cs00102h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Chiral amine scaffolds are among the most important building blocks in natural products, drug molecules, and functional materials, which have prompted chemists to focus more on their synthesis. Among the accomplishments in chiral amine synthesis, transition-metal-catalyzed enantioselective C-N cross-coupling is considered one of the most efficient protocols. This approach combines traditional C(sp2)-N cross-coupling methods (such as the Buchwald-Hartwig reaction Ullmann-type reaction, and Chan-Evans-Lam reaction), aryliodonium salt chemistry and radical chemistry, providing an attractive pathway to a wide range of structurally diverse chiral amines with high enantioselectivity. This review summarizes the established protocols and offers a comprehensive outlook on the promising enantioselective C-N cross-coupling reaction.
Collapse
Affiliation(s)
- Jia Feng
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Long-Long Xi
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Chuan-Jun Lu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
| | - Ren-Rong Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Ningxia Road 308#, Qingdao 266071, China.
- Key Laboratory of Shandong Provincial Universities for Functional Molecules and Materials, Qingdao University, Qingdao 266071, China
- College of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
4
|
Ide Y, Matsuda N, Osada M, Yamamoto A, Tanaka K, Hashimoto Y, Morita N, Tamura O. Hetero Cope-Type Hydroamination of Hetero-Allenes with Oximes Having Olefin Moieties Leading to Nitrones, Causing Intramolecular Cycloaddition. J Org Chem 2024; 89:12973-12981. [PMID: 39254961 DOI: 10.1021/acs.joc.4c00986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Hetero-allenes such as isocyanates, isothiocyanates, and carbodiimides reacted with oxime having olefin moieties in the manner of hetero Cope-type hydroamination to generate N-modified nitrones, which underwent intramolecular cycloaddition to give intramolecular cycloadducts. Among them, the reaction of isocyanates with oximes proceeded at room temperature to provide the corresponding cycloadducts in very high yields. The efficiencies of these sequential cycloadditions were directly compared by competitive reactions. As a result, the order of reactivity to oxime 1a is isocyanate 2a, isothiocyanate 3a, and carbodiimide 6a. Theoretical studies were also conducted.
Collapse
Affiliation(s)
- Yosuke Ide
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Naoto Matsuda
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Mei Osada
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Ayaka Yamamoto
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Kosaku Tanaka
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Yoshimitsu Hashimoto
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Nobuyoshi Morita
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| | - Osamu Tamura
- Showa Pharmaceutical University, 3-2-1 Higashi-tamagawagakuen, Machida, Tokyo 194-8543, Japan
| |
Collapse
|
5
|
Schmidt TA, Hutskalova V, Sparr C. Atroposelective catalysis. Nat Rev Chem 2024; 8:497-517. [PMID: 38890539 DOI: 10.1038/s41570-024-00618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 06/20/2024]
Abstract
Atropisomeric compounds-stereoisomers that arise from the restricted rotation about a single bond-have attracted widespread attention in recent years due to their immense potential for applications in a variety of fields, including medicinal chemistry, catalysis and molecular nanoscience. This increased interest led to the invention of new molecular motors, the incorporation of atropisomers into drug discovery programmes and a wide range of novel atroposelective reactions, including those that simultaneously control multiple stereogenic axes. A diverse set of synthetic methodologies, which can be grouped into desymmetrizations, (dynamic) kinetic resolutions, cross-coupling reactions and de novo ring formations, is available for the catalyst-controlled stereoselective synthesis of various atropisomer classes. In this Review, we generalize the concepts for the catalyst-controlled stereoselective synthesis of atropisomers within these categories with an emphasis on recent advancements and underdeveloped atropisomeric scaffolds beyond stereogenic C(sp2)-C(sp2) axes. We also discuss more complex systems with multiple stereogenic axes or higher-order stereogenicity.
Collapse
Affiliation(s)
- Tanno A Schmidt
- Department of Chemistry, University of Basel, Basel, Switzerland
| | | | - Christof Sparr
- Department of Chemistry, University of Basel, Basel, Switzerland.
| |
Collapse
|
6
|
Hashidoko A, Kitanosono T, Yamashita Y, Kobayashi S. Water vs. Organic Solvents: Water-Controlled Divergent Reactivity of 2-Substituted Indoles. Chem Asian J 2024:e202301045. [PMID: 38217396 DOI: 10.1002/asia.202301045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 01/15/2024]
Abstract
Water is not a good solvent for most organic compounds, yet water can offer many benefits to some organic reactions, hence enriching organic chemistry. Herein, the unique divergent reactivity of 2-substituted indoles with ⋅NO sources is presented. The amount of water solvent was harnessed for a scalable, benign, and expedient synthesis of indolenine oximes, albeit with water's inability to dissolve the reactants. 2-Methoxyethyl nitrite, which has been tailored for reactions in water, empowered this protocol by enhancing the product selectivity. We further report on chemoselective transformations of the products that rely on their structural features. Our findings are expected to offer access to an underexplored chemical space. The platform is also applicable to oximinomalonate synthesis. Mechanistic studies revealed the important role of water in the reversal of stability between oxime and nitroso compounds, promoting the proton transfer.
Collapse
Affiliation(s)
- Airu Hashidoko
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Taku Kitanosono
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuhiro Yamashita
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Shū Kobayashi
- Department of Chemistry, School of Science, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| |
Collapse
|
7
|
Wei L, Li J, Zhao Y, Zhou Q, Wei Z, Chen Y, Zhang X, Yang X. Chiral Phosphoric Acid Catalyzed Asymmetric Hydrolysis of Biaryl Oxazepines for the Synthesis of Axially Chiral Biaryl Amino Phenol Derivatives. Angew Chem Int Ed Engl 2023; 62:e202306864. [PMID: 37338333 DOI: 10.1002/anie.202306864] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The development of catalytic asymmetric reaction with water as the reactant is challenging due to the reactivity- and stereoselectivity-control issues resulted from the low nucleophilicity and the small size of water. We disclose herein a chiral phosphoric acid (CPA) catalyzed atroposelective ring-opening reaction of biaryl oxazepines with water. A series of biaryl oxazepines undergo the CPA catalyzed asymmetric hydrolysis in a highly enantioselective manner. The key for the success of this reaction is the use of a new SPINOL-derived CPA catalyst and the high reactivity of biaryl oxazepine substrates towards water under acidic conditions. Density functional theory calculations suggest that the reaction proceeds via a dynamic kinetic resolution pathway and the CPA catalyzed addition of water to the imine group is both enantio- and rate-determining.
Collapse
Affiliation(s)
- Liwen Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Jiaomeng Li
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yi Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Qinglong Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Zhikang Wei
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Yuhang Chen
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| | - Xinglong Zhang
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore, 138632, Singapore
| | - Xing Yang
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine (Ministry of Educational of China), Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410081, P. R. China
| |
Collapse
|
8
|
Roos CB, Chiang CH, Murray LAM, Yang D, Schulert L, Narayan ARH. Stereodynamic Strategies to Induce and Enrich Chirality of Atropisomers at a Late Stage. Chem Rev 2023; 123:10641-10727. [PMID: 37639323 DOI: 10.1021/acs.chemrev.3c00327] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Enantiomers, where chirality arises from restricted rotation around a single bond, are atropisomers. Due to the unique nature of the origins of their chirality, synthetic strategies to access these compounds in an enantioselective manner differ from those used to prepare enantioenriched compounds containing point chirality arising from an unsymmetrically substituted carbon center. In particular stereodynamic transformations, such as dynamic kinetic resolutions, thermodynamic dynamic resolutions, and deracemizations, which rely on the ability to racemize or interconvert enantiomers, are a promising set of transformations to prepare optically pure compounds in the late stage of a synthetic sequence. Translation of these synthetic approaches from compounds with point chirality to atropisomers requires an expanded toolbox for epimerization/racemization and provides an opportunity to develop a new conceptual framework for the enantioselective synthesis of these compounds.
Collapse
|
9
|
Singhal R, Choudhary SP, Malik B, Pilania M. Cyclic diaryliodonium salts: applications and overview. Org Biomol Chem 2023; 21:4358-4378. [PMID: 37161758 DOI: 10.1039/d3ob00134b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Owing to the recent renewed interest and groundbreaking advances in hypervalent chemistry, cyclic diaryliodonium salts have had a myriad of unique applications in the past decade. Their numerous properties, such as an efficient dual arylation mechanism, straightforward one-pot synthesis compatibility, wide substrate scope, and functionalization tolerance, have made them appropriate starting materials for many bioactive compounds. Fluorenes, thiophenes, carbazoles, phenanthrenes, and many other useful cyclic bioactive molecules that are essential for pharmaceutical synthesis can be readily accessed from cyclic diaryliodonium salts. Particular focus has been given to the high optical activity and good enantiomeric excess of the products that facilitate the easy formation of many difficult-to-obtain optical isomers, such as atropisomers. This review aims to compile and summarize all the recent advances in synthesizing methodologies to prepare the important compounds where cyclic diaryliodonium salt is an integral part of the methodologies and would hopefully provide a good foundation for further research on this topic.
Collapse
Affiliation(s)
- Rakshanda Singhal
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Satya Prakash Choudhary
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Babita Malik
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| | - Meenakshi Pilania
- Department of Chemistry, Manipal University Jaipur, Jaipur, VPO-Dehmi-Kalan, Off Jaipur-Ajmer Express Way, Jaipur, Rajasthan, 303007, India.
| |
Collapse
|
10
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
11
|
Maurya NK, Yadav S, Chaudhary D, Kumar D, Ishu K, Kuram MR. Palladium-Catalyzed C(sp 3)-H Biarylation of 8-Methyl Quinolines with Cyclic Diaryliodonium Salts to Access Functionalized Biaryls and Fluorene Derivatives. J Org Chem 2022; 87:13744-13749. [PMID: 36198197 DOI: 10.1021/acs.joc.2c01405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Herein, we have developed the cyclic diaryliodonium salts as biarylating agents in the C(sp3)-H functionalization using 8-methyl quinoline as the intrinsic directing group. The oxidant-free reaction produces a vast array of the biarylated products with iodo functionality that can be further functionalized. Additionally, intramolecular C(sp3)-H functionalization in a stepwise manner under palladium-catalyzed conditions produced the fluorene derivatives in excellent yields.
Collapse
Affiliation(s)
- Naveen Kumar Maurya
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Suman Yadav
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dhananjay Chaudhary
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Dharmendra Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Km Ishu
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Malleswara Rao Kuram
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
12
|
Zhang JQ, Qiu PW, Liang C, Mo DL. Synthesis of Azetidine Nitrones and Exomethylene Oxazolines through a Copper(I)-Catalyzed 2,3-Rearrangement and 4π-Electrocyclization Cascade Strategy. Org Lett 2022; 24:7801-7805. [PMID: 36263993 DOI: 10.1021/acs.orglett.2c03156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A variety of azetidine nitrones are prepared in moderate to good yields through copper(I) combined with 2-aminopyridine to catalyze skeletal rearrangement of O-propargylic oximes. Mechanistic studies reveal that the reaction undergoes a copper(I)-catalyzed tandem [2,3]-rearrangement, 4π-electrocyclization, ring opening, and recyclization over four steps in one pot. Substituents at the terminus of alkyne and oxime moieties have a significant impact on the formation of azetidine nitrones and exomethylene oxazolines, respectively. Furthermore, the obtained azetidine nitrone could easily participate in [3 + 2] cycloaddition with alkynoates, and a [2.2]-paracyclophane-derived azetidine nitrone is synthesized in 45% yield over five steps from bromo[2.2]-paracyclophane.
Collapse
Affiliation(s)
- Jin-Qi Zhang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Pei-Wen Qiu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Cui Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| | - Dong-Liang Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, 15 Yu Cai Road, Guilin 541004, China
| |
Collapse
|
13
|
Zhang X, Zhao K, Gu Z. Transition Metal-Catalyzed Biaryl Atropisomer Synthesis via a Torsional Strain Promoted Ring-Opening Reaction. Acc Chem Res 2022; 55:1620-1633. [PMID: 35647705 DOI: 10.1021/acs.accounts.2c00175] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
ConspectusArising from the restricted rotation of a single bond caused by steric or electronic effects, atropisomerism is one of the few fundamental categories for molecules to manifest their three-dimensional characters into which axially chiral biaryl compounds fall. Despite the widespread occurrence of axially chiral skeletons in natural products, bioactive molecules, and chiral ligands/organocatalysts, catalytic asymmetric methods for the synthesis of these structures still lag behind demand. Major challenges for the preparation of these chiral biaryls include accessing highly sterically hindered variants while controlling the stereoselectivity. A couple of useful strategies have emerged for the direct asymmetric synthesis of these molecules in the last two decades.Recently, we have engaged in catalytic asymmetric synthesis of biaryl atropisomers via transition metal catalysis, including asymmetric ring-openings of dibenzo cyclic compounds. During these studies, we serendipitously discovered that the two substituents adjacent to the axis cause these dibenzo cyclic molecules to be distorted to minimize steric repulsion. The distorted compounds display higher reactivity in the ring-opening reactions than the non-distorted molecules. In other words, torsional strain can promote a ring-opening reaction. On the basis of this concept, we have successfully realized the catalytic asymmetric ring-opening reaction of cyclic diaryliodoniums, dibenzo silanes, and 9H-fluoren-9-ols, which delivered several differently substituted ortho tetra-substituted biaryl atropisomers in high enantioselectivity. The torsional strain not only activates the substrates toward ring-opening under mild conditions but also changes the chemoselectivity of bond-breaking events. In the palladium-catalyzed carboxylation of S-aryl dibenzothiophenium, the torsional strain inversed the bond selectivity from exocyclic C-S bond cleavage to the ring-opening reaction.In this Account, we summarize our studies on copper-, rhodium-, or palladium-catalyzed asymmetric ring-opening reactions of dibenzo cyclic compounds as a useful collection of methods for the straightforward preparation of ortho tetra-substituted biaryl atropisomers with high enantiopurity on the basis of the above-mentioned torsional strain-promoted ring-opening coupling strategy. In the last part, the torsional strain energies are also discussed with the aid of density functional theory (DFT) calculations.
Collapse
Affiliation(s)
- Xue Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Kun Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
| | - Zhenhua Gu
- Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China
- College of Materials and Chemical Engineering, Minjiang University, Fuzhou 350108, China
| |
Collapse
|
14
|
Zhu D, Sun Y, Peng H, Li H, Yan Y, Kuang H. Enantioselective Synthesis of Axially Chiral Oxazole Biaryls via Cu‐Catalyzed Oxidation of Cyclic Diaryliodoniums. European J Org Chem 2022. [DOI: 10.1002/ejoc.202101449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Daqian Zhu
- Guangdong Pharmaceutical University School of Pharmacy 280 Waihuan East Road 510006 Guangzhou CHINA
| | - Yameng Sun
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hui Peng
- Sun Yat-sen University Cancer Center collaborative innovation center for cancer medicine CHINA
| | - Hangni Li
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Yang Yan
- Guangdong Pharmaceutical University school of pharmacy CHINA
| | - Haolin Kuang
- Guangdong Pharmaceutical University school of pharmacy CHINA
| |
Collapse
|
15
|
Cheng F, Duan DS, Jiang LM, Li BS, Wang JX, Zhou YJ, Jiao HY, Wu T, Zhu DY, Wang SH. Copper-Catalyzed Asymmetric Ring-Opening Reaction of Cyclic Diaryliodonium Salts with Imides. Org Lett 2022; 24:1394-1399. [PMID: 35132855 DOI: 10.1021/acs.orglett.2c00247] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
An efficient copper-catalyzed asymmetric ring-opening reaction of diaryliodonium salts with imides has been developed, affording a wide range of axially chiral 2-imidobiaryl compounds with excellent enantioselectivities and better convertibility. The potential utility of the current method has been supported by the synthesis of two known chiral ligands with better efficiency, which would be of great significance to the development of other catalytic asymmetric reactions.
Collapse
Affiliation(s)
- Fu Cheng
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dong-Sen Duan
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Li-Ming Jiang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Bao-Sheng Li
- School of Chemistry and Chemical Engineering, Chongqing University, 174 Shazheng Street, Chongqing 400044, China
| | - Jia-Xuan Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Yu-Jia Zhou
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - He-Yu Jiao
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Tao Wu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Dao-Yong Zhu
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| | - Shao-Hua Wang
- School of Pharmacy & State Key Laboratory of Applied Organic Chemistry & Collaborative Innovation Center for Northwestern Chinese Medicine, Lanzhou University, Room 609, Xinglin Building, 222 Tianshui South Road, Chengguan District, Lanzhou 730000, China
| |
Collapse
|
16
|
Wang G, Huang J, Zhang J, Fu Z. Catalytically atroposelective ring-opening of configurationally labile compounds to access axially chiral biaryls. Org Chem Front 2022. [DOI: 10.1039/d2qo00946c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this minireview, we evaluate and summarize the construction of axially chiral biaryls, and briefly state our personal perspectives on the future advancement of this direction.
Collapse
Affiliation(s)
- Guanjie Wang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jie Huang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| | - Junmin Zhang
- International Joint Research Center for Molecular Science, College of Chemistry and Environmental Engineering & College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Zhenqian Fu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering & Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
| |
Collapse
|
17
|
Teng Y, Yang H, Li X, Wang Y, Yin D, Tian Y. A
Bioorthogonal‐Activated
Fluorescence
Turn‐On
Probe Based on
Nitrone‐Modified
1,
8‐Naphthalimide
for
Live‐Cell
Imaging. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Teng
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences 1st Xian Nong Tan Street Beijing 100050 China
| | - Hong Yang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences 1st Xian Nong Tan Street Beijing 100050 China
| | - Xiang Li
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences 1st Xian Nong Tan Street Beijing 100050 China
| | - Yongcheng Wang
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences 1st Xian Nong Tan Street Beijing 100050 China
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences 1st Xian Nong Tan Street Beijing 100050 China
| | - Yulin Tian
- State Key Laboratory of Bioactive Substances and Function of Natural Medicine, Beijing Key Laboratory of Active Substances Discovery and Drugability Evaluation, Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences 1st Xian Nong Tan Street Beijing 100050 China
| |
Collapse
|
18
|
Cai BG, Li L, Xu GY, Xiao WJ, Xuan J. Visible-light-promoted nitrone synthesis from nitrosoarenes under catalyst- and additive-free conditions. Photochem Photobiol Sci 2021; 20:823-829. [PMID: 34115366 DOI: 10.1007/s43630-021-00062-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/27/2021] [Indexed: 11/27/2022]
Abstract
A green and sustainable nitrone formation reaction via visible-light-promoted reaction of aryl diazoacetates with nitrosoarenes is described. This protocol exhibits good functional group tolerance and broad substrate scope for both aryl diazoacetates with nitrosoarenes. Comparing the reported methods for the synthesis of nitrones from nitrosoarenes, the reaction described herein occurs under sole visible-light irradiation without the need of any catalysts and additives.
Collapse
Affiliation(s)
- Bao-Gui Cai
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Lin Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China
| | - Guo-Yong Xu
- Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
| | - Wen-Jing Xiao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, People's Republic of China.
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials and Key Laboratory of Functional Inorganic Materials of Anhui Province, College of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui, 230601, People's Republic of China.
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei, 230601, People's Republic of China.
| |
Collapse
|
19
|
Zhang G, Alshreimi AS, Alonso L, Antar A, Yu H, Islam SM, Anderson LL. Nitrone and Alkyne Cascade Reactions for Regio‐ and Diastereoselective 1‐Pyrroline Synthesis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101511] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Guanqun Zhang
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Abdullah S. Alshreimi
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Laura Alonso
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Alan Antar
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Hsien‐Cheng Yu
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Shahidul M. Islam
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| | - Laura L. Anderson
- Department of Chemistry University of Illinois at Chicago 845 W Taylor St. MC 111 Chicago IL 60607 USA
| |
Collapse
|
20
|
Zhang G, Alshreimi AS, Alonso L, Antar A, Yu HC, Islam SM, Anderson LL. Nitrone and Alkyne Cascade Reactions for Regio- and Diastereoselective 1-Pyrroline Synthesis. Angew Chem Int Ed Engl 2021; 60:13089-13097. [PMID: 33763941 DOI: 10.1002/anie.202101511] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/06/2021] [Indexed: 12/22/2022]
Abstract
The synthesis of 1-pyrrolines from N-alkenylnitrones and alkynes has been explored as a retrosynthetic alternative to traditional approaches. These cascade reactions are formal [4+1] cycloadditions that proceed through a proposed dipolar cycloaddition and N-alkenylisoxazoline [3,3']-sigmatropic rearrangement. A variety of cyclic alkynes and terminal alkynes have been shown to undergo the transformation with N-alkenylnitrones under mild conditions to provide the corresponding spirocyclic and densely substituted 1-pyrrolines with high regio- and diastereoselectivity. Mechanistic studies provide insight into the balance of steric and electronic effects that promote the cascade process and control the diastereo- and regioisomeric preferences of the 1-pyrroline products. Diastereoselective derivatization of the 1-pyrrolines prepared by the cascade reaction demonstrate the divergent synthetic utility of the new method.
Collapse
Affiliation(s)
- Guanqun Zhang
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Abdullah S Alshreimi
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Laura Alonso
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Alan Antar
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Hsien-Cheng Yu
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Shahidul M Islam
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| | - Laura L Anderson
- Department of Chemistry, University of Illinois at Chicago, 845 W Taylor St. MC 111, Chicago, IL, 60607, USA
| |
Collapse
|
21
|
Cheng JK, Xiang SH, Li S, Ye L, Tan B. Recent Advances in Catalytic Asymmetric Construction of Atropisomers. Chem Rev 2021; 121:4805-4902. [PMID: 33775097 DOI: 10.1021/acs.chemrev.0c01306] [Citation(s) in RCA: 468] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Atropisomerism is a stereochemical behavior portrayed by three-dimensional molecules that bear rotationally restricted σ bond. Akin to the well-represented point-chiral molecules, atropisomerically chiral compounds are finding increasing utilities in many disciplines where molecular asymmetry is influential. This provides steady demand on atroposelective synthesis, where numerous synthetic pursuits have been rewarded with conceptually novel and streamlined methods while expanding the structural diversity of atropisomers. This review summarizes key achievements in stereoselective preparation of biaryl, heterobiaryl, and nonbiaryl atropisomers documented between 2015 and 2020. Emphasis is placed on the synthetic strategies for each structural class, while examples are cited to illustrate the potential applications of the accessed atropochiral targets.
Collapse
Affiliation(s)
- Jun Kee Cheng
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shao-Hua Xiang
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shaoyu Li
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Ye
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China.,Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bin Tan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
22
|
Duan L, Wang Z, Zhao K, Gu Z. Enantioselective preparation of atropisomeric biaryl trifluoromethylsulfanes via ring-opening of cyclic diaryliodoniums. Chem Commun (Camb) 2021; 57:3881-3884. [PMID: 33871504 DOI: 10.1039/d1cc00171j] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two convenient and practical methods for the synthesis of axially chiral biaryls bearing the trifluoromethylthio group are reported. A Cu-catalyzed enantioselective ring-opening reaction of cyclic diaryliodoniums with CsSCF3 enables the direct synthesis of trifluoromethylthiolated biaryl atropisomers in high yields and enantioselectivity. For unsymmetric cyclic diaryliodoniums bearing an adjacent group to the C-I bond, a two-step procedure is required to achieve good regio- and enantioselectivity.
Collapse
Affiliation(s)
- Longhui Duan
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhonggui Wang
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Kun Zhao
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| | - Zhenhua Gu
- Department of Chemistry, Center for Excellence in Molecular Synthesis (Chinese Academy of Science), and Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.
| |
Collapse
|
23
|
Ke J, Zu B, Guo Y, Li Y, He C. Hexafluoroisopropanol-Enabled Copper-Catalyzed Asymmetric Halogenation of Cyclic Diaryliodoniums for the Synthesis of Axially Chiral 2,2'-Dihalobiaryls. Org Lett 2021; 23:329-333. [PMID: 33372799 DOI: 10.1021/acs.orglett.0c03833] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient asymmetric halogenation of cyclic diaryliodonium salts is demonstrated, which gives access to a wide range of axially chiral 2,2'-dihalobiaryls in good to excellent yields and with excellent enantioselectivities. The use of CuX with chiral bisoxazoline ligand and tetrabutylammonium halides in the unique solvent of hexafluoroisopropanol (HFIP) led to the best results in the process. The axially chiral 2,2'-dihalobiaryls can be transformed into a number of enantiopure chiral ligands that could be potentially useful in asymmetric catalysis.
Collapse
Affiliation(s)
- Jie Ke
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Bing Zu
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yonghong Guo
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Yingzi Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Chuan He
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| |
Collapse
|
24
|
Deng Z, Ouyang Y, Ao Y, Cai Q. Copper(I)-Catalyzed Asymmetric Desymmetric Intramolecular Alkenyl C—N Coupling Reaction. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a21010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
25
|
Zhao Q, Peng C, Wang YT, Zhan G, Han B. Recent progress on the construction of axial chirality through transition-metal-catalyzed benzannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00307k] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Useful chiral biaryls have been constructed through rhodium and gold complex-catalyzed asymmetric benzannulation strategies.
Collapse
Affiliation(s)
- Qian Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Yu-Ting Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Gu Zhan
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources
- Hospital of Chengdu University of Traditional Chinese Medicine
- School of Basic Medical Sciences
- Chengdu University of Traditional Chinese Medicine
- Chengdu 611137
| |
Collapse
|
26
|
Zhu K, Song Z, Wang Y, Zhang F. Synthesis of 2,2′-Dihalobiaryls via Cu-Catalyzed Halogenation of Cyclic Diaryliodonium Salts. Org Lett 2020; 22:9356-9359. [DOI: 10.1021/acs.orglett.0c03614] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Kai Zhu
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Zongqiang Song
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Yi Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Fengzhi Zhang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|